blob: 50854d1543bb0602067e8c787a769db1c8501f0b [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
// The handshake goroutine reads handshake messages from the record processor
// and outputs messages to be written on another channel. It updates the record
// processor with the state of the connection via the control channel. In the
// case of handshake messages that need synchronous processing (because they
// affect the handling of the next record) the record processor knows about
// them and either waits for a control message (Finished) or includes a reply
// channel in the message (ChangeCipherSpec).
import (
"crypto/hmac"
"crypto/rc4"
"crypto/rsa"
"crypto/sha1"
"crypto/subtle"
"io"
)
type cipherSuite struct {
id uint16 // The number of this suite on the wire.
hashLength, cipherKeyLength int
// TODO(agl): need a method to create the cipher and hash interfaces.
}
var cipherSuites = []cipherSuite{
cipherSuite{TLS_RSA_WITH_RC4_128_SHA, 20, 16},
}
// A serverHandshake performs the server side of the TLS 1.1 handshake protocol.
type serverHandshake struct {
writeChan chan<- interface{}
controlChan chan<- interface{}
msgChan <-chan interface{}
config *Config
}
func (h *serverHandshake) loop(writeChan chan<- interface{}, controlChan chan<- interface{}, msgChan <-chan interface{}, config *Config) {
h.writeChan = writeChan
h.controlChan = controlChan
h.msgChan = msgChan
h.config = config
defer close(writeChan)
defer close(controlChan)
clientHello, ok := h.readHandshakeMsg().(*clientHelloMsg)
if !ok {
h.error(alertUnexpectedMessage)
return
}
major, minor, ok := mutualVersion(clientHello.major, clientHello.minor)
if !ok {
h.error(alertProtocolVersion)
return
}
finishedHash := newFinishedHash()
finishedHash.Write(clientHello.marshal())
hello := new(serverHelloMsg)
// We only support a single ciphersuite so we look for it in the list
// of client supported suites.
//
// TODO(agl): Add additional cipher suites.
var suite *cipherSuite
for _, id := range clientHello.cipherSuites {
for _, supported := range cipherSuites {
if supported.id == id {
suite = &supported
break
}
}
}
foundCompression := false
// We only support null compression, so check that the client offered it.
for _, compression := range clientHello.compressionMethods {
if compression == compressionNone {
foundCompression = true
break
}
}
if suite == nil || !foundCompression {
h.error(alertHandshakeFailure)
return
}
hello.major = major
hello.minor = minor
hello.cipherSuite = suite.id
currentTime := uint32(config.Time())
hello.random = make([]byte, 32)
hello.random[0] = byte(currentTime >> 24)
hello.random[1] = byte(currentTime >> 16)
hello.random[2] = byte(currentTime >> 8)
hello.random[3] = byte(currentTime)
_, err := io.ReadFull(config.Rand, hello.random[4:])
if err != nil {
h.error(alertInternalError)
return
}
hello.compressionMethod = compressionNone
if clientHello.nextProtoNeg {
hello.nextProtoNeg = true
hello.nextProtos = config.NextProtos
}
finishedHash.Write(hello.marshal())
writeChan <- writerSetVersion{major, minor}
writeChan <- hello
if len(config.Certificates) == 0 {
h.error(alertInternalError)
return
}
certMsg := new(certificateMsg)
certMsg.certificates = config.Certificates[0].Certificate
finishedHash.Write(certMsg.marshal())
writeChan <- certMsg
helloDone := new(serverHelloDoneMsg)
finishedHash.Write(helloDone.marshal())
writeChan <- helloDone
ckx, ok := h.readHandshakeMsg().(*clientKeyExchangeMsg)
if !ok {
h.error(alertUnexpectedMessage)
return
}
finishedHash.Write(ckx.marshal())
preMasterSecret := make([]byte, 48)
_, err = io.ReadFull(config.Rand, preMasterSecret[2:])
if err != nil {
h.error(alertInternalError)
return
}
err = rsa.DecryptPKCS1v15SessionKey(config.Rand, config.Certificates[0].PrivateKey, ckx.ciphertext, preMasterSecret)
if err != nil {
h.error(alertHandshakeFailure)
return
}
// We don't check the version number in the premaster secret. For one,
// by checking it, we would leak information about the validity of the
// encrypted pre-master secret. Secondly, it provides only a small
// benefit against a downgrade attack and some implementations send the
// wrong version anyway. See the discussion at the end of section
// 7.4.7.1 of RFC 4346.
masterSecret, clientMAC, serverMAC, clientKey, serverKey :=
keysFromPreMasterSecret11(preMasterSecret, clientHello.random, hello.random, suite.hashLength, suite.cipherKeyLength)
_, ok = h.readHandshakeMsg().(changeCipherSpec)
if !ok {
h.error(alertUnexpectedMessage)
return
}
cipher, _ := rc4.NewCipher(clientKey)
controlChan <- &newCipherSpec{cipher, hmac.New(sha1.New(), clientMAC)}
clientProtocol := ""
if hello.nextProtoNeg {
nextProto, ok := h.readHandshakeMsg().(*nextProtoMsg)
if !ok {
h.error(alertUnexpectedMessage)
return
}
finishedHash.Write(nextProto.marshal())
clientProtocol = nextProto.proto
}
clientFinished, ok := h.readHandshakeMsg().(*finishedMsg)
if !ok {
h.error(alertUnexpectedMessage)
return
}
verify := finishedHash.clientSum(masterSecret)
if len(verify) != len(clientFinished.verifyData) ||
subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
h.error(alertHandshakeFailure)
return
}
controlChan <- ConnectionState{true, "TLS_RSA_WITH_RC4_128_SHA", 0, clientProtocol}
finishedHash.Write(clientFinished.marshal())
cipher2, _ := rc4.NewCipher(serverKey)
writeChan <- writerChangeCipherSpec{cipher2, hmac.New(sha1.New(), serverMAC)}
finished := new(finishedMsg)
finished.verifyData = finishedHash.serverSum(masterSecret)
writeChan <- finished
writeChan <- writerEnableApplicationData{}
for {
_, ok := h.readHandshakeMsg().(*clientHelloMsg)
if !ok {
h.error(alertUnexpectedMessage)
return
}
// We reject all renegotication requests.
writeChan <- alert{alertLevelWarning, alertNoRenegotiation}
}
}
func (h *serverHandshake) readHandshakeMsg() interface{} {
v := <-h.msgChan
if closed(h.msgChan) {
// If the channel closed then the processor received an error
// from the peer and we don't want to echo it back to them.
h.msgChan = nil
return 0
}
if _, ok := v.(alert); ok {
// We got an alert from the processor. We forward to the writer
// and shutdown.
h.writeChan <- v
h.msgChan = nil
return 0
}
return v
}
func (h *serverHandshake) error(e alertType) {
if h.msgChan != nil {
// If we didn't get an error from the processor, then we need
// to tell it about the error.
go func() {
for _ = range h.msgChan {
}
}()
h.controlChan <- ConnectionState{false, "", e, ""}
close(h.controlChan)
h.writeChan <- alert{alertLevelError, e}
}
}