| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Fork, exec, wait, etc. |
| |
| package syscall |
| |
| import ( |
| "sync"; |
| "syscall"; |
| "unsafe"; |
| ) |
| |
| // Lock synchronizing creation of new file descriptors with fork. |
| // |
| // We want the child in a fork/exec sequence to inherit only the |
| // file descriptors we intend. To do that, we mark all file |
| // descriptors close-on-exec and then, in the child, explicitly |
| // unmark the ones we want the exec'ed program to keep. |
| // Unix doesn't make this easy: there is, in general, no way to |
| // allocate a new file descriptor close-on-exec. Instead you |
| // have to allocate the descriptor and then mark it close-on-exec. |
| // If a fork happens between those two events, the child's exec |
| // will inherit an unwanted file descriptor. |
| // |
| // This lock solves that race: the create new fd/mark close-on-exec |
| // operation is done holding ForkLock for reading, and the fork itself |
| // is done holding ForkLock for writing. At least, that's the idea. |
| // There are some complications. |
| // |
| // Some system calls that create new file descriptors can block |
| // for arbitrarily long times: open on a hung NFS server or named |
| // pipe, accept on a socket, and so on. We can't reasonably grab |
| // the lock across those operations. |
| // |
| // It is worse to inherit some file descriptors than others. |
| // If a non-malicious child accidentally inherits an open ordinary file, |
| // that's not a big deal. On the other hand, if a long-lived child |
| // accidentally inherits the write end of a pipe, then the reader |
| // of that pipe will not see EOF until that child exits, potentially |
| // causing the parent program to hang. This is a common problem |
| // in threaded C programs that use popen. |
| // |
| // Luckily, the file descriptors that are most important not to |
| // inherit are not the ones that can take an arbitrarily long time |
| // to create: pipe returns instantly, and the net package uses |
| // non-blocking I/O to accept on a listening socket. |
| // The rules for which file descriptor-creating operations use the |
| // ForkLock are as follows: |
| // |
| // 1) Pipe. Does not block. Use the ForkLock. |
| // 2) Socket. Does not block. Use the ForkLock. |
| // 3) Accept. If using non-blocking mode, use the ForkLock. |
| // Otherwise, live with the race. |
| // 4) Open. Can block. Use O_CLOEXEC if available (Linux). |
| // Otherwise, live with the race. |
| // 5) Dup. Does not block. Use the ForkLock. |
| // On Linux, could use fcntl F_DUPFD_CLOEXEC |
| // instead of the ForkLock, but only for dup(fd, -1). |
| |
| var ForkLock sync.RWMutex |
| |
| // Convert array of string to array |
| // of NUL-terminated byte pointer. |
| func StringArrayPtr(ss []string) []*byte { |
| bb := make([]*byte, len(ss)+1); |
| for i := 0; i < len(ss); i++ { |
| bb[i] = StringBytePtr(ss[i]); |
| } |
| bb[len(ss)] = nil; |
| return bb; |
| } |
| |
| func CloseOnExec(fd int) { |
| fcntl(fd, F_SETFD, FD_CLOEXEC); |
| } |
| |
| func SetNonblock(fd int, nonblocking bool) (errno int) { |
| flag, err := fcntl(fd, F_GETFL, 0); |
| if err != 0 { |
| return err; |
| } |
| if nonblocking { |
| flag |= O_NONBLOCK; |
| } else { |
| flag &= ^O_NONBLOCK; |
| } |
| flag, err = fcntl(fd, F_SETFL, flag); |
| return err; |
| } |
| |
| |
| // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. |
| // If a dup or exec fails, write the errno int to pipe. |
| // (Pipe is close-on-exec so if exec succeeds, it will be closed.) |
| // In the child, this function must not acquire any locks, because |
| // they might have been locked at the time of the fork. This means |
| // no rescheduling, no malloc calls, and no new stack segments. |
| // The calls to RawSyscall are okay because they are assembly |
| // functions that do not grow the stack. |
| func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, dir *byte, fd []int, pipe int) |
| (pid int, err int) |
| { |
| // Declare all variables at top in case any |
| // declarations require heap allocation (e.g., err1). |
| var r1, r2, err1 uintptr; |
| var nextfd int; |
| var i int; |
| |
| darwin := OS == "darwin"; |
| |
| // About to call fork. |
| // No more allocation or calls of non-assembly functions. |
| r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0); |
| if err1 != 0 { |
| return 0, int(err1) |
| } |
| |
| // On Darwin: |
| // r1 = child pid in both parent and child. |
| // r2 = 0 in parent, 1 in child. |
| // Convert to normal Unix r1 = 0 in child. |
| if darwin && r2 == 1 { |
| r1 = 0; |
| } |
| |
| if r1 != 0 { |
| // parent; return PID |
| return int(r1), 0 |
| } |
| |
| // Fork succeeded, now in child. |
| |
| // Chdir |
| if dir != nil { |
| r1, r2, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0); |
| if err1 != 0 { |
| goto childerror; |
| } |
| } |
| |
| // Pass 1: look for fd[i] < i and move those up above len(fd) |
| // so that pass 2 won't stomp on an fd it needs later. |
| nextfd = int(len(fd)); |
| if pipe < nextfd { |
| r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0); |
| if err1 != 0 { |
| goto childerror; |
| } |
| RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); |
| pipe = nextfd; |
| nextfd++; |
| } |
| for i = 0; i < len(fd); i++ { |
| if fd[i] >= 0 && fd[i] < int(i) { |
| r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0); |
| if err1 != 0 { |
| goto childerror; |
| } |
| RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC); |
| fd[i] = nextfd; |
| nextfd++; |
| if nextfd == pipe { // don't stomp on pipe |
| nextfd++; |
| } |
| } |
| } |
| |
| // Pass 2: dup fd[i] down onto i. |
| for i = 0; i < len(fd); i++ { |
| if fd[i] == -1 { |
| RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); |
| continue; |
| } |
| if fd[i] == int(i) { |
| // dup2(i, i) won't clear close-on-exec flag on Linux, |
| // probably not elsewhere either. |
| r1, r2, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0); |
| if err1 != 0 { |
| goto childerror; |
| } |
| continue; |
| } |
| // The new fd is created NOT close-on-exec, |
| // which is exactly what we want. |
| r1, r2, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0); |
| if err1 != 0 { |
| goto childerror; |
| } |
| } |
| |
| // By convention, we don't close-on-exec the fds we are |
| // started with, so if len(fd) < 3, close 0, 1, 2 as needed. |
| // Programs that know they inherit fds >= 3 will need |
| // to set them close-on-exec. |
| for i = len(fd); i < 3; i++ { |
| RawSyscall(SYS_CLOSE, uintptr(i), 0, 0); |
| } |
| |
| // Time to exec. |
| r1, r2, err1 = RawSyscall(SYS_EXECVE, |
| uintptr(unsafe.Pointer(argv0)), |
| uintptr(unsafe.Pointer(&argv[0])), |
| uintptr(unsafe.Pointer(&envv[0]))); |
| |
| childerror: |
| // send error code on pipe |
| RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1))); |
| for { |
| RawSyscall(SYS_EXIT, 253, 0, 0); |
| } |
| |
| // Calling panic is not actually safe, |
| // but the for loop above won't break |
| // and this shuts up the compiler. |
| panic("unreached"); |
| } |
| |
| // Combination of fork and exec, careful to be thread safe. |
| func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) |
| (pid int, err int) |
| { |
| var p [2]int; |
| var r1 int; |
| var n int; |
| var err1 uintptr; |
| var wstatus WaitStatus; |
| |
| p[0] = -1; |
| p[1] = -1; |
| |
| // Convert args to C form. |
| argv0p := StringBytePtr(argv0); |
| argvp := StringArrayPtr(argv); |
| envvp := StringArrayPtr(envv); |
| var dirp *byte; |
| if len(dir) > 0 { |
| dirp = StringBytePtr(dir); |
| } |
| |
| // Acquire the fork lock so that no other threads |
| // create new fds that are not yet close-on-exec |
| // before we fork. |
| ForkLock.Lock(); |
| |
| // Allocate child status pipe close on exec. |
| if err = Pipe(&p); err != 0 { |
| goto error; |
| } |
| var val int; |
| if val, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 { |
| goto error; |
| } |
| if val, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 { |
| goto error; |
| } |
| |
| // Kick off child. |
| pid, err = forkAndExecInChild(argv0p, argvp, envvp, dirp, fd, p[1]); |
| if err != 0 { |
| error: |
| if p[0] >= 0 { |
| Close(p[0]); |
| Close(p[1]); |
| } |
| ForkLock.Unlock(); |
| return 0, err |
| } |
| ForkLock.Unlock(); |
| |
| // Read child error status from pipe. |
| Close(p[1]); |
| n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)); |
| Close(p[0]); |
| if err != 0 || n != 0 { |
| if n == unsafe.Sizeof(err1) { |
| err = int(err1); |
| } |
| if err == 0 { |
| err = EPIPE; |
| } |
| |
| // Child failed; wait for it to exit, to make sure |
| // the zombies don't accumulate. |
| pid1, err1 := Wait4(pid, &wstatus, 0, nil); |
| for err1 == EINTR { |
| pid1, err1 = Wait4(pid, &wstatus, 0, nil); |
| } |
| return 0, err |
| } |
| |
| // Read got EOF, so pipe closed on exec, so exec succeeded. |
| return pid, 0 |
| } |
| |
| // Ordinary exec. |
| func Exec(argv0 string, argv []string, envv []string) (err int) { |
| r1, r2, err1 := RawSyscall(SYS_EXECVE, |
| uintptr(unsafe.Pointer(StringBytePtr(argv0))), |
| uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])), |
| uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0]))); |
| return int(err1); |
| } |
| |