| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go_asm.h" |
| #include "go_tls.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| #include "cgo/abi_amd64.h" |
| |
| // _rt0_amd64 is common startup code for most amd64 systems when using |
| // internal linking. This is the entry point for the program from the |
| // kernel for an ordinary -buildmode=exe program. The stack holds the |
| // number of arguments and the C-style argv. |
| TEXT _rt0_amd64(SB),NOSPLIT,$-8 |
| MOVQ 0(SP), DI // argc |
| LEAQ 8(SP), SI // argv |
| JMP runtime·rt0_go(SB) |
| |
| // main is common startup code for most amd64 systems when using |
| // external linking. The C startup code will call the symbol "main" |
| // passing argc and argv in the usual C ABI registers DI and SI. |
| TEXT main(SB),NOSPLIT,$-8 |
| JMP runtime·rt0_go(SB) |
| |
| // _rt0_amd64_lib is common startup code for most amd64 systems when |
| // using -buildmode=c-archive or -buildmode=c-shared. The linker will |
| // arrange to invoke this function as a global constructor (for |
| // c-archive) or when the shared library is loaded (for c-shared). |
| // We expect argc and argv to be passed in the usual C ABI registers |
| // DI and SI. |
| TEXT _rt0_amd64_lib(SB),NOSPLIT,$0 |
| // Transition from C ABI to Go ABI. |
| PUSH_REGS_HOST_TO_ABI0() |
| |
| MOVQ DI, _rt0_amd64_lib_argc<>(SB) |
| MOVQ SI, _rt0_amd64_lib_argv<>(SB) |
| |
| // Synchronous initialization. |
| CALL runtime·libpreinit(SB) |
| |
| // Create a new thread to finish Go runtime initialization. |
| MOVQ _cgo_sys_thread_create(SB), AX |
| TESTQ AX, AX |
| JZ nocgo |
| |
| // We're calling back to C. |
| // Align stack per ELF ABI requirements. |
| MOVQ SP, BX // Callee-save in C ABI |
| ANDQ $~15, SP |
| MOVQ $_rt0_amd64_lib_go(SB), DI |
| MOVQ $0, SI |
| CALL AX |
| MOVQ BX, SP |
| JMP restore |
| |
| nocgo: |
| ADJSP $16 |
| MOVQ $0x800000, 0(SP) // stacksize |
| MOVQ $_rt0_amd64_lib_go(SB), AX |
| MOVQ AX, 8(SP) // fn |
| CALL runtime·newosproc0(SB) |
| ADJSP $-16 |
| |
| restore: |
| POP_REGS_HOST_TO_ABI0() |
| RET |
| |
| // _rt0_amd64_lib_go initializes the Go runtime. |
| // This is started in a separate thread by _rt0_amd64_lib. |
| TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 |
| MOVQ _rt0_amd64_lib_argc<>(SB), DI |
| MOVQ _rt0_amd64_lib_argv<>(SB), SI |
| JMP runtime·rt0_go(SB) |
| |
| DATA _rt0_amd64_lib_argc<>(SB)/8, $0 |
| GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 |
| DATA _rt0_amd64_lib_argv<>(SB)/8, $0 |
| GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 |
| |
| TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 |
| // copy arguments forward on an even stack |
| MOVQ DI, AX // argc |
| MOVQ SI, BX // argv |
| SUBQ $(4*8+7), SP // 2args 2auto |
| ANDQ $~15, SP |
| MOVQ AX, 16(SP) |
| MOVQ BX, 24(SP) |
| |
| // create istack out of the given (operating system) stack. |
| // _cgo_init may update stackguard. |
| MOVQ $runtime·g0(SB), DI |
| LEAQ (-64*1024+104)(SP), BX |
| MOVQ BX, g_stackguard0(DI) |
| MOVQ BX, g_stackguard1(DI) |
| MOVQ BX, (g_stack+stack_lo)(DI) |
| MOVQ SP, (g_stack+stack_hi)(DI) |
| |
| // find out information about the processor we're on |
| MOVL $0, AX |
| CPUID |
| MOVL AX, SI |
| CMPL AX, $0 |
| JE nocpuinfo |
| |
| // Figure out how to serialize RDTSC. |
| // On Intel processors LFENCE is enough. AMD requires MFENCE. |
| // Don't know about the rest, so let's do MFENCE. |
| CMPL BX, $0x756E6547 // "Genu" |
| JNE notintel |
| CMPL DX, $0x49656E69 // "ineI" |
| JNE notintel |
| CMPL CX, $0x6C65746E // "ntel" |
| JNE notintel |
| MOVB $1, runtime·isIntel(SB) |
| MOVB $1, runtime·lfenceBeforeRdtsc(SB) |
| notintel: |
| |
| // Load EAX=1 cpuid flags |
| MOVL $1, AX |
| CPUID |
| MOVL AX, runtime·processorVersionInfo(SB) |
| |
| nocpuinfo: |
| // if there is an _cgo_init, call it. |
| MOVQ _cgo_init(SB), AX |
| TESTQ AX, AX |
| JZ needtls |
| // arg 1: g0, already in DI |
| MOVQ $setg_gcc<>(SB), SI // arg 2: setg_gcc |
| #ifdef GOOS_android |
| MOVQ $runtime·tls_g(SB), DX // arg 3: &tls_g |
| // arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF). |
| // Compensate for tls_g (+16). |
| MOVQ -16(TLS), CX |
| #else |
| MOVQ $0, DX // arg 3, 4: not used when using platform's TLS |
| MOVQ $0, CX |
| #endif |
| #ifdef GOOS_windows |
| // Adjust for the Win64 calling convention. |
| MOVQ CX, R9 // arg 4 |
| MOVQ DX, R8 // arg 3 |
| MOVQ SI, DX // arg 2 |
| MOVQ DI, CX // arg 1 |
| #endif |
| CALL AX |
| |
| // update stackguard after _cgo_init |
| MOVQ $runtime·g0(SB), CX |
| MOVQ (g_stack+stack_lo)(CX), AX |
| ADDQ $const__StackGuard, AX |
| MOVQ AX, g_stackguard0(CX) |
| MOVQ AX, g_stackguard1(CX) |
| |
| #ifndef GOOS_windows |
| JMP ok |
| #endif |
| needtls: |
| #ifdef GOOS_plan9 |
| // skip TLS setup on Plan 9 |
| JMP ok |
| #endif |
| #ifdef GOOS_solaris |
| // skip TLS setup on Solaris |
| JMP ok |
| #endif |
| #ifdef GOOS_illumos |
| // skip TLS setup on illumos |
| JMP ok |
| #endif |
| #ifdef GOOS_darwin |
| // skip TLS setup on Darwin |
| JMP ok |
| #endif |
| #ifdef GOOS_openbsd |
| // skip TLS setup on OpenBSD |
| JMP ok |
| #endif |
| |
| LEAQ runtime·m0+m_tls(SB), DI |
| CALL runtime·settls(SB) |
| |
| // store through it, to make sure it works |
| get_tls(BX) |
| MOVQ $0x123, g(BX) |
| MOVQ runtime·m0+m_tls(SB), AX |
| CMPQ AX, $0x123 |
| JEQ 2(PC) |
| CALL runtime·abort(SB) |
| ok: |
| // set the per-goroutine and per-mach "registers" |
| get_tls(BX) |
| LEAQ runtime·g0(SB), CX |
| MOVQ CX, g(BX) |
| LEAQ runtime·m0(SB), AX |
| |
| // save m->g0 = g0 |
| MOVQ CX, m_g0(AX) |
| // save m0 to g0->m |
| MOVQ AX, g_m(CX) |
| |
| CLD // convention is D is always left cleared |
| CALL runtime·check(SB) |
| |
| MOVL 16(SP), AX // copy argc |
| MOVL AX, 0(SP) |
| MOVQ 24(SP), AX // copy argv |
| MOVQ AX, 8(SP) |
| CALL runtime·args(SB) |
| CALL runtime·osinit(SB) |
| CALL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| MOVQ $runtime·mainPC(SB), AX // entry |
| PUSHQ AX |
| CALL runtime·newproc(SB) |
| POPQ AX |
| |
| // start this M |
| CALL runtime·mstart(SB) |
| |
| CALL runtime·abort(SB) // mstart should never return |
| RET |
| |
| // Prevent dead-code elimination of debugCallV2, which is |
| // intended to be called by debuggers. |
| MOVQ $runtime·debugCallV2<ABIInternal>(SB), AX |
| RET |
| |
| // mainPC is a function value for runtime.main, to be passed to newproc. |
| // The reference to runtime.main is made via ABIInternal, since the |
| // actual function (not the ABI0 wrapper) is needed by newproc. |
| DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$8 |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 |
| BYTE $0xcc |
| RET |
| |
| TEXT runtime·asminit(SB),NOSPLIT,$0-0 |
| // No per-thread init. |
| RET |
| |
| TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 |
| CALL runtime·mstart0(SB) |
| RET // not reached |
| |
| /* |
| * go-routine |
| */ |
| |
| // func gogo(buf *gobuf) |
| // restore state from Gobuf; longjmp |
| TEXT runtime·gogo(SB), NOSPLIT, $0-8 |
| MOVQ buf+0(FP), BX // gobuf |
| MOVQ gobuf_g(BX), DX |
| MOVQ 0(DX), CX // make sure g != nil |
| JMP gogo<>(SB) |
| |
| TEXT gogo<>(SB), NOSPLIT, $0 |
| get_tls(CX) |
| MOVQ DX, g(CX) |
| MOVQ DX, R14 // set the g register |
| MOVQ gobuf_sp(BX), SP // restore SP |
| MOVQ gobuf_ret(BX), AX |
| MOVQ gobuf_ctxt(BX), DX |
| MOVQ gobuf_bp(BX), BP |
| MOVQ $0, gobuf_sp(BX) // clear to help garbage collector |
| MOVQ $0, gobuf_ret(BX) |
| MOVQ $0, gobuf_ctxt(BX) |
| MOVQ $0, gobuf_bp(BX) |
| MOVQ gobuf_pc(BX), BX |
| JMP BX |
| |
| // func mcall(fn func(*g)) |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8 |
| MOVQ AX, DX // DX = fn |
| |
| // save state in g->sched |
| MOVQ 0(SP), BX // caller's PC |
| MOVQ BX, (g_sched+gobuf_pc)(R14) |
| LEAQ fn+0(FP), BX // caller's SP |
| MOVQ BX, (g_sched+gobuf_sp)(R14) |
| MOVQ BP, (g_sched+gobuf_bp)(R14) |
| |
| // switch to m->g0 & its stack, call fn |
| MOVQ g_m(R14), BX |
| MOVQ m_g0(BX), SI // SI = g.m.g0 |
| CMPQ SI, R14 // if g == m->g0 call badmcall |
| JNE goodm |
| JMP runtime·badmcall(SB) |
| goodm: |
| MOVQ R14, AX // AX (and arg 0) = g |
| MOVQ SI, R14 // g = g.m.g0 |
| get_tls(CX) // Set G in TLS |
| MOVQ R14, g(CX) |
| MOVQ (g_sched+gobuf_sp)(R14), SP // sp = g0.sched.sp |
| PUSHQ AX // open up space for fn's arg spill slot |
| MOVQ 0(DX), R12 |
| CALL R12 // fn(g) |
| POPQ AX |
| JMP runtime·badmcall2(SB) |
| RET |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-8 |
| MOVQ fn+0(FP), DI // DI = fn |
| get_tls(CX) |
| MOVQ g(CX), AX // AX = g |
| MOVQ g_m(AX), BX // BX = m |
| |
| CMPQ AX, m_gsignal(BX) |
| JEQ noswitch |
| |
| MOVQ m_g0(BX), DX // DX = g0 |
| CMPQ AX, DX |
| JEQ noswitch |
| |
| CMPQ AX, m_curg(BX) |
| JNE bad |
| |
| // switch stacks |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| CALL gosave_systemstack_switch<>(SB) |
| |
| // switch to g0 |
| MOVQ DX, g(CX) |
| MOVQ DX, R14 // set the g register |
| MOVQ (g_sched+gobuf_sp)(DX), BX |
| MOVQ BX, SP |
| |
| // call target function |
| MOVQ DI, DX |
| MOVQ 0(DI), DI |
| CALL DI |
| |
| // switch back to g |
| get_tls(CX) |
| MOVQ g(CX), AX |
| MOVQ g_m(AX), BX |
| MOVQ m_curg(BX), AX |
| MOVQ AX, g(CX) |
| MOVQ (g_sched+gobuf_sp)(AX), SP |
| MOVQ $0, (g_sched+gobuf_sp)(AX) |
| RET |
| |
| noswitch: |
| // already on m stack; tail call the function |
| // Using a tail call here cleans up tracebacks since we won't stop |
| // at an intermediate systemstack. |
| MOVQ DI, DX |
| MOVQ 0(DI), DI |
| JMP DI |
| |
| bad: |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| MOVQ $runtime·badsystemstack(SB), AX |
| CALL AX |
| INT $3 |
| |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| TEXT runtime·morestack(SB),NOSPLIT,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| get_tls(CX) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| MOVQ m_g0(BX), SI |
| CMPQ g(CX), SI |
| JNE 3(PC) |
| CALL runtime·badmorestackg0(SB) |
| CALL runtime·abort(SB) |
| |
| // Cannot grow signal stack (m->gsignal). |
| MOVQ m_gsignal(BX), SI |
| CMPQ g(CX), SI |
| JNE 3(PC) |
| CALL runtime·badmorestackgsignal(SB) |
| CALL runtime·abort(SB) |
| |
| // Called from f. |
| // Set m->morebuf to f's caller. |
| NOP SP // tell vet SP changed - stop checking offsets |
| MOVQ 8(SP), AX // f's caller's PC |
| MOVQ AX, (m_morebuf+gobuf_pc)(BX) |
| LEAQ 16(SP), AX // f's caller's SP |
| MOVQ AX, (m_morebuf+gobuf_sp)(BX) |
| get_tls(CX) |
| MOVQ g(CX), SI |
| MOVQ SI, (m_morebuf+gobuf_g)(BX) |
| |
| // Set g->sched to context in f. |
| MOVQ 0(SP), AX // f's PC |
| MOVQ AX, (g_sched+gobuf_pc)(SI) |
| LEAQ 8(SP), AX // f's SP |
| MOVQ AX, (g_sched+gobuf_sp)(SI) |
| MOVQ BP, (g_sched+gobuf_bp)(SI) |
| MOVQ DX, (g_sched+gobuf_ctxt)(SI) |
| |
| // Call newstack on m->g0's stack. |
| MOVQ m_g0(BX), BX |
| MOVQ BX, g(CX) |
| MOVQ (g_sched+gobuf_sp)(BX), SP |
| CALL runtime·newstack(SB) |
| CALL runtime·abort(SB) // crash if newstack returns |
| RET |
| |
| // morestack but not preserving ctxt. |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 |
| MOVL $0, DX |
| JMP runtime·morestack(SB) |
| |
| // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12. |
| TEXT ·spillArgs(SB),NOSPLIT,$0-0 |
| MOVQ AX, 0(R12) |
| MOVQ BX, 8(R12) |
| MOVQ CX, 16(R12) |
| MOVQ DI, 24(R12) |
| MOVQ SI, 32(R12) |
| MOVQ R8, 40(R12) |
| MOVQ R9, 48(R12) |
| MOVQ R10, 56(R12) |
| MOVQ R11, 64(R12) |
| MOVQ X0, 72(R12) |
| MOVQ X1, 80(R12) |
| MOVQ X2, 88(R12) |
| MOVQ X3, 96(R12) |
| MOVQ X4, 104(R12) |
| MOVQ X5, 112(R12) |
| MOVQ X6, 120(R12) |
| MOVQ X7, 128(R12) |
| MOVQ X8, 136(R12) |
| MOVQ X9, 144(R12) |
| MOVQ X10, 152(R12) |
| MOVQ X11, 160(R12) |
| MOVQ X12, 168(R12) |
| MOVQ X13, 176(R12) |
| MOVQ X14, 184(R12) |
| RET |
| |
| // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12. |
| TEXT ·unspillArgs(SB),NOSPLIT,$0-0 |
| MOVQ 0(R12), AX |
| MOVQ 8(R12), BX |
| MOVQ 16(R12), CX |
| MOVQ 24(R12), DI |
| MOVQ 32(R12), SI |
| MOVQ 40(R12), R8 |
| MOVQ 48(R12), R9 |
| MOVQ 56(R12), R10 |
| MOVQ 64(R12), R11 |
| MOVQ 72(R12), X0 |
| MOVQ 80(R12), X1 |
| MOVQ 88(R12), X2 |
| MOVQ 96(R12), X3 |
| MOVQ 104(R12), X4 |
| MOVQ 112(R12), X5 |
| MOVQ 120(R12), X6 |
| MOVQ 128(R12), X7 |
| MOVQ 136(R12), X8 |
| MOVQ 144(R12), X9 |
| MOVQ 152(R12), X10 |
| MOVQ 160(R12), X11 |
| MOVQ 168(R12), X12 |
| MOVQ 176(R12), X13 |
| MOVQ 184(R12), X14 |
| RET |
| |
| // reflectcall: call a function with the given argument list |
| // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| CMPQ CX, $MAXSIZE; \ |
| JA 3(PC); \ |
| MOVQ $NAME(SB), AX; \ |
| JMP AX |
| // Note: can't just "JMP NAME(SB)" - bad inlining results. |
| |
| TEXT ·reflectcall(SB), NOSPLIT, $0-48 |
| MOVLQZX frameSize+32(FP), CX |
| DISPATCH(runtime·call16, 16) |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOVQ $runtime·badreflectcall(SB), AX |
| JMP AX |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOVQ stackArgs+16(FP), SI; \ |
| MOVLQZX stackArgsSize+24(FP), CX; \ |
| MOVQ SP, DI; \ |
| REP;MOVSB; \ |
| /* set up argument registers */ \ |
| MOVQ regArgs+40(FP), R12; \ |
| CALL ·unspillArgs(SB); \ |
| /* call function */ \ |
| MOVQ f+8(FP), DX; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| MOVQ (DX), R12; \ |
| CALL R12; \ |
| /* copy register return values back */ \ |
| MOVQ regArgs+40(FP), R12; \ |
| CALL ·spillArgs(SB); \ |
| MOVLQZX stackArgsSize+24(FP), CX; \ |
| MOVLQZX stackRetOffset+28(FP), BX; \ |
| MOVQ stackArgs+16(FP), DI; \ |
| MOVQ stackArgsType+0(FP), DX; \ |
| MOVQ SP, SI; \ |
| ADDQ BX, DI; \ |
| ADDQ BX, SI; \ |
| SUBQ BX, CX; \ |
| CALL callRet<>(SB); \ |
| RET |
| |
| // callRet copies return values back at the end of call*. This is a |
| // separate function so it can allocate stack space for the arguments |
| // to reflectcallmove. It does not follow the Go ABI; it expects its |
| // arguments in registers. |
| TEXT callRet<>(SB), NOSPLIT, $40-0 |
| NO_LOCAL_POINTERS |
| MOVQ DX, 0(SP) |
| MOVQ DI, 8(SP) |
| MOVQ SI, 16(SP) |
| MOVQ CX, 24(SP) |
| MOVQ R12, 32(SP) |
| CALL runtime·reflectcallmove(SB) |
| RET |
| |
| CALLFN(·call16, 16) |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| MOVL cycles+0(FP), AX |
| again: |
| PAUSE |
| SUBL $1, AX |
| JNZ again |
| RET |
| |
| |
| TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 |
| // Stores are already ordered on x86, so this is just a |
| // compile barrier. |
| RET |
| |
| // Save state of caller into g->sched, |
| // but using fake PC from systemstack_switch. |
| // Must only be called from functions with no locals ($0) |
| // or else unwinding from systemstack_switch is incorrect. |
| // Smashes R9. |
| TEXT gosave_systemstack_switch<>(SB),NOSPLIT,$0 |
| MOVQ $runtime·systemstack_switch(SB), R9 |
| MOVQ R9, (g_sched+gobuf_pc)(R14) |
| LEAQ 8(SP), R9 |
| MOVQ R9, (g_sched+gobuf_sp)(R14) |
| MOVQ $0, (g_sched+gobuf_ret)(R14) |
| MOVQ BP, (g_sched+gobuf_bp)(R14) |
| // Assert ctxt is zero. See func save. |
| MOVQ (g_sched+gobuf_ctxt)(R14), R9 |
| TESTQ R9, R9 |
| JZ 2(PC) |
| CALL runtime·abort(SB) |
| RET |
| |
| // func asmcgocall_no_g(fn, arg unsafe.Pointer) |
| // Call fn(arg) aligned appropriately for the gcc ABI. |
| // Called on a system stack, and there may be no g yet (during needm). |
| TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16 |
| MOVQ fn+0(FP), AX |
| MOVQ arg+8(FP), BX |
| MOVQ SP, DX |
| SUBQ $32, SP |
| ANDQ $~15, SP // alignment |
| MOVQ DX, 8(SP) |
| MOVQ BX, DI // DI = first argument in AMD64 ABI |
| MOVQ BX, CX // CX = first argument in Win64 |
| CALL AX |
| MOVQ 8(SP), DX |
| MOVQ DX, SP |
| RET |
| |
| // func asmcgocall(fn, arg unsafe.Pointer) int32 |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.go for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-20 |
| MOVQ fn+0(FP), AX |
| MOVQ arg+8(FP), BX |
| |
| MOVQ SP, DX |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. |
| get_tls(CX) |
| MOVQ g(CX), R8 |
| CMPQ R8, $0 |
| JEQ nosave |
| MOVQ g_m(R8), R8 |
| MOVQ m_g0(R8), SI |
| MOVQ g(CX), DI |
| CMPQ SI, DI |
| JEQ nosave |
| MOVQ m_gsignal(R8), SI |
| CMPQ SI, DI |
| JEQ nosave |
| |
| // Switch to system stack. |
| MOVQ m_g0(R8), SI |
| CALL gosave_systemstack_switch<>(SB) |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), SP |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| // Make sure we have enough room for 4 stack-backed fast-call |
| // registers as per windows amd64 calling convention. |
| SUBQ $64, SP |
| ANDQ $~15, SP // alignment for gcc ABI |
| MOVQ DI, 48(SP) // save g |
| MOVQ (g_stack+stack_hi)(DI), DI |
| SUBQ DX, DI |
| MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) |
| MOVQ BX, DI // DI = first argument in AMD64 ABI |
| MOVQ BX, CX // CX = first argument in Win64 |
| CALL AX |
| |
| // Restore registers, g, stack pointer. |
| get_tls(CX) |
| MOVQ 48(SP), DI |
| MOVQ (g_stack+stack_hi)(DI), SI |
| SUBQ 40(SP), SI |
| MOVQ DI, g(CX) |
| MOVQ SI, SP |
| |
| MOVL AX, ret+16(FP) |
| RET |
| |
| nosave: |
| // Running on a system stack, perhaps even without a g. |
| // Having no g can happen during thread creation or thread teardown |
| // (see needm/dropm on Solaris, for example). |
| // This code is like the above sequence but without saving/restoring g |
| // and without worrying about the stack moving out from under us |
| // (because we're on a system stack, not a goroutine stack). |
| // The above code could be used directly if already on a system stack, |
| // but then the only path through this code would be a rare case on Solaris. |
| // Using this code for all "already on system stack" calls exercises it more, |
| // which should help keep it correct. |
| SUBQ $64, SP |
| ANDQ $~15, SP |
| MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging |
| MOVQ DX, 40(SP) // save original stack pointer |
| MOVQ BX, DI // DI = first argument in AMD64 ABI |
| MOVQ BX, CX // CX = first argument in Win64 |
| CALL AX |
| MOVQ 40(SP), SI // restore original stack pointer |
| MOVQ SI, SP |
| MOVL AX, ret+16(FP) |
| RET |
| |
| #ifdef GOOS_windows |
| // Dummy TLS that's used on Windows so that we don't crash trying |
| // to restore the G register in needm. needm and its callees are |
| // very careful never to actually use the G, the TLS just can't be |
| // unset since we're in Go code. |
| GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize |
| #endif |
| |
| // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) |
| // See cgocall.go for more details. |
| TEXT ·cgocallback(SB),NOSPLIT,$24-24 |
| NO_LOCAL_POINTERS |
| |
| // If g is nil, Go did not create the current thread. |
| // Call needm to obtain one m for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call through AX. |
| get_tls(CX) |
| #ifdef GOOS_windows |
| MOVL $0, BX |
| CMPQ CX, $0 |
| JEQ 2(PC) |
| #endif |
| MOVQ g(CX), BX |
| CMPQ BX, $0 |
| JEQ needm |
| MOVQ g_m(BX), BX |
| MOVQ BX, savedm-8(SP) // saved copy of oldm |
| JMP havem |
| needm: |
| #ifdef GOOS_windows |
| // Set up a dummy TLS value. needm is careful not to use it, |
| // but it needs to be there to prevent autogenerated code from |
| // crashing when it loads from it. |
| // We don't need to clear it or anything later because needm |
| // will set up TLS properly. |
| MOVQ $zeroTLS<>(SB), DI |
| CALL runtime·settls(SB) |
| #endif |
| // On some platforms (Windows) we cannot call needm through |
| // an ABI wrapper because there's no TLS set up, and the ABI |
| // wrapper will try to restore the G register (R14) from TLS. |
| // Clear X15 because Go expects it and we're not calling |
| // through a wrapper, but otherwise avoid setting the G |
| // register in the wrapper and call needm directly. It |
| // takes no arguments and doesn't return any values so |
| // there's no need to handle that. Clear R14 so that there's |
| // a bad value in there, in case needm tries to use it. |
| XORPS X15, X15 |
| XORQ R14, R14 |
| MOVQ $runtime·needm<ABIInternal>(SB), AX |
| CALL AX |
| MOVQ $0, savedm-8(SP) // dropm on return |
| get_tls(CX) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| |
| // Set m->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOVQ m_g0(BX), SI |
| MOVQ SP, (g_sched+gobuf_sp)(SI) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). |
| MOVQ m_g0(BX), SI |
| MOVQ (g_sched+gobuf_sp)(SI), AX |
| MOVQ AX, 0(SP) |
| MOVQ SP, (g_sched+gobuf_sp)(SI) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the curg stack and |
| // open a frame the same size as cgocallback's g0 frame. |
| // Once we switch to the curg stack, the pushed PC will appear |
| // to be the return PC of cgocallback, so that the traceback |
| // will seamlessly trace back into the earlier calls. |
| MOVQ m_curg(BX), SI |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI |
| MOVQ (g_sched+gobuf_pc)(SI), BX |
| MOVQ BX, -8(DI) // "push" return PC on the g stack |
| // Gather our arguments into registers. |
| MOVQ fn+0(FP), BX |
| MOVQ frame+8(FP), CX |
| MOVQ ctxt+16(FP), DX |
| // Compute the size of the frame, including return PC and, if |
| // GOEXPERIMENT=framepointer, the saved base pointer |
| LEAQ fn+0(FP), AX |
| SUBQ SP, AX // AX is our actual frame size |
| SUBQ AX, DI // Allocate the same frame size on the g stack |
| MOVQ DI, SP |
| |
| MOVQ BX, 0(SP) |
| MOVQ CX, 8(SP) |
| MOVQ DX, 16(SP) |
| MOVQ $runtime·cgocallbackg(SB), AX |
| CALL AX // indirect call to bypass nosplit check. We're on a different stack now. |
| |
| // Compute the size of the frame again. FP and SP have |
| // completely different values here than they did above, |
| // but only their difference matters. |
| LEAQ fn+0(FP), AX |
| SUBQ SP, AX |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| get_tls(CX) |
| MOVQ g(CX), SI |
| MOVQ SP, DI |
| ADDQ AX, DI |
| MOVQ -8(DI), BX |
| MOVQ BX, (g_sched+gobuf_pc)(SI) |
| MOVQ DI, (g_sched+gobuf_sp)(SI) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| MOVQ m_g0(BX), SI |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), SP |
| MOVQ 0(SP), AX |
| MOVQ AX, (g_sched+gobuf_sp)(SI) |
| |
| // If the m on entry was nil, we called needm above to borrow an m |
| // for the duration of the call. Since the call is over, return it with dropm. |
| MOVQ savedm-8(SP), BX |
| CMPQ BX, $0 |
| JNE done |
| MOVQ $runtime·dropm(SB), AX |
| CALL AX |
| #ifdef GOOS_windows |
| // We need to clear the TLS pointer in case the next |
| // thread that comes into Go tries to reuse that space |
| // but uses the same M. |
| XORQ DI, DI |
| CALL runtime·settls(SB) |
| #endif |
| done: |
| |
| // Done! |
| RET |
| |
| // func setg(gg *g) |
| // set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-8 |
| MOVQ gg+0(FP), BX |
| get_tls(CX) |
| MOVQ BX, g(CX) |
| RET |
| |
| // void setg_gcc(G*); set g called from gcc. |
| TEXT setg_gcc<>(SB),NOSPLIT,$0 |
| get_tls(AX) |
| MOVQ DI, g(AX) |
| MOVQ DI, R14 // set the g register |
| RET |
| |
| TEXT runtime·abort(SB),NOSPLIT,$0-0 |
| INT $3 |
| loop: |
| JMP loop |
| |
| // check that SP is in range [g->stack.lo, g->stack.hi) |
| TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 |
| get_tls(CX) |
| MOVQ g(CX), AX |
| CMPQ (g_stack+stack_hi)(AX), SP |
| JHI 2(PC) |
| CALL runtime·abort(SB) |
| CMPQ SP, (g_stack+stack_lo)(AX) |
| JHI 2(PC) |
| CALL runtime·abort(SB) |
| RET |
| |
| // func cputicks() int64 |
| TEXT runtime·cputicks(SB),NOSPLIT,$0-0 |
| CMPB runtime·lfenceBeforeRdtsc(SB), $1 |
| JNE mfence |
| LFENCE |
| JMP done |
| mfence: |
| MFENCE |
| done: |
| RDTSC |
| SHLQ $32, DX |
| ADDQ DX, AX |
| MOVQ AX, ret+0(FP) |
| RET |
| |
| // func memhash(p unsafe.Pointer, h, s uintptr) uintptr |
| // hash function using AES hardware instructions |
| TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32 |
| // AX = ptr to data |
| // BX = seed |
| // CX = size |
| CMPB runtime·useAeshash(SB), $0 |
| JEQ noaes |
| JMP aeshashbody<>(SB) |
| noaes: |
| JMP runtime·memhashFallback<ABIInternal>(SB) |
| |
| // func strhash(p unsafe.Pointer, h uintptr) uintptr |
| TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24 |
| // AX = ptr to string struct |
| // BX = seed |
| CMPB runtime·useAeshash(SB), $0 |
| JEQ noaes |
| MOVQ 8(AX), CX // length of string |
| MOVQ (AX), AX // string data |
| JMP aeshashbody<>(SB) |
| noaes: |
| JMP runtime·strhashFallback<ABIInternal>(SB) |
| |
| // AX: data |
| // BX: hash seed |
| // CX: length |
| // At return: AX = return value |
| TEXT aeshashbody<>(SB),NOSPLIT,$0-0 |
| // Fill an SSE register with our seeds. |
| MOVQ BX, X0 // 64 bits of per-table hash seed |
| PINSRW $4, CX, X0 // 16 bits of length |
| PSHUFHW $0, X0, X0 // repeat length 4 times total |
| MOVO X0, X1 // save unscrambled seed |
| PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed |
| AESENC X0, X0 // scramble seed |
| |
| CMPQ CX, $16 |
| JB aes0to15 |
| JE aes16 |
| CMPQ CX, $32 |
| JBE aes17to32 |
| CMPQ CX, $64 |
| JBE aes33to64 |
| CMPQ CX, $128 |
| JBE aes65to128 |
| JMP aes129plus |
| |
| aes0to15: |
| TESTQ CX, CX |
| JE aes0 |
| |
| ADDQ $16, AX |
| TESTW $0xff0, AX |
| JE endofpage |
| |
| // 16 bytes loaded at this address won't cross |
| // a page boundary, so we can load it directly. |
| MOVOU -16(AX), X1 |
| ADDQ CX, CX |
| MOVQ $masks<>(SB), AX |
| PAND (AX)(CX*8), X1 |
| final1: |
| PXOR X0, X1 // xor data with seed |
| AESENC X1, X1 // scramble combo 3 times |
| AESENC X1, X1 |
| AESENC X1, X1 |
| MOVQ X1, AX // return X1 |
| RET |
| |
| endofpage: |
| // address ends in 1111xxxx. Might be up against |
| // a page boundary, so load ending at last byte. |
| // Then shift bytes down using pshufb. |
| MOVOU -32(AX)(CX*1), X1 |
| ADDQ CX, CX |
| MOVQ $shifts<>(SB), AX |
| PSHUFB (AX)(CX*8), X1 |
| JMP final1 |
| |
| aes0: |
| // Return scrambled input seed |
| AESENC X0, X0 |
| MOVQ X0, AX // return X0 |
| RET |
| |
| aes16: |
| MOVOU (AX), X1 |
| JMP final1 |
| |
| aes17to32: |
| // make second starting seed |
| PXOR runtime·aeskeysched+16(SB), X1 |
| AESENC X1, X1 |
| |
| // load data to be hashed |
| MOVOU (AX), X2 |
| MOVOU -16(AX)(CX*1), X3 |
| |
| // xor with seed |
| PXOR X0, X2 |
| PXOR X1, X3 |
| |
| // scramble 3 times |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| |
| // combine results |
| PXOR X3, X2 |
| MOVQ X2, AX // return X2 |
| RET |
| |
| aes33to64: |
| // make 3 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| |
| MOVOU (AX), X4 |
| MOVOU 16(AX), X5 |
| MOVOU -32(AX)(CX*1), X6 |
| MOVOU -16(AX)(CX*1), X7 |
| |
| PXOR X0, X4 |
| PXOR X1, X5 |
| PXOR X2, X6 |
| PXOR X3, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| PXOR X6, X4 |
| PXOR X7, X5 |
| PXOR X5, X4 |
| MOVQ X4, AX // return X4 |
| RET |
| |
| aes65to128: |
| // make 7 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| MOVO X1, X4 |
| MOVO X1, X5 |
| MOVO X1, X6 |
| MOVO X1, X7 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| PXOR runtime·aeskeysched+64(SB), X4 |
| PXOR runtime·aeskeysched+80(SB), X5 |
| PXOR runtime·aeskeysched+96(SB), X6 |
| PXOR runtime·aeskeysched+112(SB), X7 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| // load data |
| MOVOU (AX), X8 |
| MOVOU 16(AX), X9 |
| MOVOU 32(AX), X10 |
| MOVOU 48(AX), X11 |
| MOVOU -64(AX)(CX*1), X12 |
| MOVOU -48(AX)(CX*1), X13 |
| MOVOU -32(AX)(CX*1), X14 |
| MOVOU -16(AX)(CX*1), X15 |
| |
| // xor with seed |
| PXOR X0, X8 |
| PXOR X1, X9 |
| PXOR X2, X10 |
| PXOR X3, X11 |
| PXOR X4, X12 |
| PXOR X5, X13 |
| PXOR X6, X14 |
| PXOR X7, X15 |
| |
| // scramble 3 times |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| // combine results |
| PXOR X12, X8 |
| PXOR X13, X9 |
| PXOR X14, X10 |
| PXOR X15, X11 |
| PXOR X10, X8 |
| PXOR X11, X9 |
| PXOR X9, X8 |
| // X15 must be zero on return |
| PXOR X15, X15 |
| MOVQ X8, AX // return X8 |
| RET |
| |
| aes129plus: |
| // make 7 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| MOVO X1, X4 |
| MOVO X1, X5 |
| MOVO X1, X6 |
| MOVO X1, X7 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| PXOR runtime·aeskeysched+64(SB), X4 |
| PXOR runtime·aeskeysched+80(SB), X5 |
| PXOR runtime·aeskeysched+96(SB), X6 |
| PXOR runtime·aeskeysched+112(SB), X7 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| // start with last (possibly overlapping) block |
| MOVOU -128(AX)(CX*1), X8 |
| MOVOU -112(AX)(CX*1), X9 |
| MOVOU -96(AX)(CX*1), X10 |
| MOVOU -80(AX)(CX*1), X11 |
| MOVOU -64(AX)(CX*1), X12 |
| MOVOU -48(AX)(CX*1), X13 |
| MOVOU -32(AX)(CX*1), X14 |
| MOVOU -16(AX)(CX*1), X15 |
| |
| // xor in seed |
| PXOR X0, X8 |
| PXOR X1, X9 |
| PXOR X2, X10 |
| PXOR X3, X11 |
| PXOR X4, X12 |
| PXOR X5, X13 |
| PXOR X6, X14 |
| PXOR X7, X15 |
| |
| // compute number of remaining 128-byte blocks |
| DECQ CX |
| SHRQ $7, CX |
| |
| aesloop: |
| // scramble state |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| // scramble state, xor in a block |
| MOVOU (AX), X0 |
| MOVOU 16(AX), X1 |
| MOVOU 32(AX), X2 |
| MOVOU 48(AX), X3 |
| AESENC X0, X8 |
| AESENC X1, X9 |
| AESENC X2, X10 |
| AESENC X3, X11 |
| MOVOU 64(AX), X4 |
| MOVOU 80(AX), X5 |
| MOVOU 96(AX), X6 |
| MOVOU 112(AX), X7 |
| AESENC X4, X12 |
| AESENC X5, X13 |
| AESENC X6, X14 |
| AESENC X7, X15 |
| |
| ADDQ $128, AX |
| DECQ CX |
| JNE aesloop |
| |
| // 3 more scrambles to finish |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| PXOR X12, X8 |
| PXOR X13, X9 |
| PXOR X14, X10 |
| PXOR X15, X11 |
| PXOR X10, X8 |
| PXOR X11, X9 |
| PXOR X9, X8 |
| // X15 must be zero on return |
| PXOR X15, X15 |
| MOVQ X8, AX // return X8 |
| RET |
| |
| // func memhash32(p unsafe.Pointer, h uintptr) uintptr |
| // ABIInternal for performance. |
| TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24 |
| // AX = ptr to data |
| // BX = seed |
| CMPB runtime·useAeshash(SB), $0 |
| JEQ noaes |
| MOVQ BX, X0 // X0 = seed |
| PINSRD $2, (AX), X0 // data |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVQ X0, AX // return X0 |
| RET |
| noaes: |
| JMP runtime·memhash32Fallback<ABIInternal>(SB) |
| |
| // func memhash64(p unsafe.Pointer, h uintptr) uintptr |
| // ABIInternal for performance. |
| TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24 |
| // AX = ptr to data |
| // BX = seed |
| CMPB runtime·useAeshash(SB), $0 |
| JEQ noaes |
| MOVQ BX, X0 // X0 = seed |
| PINSRQ $1, (AX), X0 // data |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVQ X0, AX // return X0 |
| RET |
| noaes: |
| JMP runtime·memhash64Fallback<ABIInternal>(SB) |
| |
| // simple mask to get rid of data in the high part of the register. |
| DATA masks<>+0x00(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x08(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x10(SB)/8, $0x00000000000000ff |
| DATA masks<>+0x18(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x20(SB)/8, $0x000000000000ffff |
| DATA masks<>+0x28(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x30(SB)/8, $0x0000000000ffffff |
| DATA masks<>+0x38(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x40(SB)/8, $0x00000000ffffffff |
| DATA masks<>+0x48(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x50(SB)/8, $0x000000ffffffffff |
| DATA masks<>+0x58(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff |
| DATA masks<>+0x68(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff |
| DATA masks<>+0x78(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x80(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0x88(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x90(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0x98(SB)/8, $0x00000000000000ff |
| DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xa8(SB)/8, $0x000000000000ffff |
| DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff |
| DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff |
| DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff |
| DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff |
| DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff |
| GLOBL masks<>(SB),RODATA,$256 |
| |
| // func checkASM() bool |
| TEXT ·checkASM(SB),NOSPLIT,$0-1 |
| // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte |
| MOVQ $masks<>(SB), AX |
| MOVQ $shifts<>(SB), BX |
| ORQ BX, AX |
| TESTQ $15, AX |
| SETEQ ret+0(FP) |
| RET |
| |
| // these are arguments to pshufb. They move data down from |
| // the high bytes of the register to the low bytes of the register. |
| // index is how many bytes to move. |
| DATA shifts<>+0x00(SB)/8, $0x0000000000000000 |
| DATA shifts<>+0x08(SB)/8, $0x0000000000000000 |
| DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f |
| DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e |
| DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d |
| DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c |
| DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b |
| DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a |
| DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 |
| DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 |
| DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 |
| DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f |
| DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 |
| DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e |
| DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 |
| DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d |
| DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 |
| DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c |
| DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 |
| DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b |
| DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 |
| DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a |
| DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 |
| DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 |
| GLOBL shifts<>(SB),RODATA,$256 |
| |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOVL $0, AX |
| RET |
| |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT,$0 |
| get_tls(CX) |
| MOVQ g(CX), AX |
| MOVQ g_m(AX), AX |
| MOVQ m_curg(AX), AX |
| MOVQ (g_stack+stack_hi)(AX), AX |
| RET |
| |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME,$0-0 |
| BYTE $0x90 // NOP |
| CALL runtime·goexit1(SB) // does not return |
| // traceback from goexit1 must hit code range of goexit |
| BYTE $0x90 // NOP |
| |
| // This is called from .init_array and follows the platform, not Go, ABI. |
| TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 |
| PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save |
| MOVQ runtime·lastmoduledatap(SB), AX |
| MOVQ DI, moduledata_next(AX) |
| MOVQ DI, runtime·lastmoduledatap(SB) |
| POPQ R15 |
| RET |
| |
| // Initialize special registers then jump to sigpanic. |
| // This function is injected from the signal handler for panicking |
| // signals. It is quite painful to set X15 in the signal context, |
| // so we do it here. |
| TEXT ·sigpanic0(SB),NOSPLIT,$0-0 |
| get_tls(R14) |
| MOVQ g(R14), R14 |
| #ifndef GOOS_plan9 |
| XORPS X15, X15 |
| #endif |
| JMP ·sigpanic<ABIInternal>(SB) |
| |
| // gcWriteBarrier performs a heap pointer write and informs the GC. |
| // |
| // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: |
| // - DI is the destination of the write |
| // - AX is the value being written at DI |
| // It clobbers FLAGS. It does not clobber any general-purpose registers, |
| // but may clobber others (e.g., SSE registers). |
| // Defined as ABIInternal since it does not use the stack-based Go ABI. |
| TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$112 |
| // Save the registers clobbered by the fast path. This is slightly |
| // faster than having the caller spill these. |
| MOVQ R12, 96(SP) |
| MOVQ R13, 104(SP) |
| // TODO: Consider passing g.m.p in as an argument so they can be shared |
| // across a sequence of write barriers. |
| MOVQ g_m(R14), R13 |
| MOVQ m_p(R13), R13 |
| MOVQ (p_wbBuf+wbBuf_next)(R13), R12 |
| // Increment wbBuf.next position. |
| LEAQ 16(R12), R12 |
| MOVQ R12, (p_wbBuf+wbBuf_next)(R13) |
| CMPQ R12, (p_wbBuf+wbBuf_end)(R13) |
| // Record the write. |
| MOVQ AX, -16(R12) // Record value |
| // Note: This turns bad pointer writes into bad |
| // pointer reads, which could be confusing. We could avoid |
| // reading from obviously bad pointers, which would |
| // take care of the vast majority of these. We could |
| // patch this up in the signal handler, or use XCHG to |
| // combine the read and the write. |
| MOVQ (DI), R13 |
| MOVQ R13, -8(R12) // Record *slot |
| // Is the buffer full? (flags set in CMPQ above) |
| JEQ flush |
| ret: |
| MOVQ 96(SP), R12 |
| MOVQ 104(SP), R13 |
| // Do the write. |
| MOVQ AX, (DI) |
| RET |
| |
| flush: |
| // Save all general purpose registers since these could be |
| // clobbered by wbBufFlush and were not saved by the caller. |
| // It is possible for wbBufFlush to clobber other registers |
| // (e.g., SSE registers), but the compiler takes care of saving |
| // those in the caller if necessary. This strikes a balance |
| // with registers that are likely to be used. |
| // |
| // We don't have type information for these, but all code under |
| // here is NOSPLIT, so nothing will observe these. |
| // |
| // TODO: We could strike a different balance; e.g., saving X0 |
| // and not saving GP registers that are less likely to be used. |
| MOVQ DI, 0(SP) // Also first argument to wbBufFlush |
| MOVQ AX, 8(SP) // Also second argument to wbBufFlush |
| MOVQ BX, 16(SP) |
| MOVQ CX, 24(SP) |
| MOVQ DX, 32(SP) |
| // DI already saved |
| MOVQ SI, 40(SP) |
| MOVQ BP, 48(SP) |
| MOVQ R8, 56(SP) |
| MOVQ R9, 64(SP) |
| MOVQ R10, 72(SP) |
| MOVQ R11, 80(SP) |
| // R12 already saved |
| // R13 already saved |
| // R14 is g |
| MOVQ R15, 88(SP) |
| |
| // This takes arguments DI and AX |
| CALL runtime·wbBufFlush(SB) |
| |
| MOVQ 0(SP), DI |
| MOVQ 8(SP), AX |
| MOVQ 16(SP), BX |
| MOVQ 24(SP), CX |
| MOVQ 32(SP), DX |
| MOVQ 40(SP), SI |
| MOVQ 48(SP), BP |
| MOVQ 56(SP), R8 |
| MOVQ 64(SP), R9 |
| MOVQ 72(SP), R10 |
| MOVQ 80(SP), R11 |
| MOVQ 88(SP), R15 |
| JMP ret |
| |
| // gcWriteBarrierCX is gcWriteBarrier, but with args in DI and CX. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierCX<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ CX, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ CX, AX |
| RET |
| |
| // gcWriteBarrierDX is gcWriteBarrier, but with args in DI and DX. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierDX<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ DX, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ DX, AX |
| RET |
| |
| // gcWriteBarrierBX is gcWriteBarrier, but with args in DI and BX. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierBX<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ BX, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ BX, AX |
| RET |
| |
| // gcWriteBarrierBP is gcWriteBarrier, but with args in DI and BP. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierBP<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ BP, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ BP, AX |
| RET |
| |
| // gcWriteBarrierSI is gcWriteBarrier, but with args in DI and SI. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierSI<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ SI, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ SI, AX |
| RET |
| |
| // gcWriteBarrierR8 is gcWriteBarrier, but with args in DI and R8. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierR8<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ R8, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ R8, AX |
| RET |
| |
| // gcWriteBarrierR9 is gcWriteBarrier, but with args in DI and R9. |
| // Defined as ABIInternal since it does not use the stable Go ABI. |
| TEXT runtime·gcWriteBarrierR9<ABIInternal>(SB),NOSPLIT,$0 |
| XCHGQ R9, AX |
| CALL runtime·gcWriteBarrier<ABIInternal>(SB) |
| XCHGQ R9, AX |
| RET |
| |
| DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" |
| GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below |
| |
| // debugCallV2 is the entry point for debugger-injected function |
| // calls on running goroutines. It informs the runtime that a |
| // debug call has been injected and creates a call frame for the |
| // debugger to fill in. |
| // |
| // To inject a function call, a debugger should: |
| // 1. Check that the goroutine is in state _Grunning and that |
| // there are at least 256 bytes free on the stack. |
| // 2. Push the current PC on the stack (updating SP). |
| // 3. Write the desired argument frame size at SP-16 (using the SP |
| // after step 2). |
| // 4. Save all machine registers (including flags and XMM reigsters) |
| // so they can be restored later by the debugger. |
| // 5. Set the PC to debugCallV2 and resume execution. |
| // |
| // If the goroutine is in state _Grunnable, then it's not generally |
| // safe to inject a call because it may return out via other runtime |
| // operations. Instead, the debugger should unwind the stack to find |
| // the return to non-runtime code, add a temporary breakpoint there, |
| // and inject the call once that breakpoint is hit. |
| // |
| // If the goroutine is in any other state, it's not safe to inject a call. |
| // |
| // This function communicates back to the debugger by setting R12 and |
| // invoking INT3 to raise a breakpoint signal. See the comments in the |
| // implementation for the protocol the debugger is expected to |
| // follow. InjectDebugCall in the runtime tests demonstrates this protocol. |
| // |
| // The debugger must ensure that any pointers passed to the function |
| // obey escape analysis requirements. Specifically, it must not pass |
| // a stack pointer to an escaping argument. debugCallV2 cannot check |
| // this invariant. |
| // |
| // This is ABIInternal because Go code injects its PC directly into new |
| // goroutine stacks. |
| TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0 |
| // Save all registers that may contain pointers so they can be |
| // conservatively scanned. |
| // |
| // We can't do anything that might clobber any of these |
| // registers before this. |
| MOVQ R15, r15-(14*8+8)(SP) |
| MOVQ R14, r14-(13*8+8)(SP) |
| MOVQ R13, r13-(12*8+8)(SP) |
| MOVQ R12, r12-(11*8+8)(SP) |
| MOVQ R11, r11-(10*8+8)(SP) |
| MOVQ R10, r10-(9*8+8)(SP) |
| MOVQ R9, r9-(8*8+8)(SP) |
| MOVQ R8, r8-(7*8+8)(SP) |
| MOVQ DI, di-(6*8+8)(SP) |
| MOVQ SI, si-(5*8+8)(SP) |
| MOVQ BP, bp-(4*8+8)(SP) |
| MOVQ BX, bx-(3*8+8)(SP) |
| MOVQ DX, dx-(2*8+8)(SP) |
| // Save the frame size before we clobber it. Either of the last |
| // saves could clobber this depending on whether there's a saved BP. |
| MOVQ frameSize-24(FP), DX // aka -16(RSP) before prologue |
| MOVQ CX, cx-(1*8+8)(SP) |
| MOVQ AX, ax-(0*8+8)(SP) |
| |
| // Save the argument frame size. |
| MOVQ DX, frameSize-128(SP) |
| |
| // Perform a safe-point check. |
| MOVQ retpc-8(FP), AX // Caller's PC |
| MOVQ AX, 0(SP) |
| CALL runtime·debugCallCheck(SB) |
| MOVQ 8(SP), AX |
| TESTQ AX, AX |
| JZ good |
| // The safety check failed. Put the reason string at the top |
| // of the stack. |
| MOVQ AX, 0(SP) |
| MOVQ 16(SP), AX |
| MOVQ AX, 8(SP) |
| // Set R12 to 8 and invoke INT3. The debugger should get the |
| // reason a call can't be injected from the top of the stack |
| // and resume execution. |
| MOVQ $8, R12 |
| BYTE $0xcc |
| JMP restore |
| |
| good: |
| // Registers are saved and it's safe to make a call. |
| // Open up a call frame, moving the stack if necessary. |
| // |
| // Once the frame is allocated, this will set R12 to 0 and |
| // invoke INT3. The debugger should write the argument |
| // frame for the call at SP, set up argument registers, push |
| // the trapping PC on the stack, set the PC to the function to |
| // call, set RDX to point to the closure (if a closure call), |
| // and resume execution. |
| // |
| // If the function returns, this will set R12 to 1 and invoke |
| // INT3. The debugger can then inspect any return value saved |
| // on the stack at SP and in registers and resume execution again. |
| // |
| // If the function panics, this will set R12 to 2 and invoke INT3. |
| // The interface{} value of the panic will be at SP. The debugger |
| // can inspect the panic value and resume execution again. |
| #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ |
| CMPQ AX, $MAXSIZE; \ |
| JA 5(PC); \ |
| MOVQ $NAME(SB), AX; \ |
| MOVQ AX, 0(SP); \ |
| CALL runtime·debugCallWrap(SB); \ |
| JMP restore |
| |
| MOVQ frameSize-128(SP), AX |
| DEBUG_CALL_DISPATCH(debugCall32<>, 32) |
| DEBUG_CALL_DISPATCH(debugCall64<>, 64) |
| DEBUG_CALL_DISPATCH(debugCall128<>, 128) |
| DEBUG_CALL_DISPATCH(debugCall256<>, 256) |
| DEBUG_CALL_DISPATCH(debugCall512<>, 512) |
| DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) |
| DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) |
| DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) |
| DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) |
| DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) |
| DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) |
| DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) |
| // The frame size is too large. Report the error. |
| MOVQ $debugCallFrameTooLarge<>(SB), AX |
| MOVQ AX, 0(SP) |
| MOVQ $20, 8(SP) // length of debugCallFrameTooLarge string |
| MOVQ $8, R12 |
| BYTE $0xcc |
| JMP restore |
| |
| restore: |
| // Calls and failures resume here. |
| // |
| // Set R12 to 16 and invoke INT3. The debugger should restore |
| // all registers except RIP and RSP and resume execution. |
| MOVQ $16, R12 |
| BYTE $0xcc |
| // We must not modify flags after this point. |
| |
| // Restore pointer-containing registers, which may have been |
| // modified from the debugger's copy by stack copying. |
| MOVQ ax-(0*8+8)(SP), AX |
| MOVQ cx-(1*8+8)(SP), CX |
| MOVQ dx-(2*8+8)(SP), DX |
| MOVQ bx-(3*8+8)(SP), BX |
| MOVQ bp-(4*8+8)(SP), BP |
| MOVQ si-(5*8+8)(SP), SI |
| MOVQ di-(6*8+8)(SP), DI |
| MOVQ r8-(7*8+8)(SP), R8 |
| MOVQ r9-(8*8+8)(SP), R9 |
| MOVQ r10-(9*8+8)(SP), R10 |
| MOVQ r11-(10*8+8)(SP), R11 |
| MOVQ r12-(11*8+8)(SP), R12 |
| MOVQ r13-(12*8+8)(SP), R13 |
| MOVQ r14-(13*8+8)(SP), R14 |
| MOVQ r15-(14*8+8)(SP), R15 |
| |
| RET |
| |
| // runtime.debugCallCheck assumes that functions defined with the |
| // DEBUG_CALL_FN macro are safe points to inject calls. |
| #define DEBUG_CALL_FN(NAME,MAXSIZE) \ |
| TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ |
| NO_LOCAL_POINTERS; \ |
| MOVQ $0, R12; \ |
| BYTE $0xcc; \ |
| MOVQ $1, R12; \ |
| BYTE $0xcc; \ |
| RET |
| DEBUG_CALL_FN(debugCall32<>, 32) |
| DEBUG_CALL_FN(debugCall64<>, 64) |
| DEBUG_CALL_FN(debugCall128<>, 128) |
| DEBUG_CALL_FN(debugCall256<>, 256) |
| DEBUG_CALL_FN(debugCall512<>, 512) |
| DEBUG_CALL_FN(debugCall1024<>, 1024) |
| DEBUG_CALL_FN(debugCall2048<>, 2048) |
| DEBUG_CALL_FN(debugCall4096<>, 4096) |
| DEBUG_CALL_FN(debugCall8192<>, 8192) |
| DEBUG_CALL_FN(debugCall16384<>, 16384) |
| DEBUG_CALL_FN(debugCall32768<>, 32768) |
| DEBUG_CALL_FN(debugCall65536<>, 65536) |
| |
| // func debugCallPanicked(val interface{}) |
| TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 |
| // Copy the panic value to the top of stack. |
| MOVQ val_type+0(FP), AX |
| MOVQ AX, 0(SP) |
| MOVQ val_data+8(FP), AX |
| MOVQ AX, 8(SP) |
| MOVQ $2, R12 |
| BYTE $0xcc |
| RET |
| |
| // Note: these functions use a special calling convention to save generated code space. |
| // Arguments are passed in registers, but the space for those arguments are allocated |
| // in the caller's stack frame. These stubs write the args into that stack space and |
| // then tail call to the corresponding runtime handler. |
| // The tail call makes these stubs disappear in backtraces. |
| // Defined as ABIInternal since they do not use the stack-based Go ABI. |
| TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicIndex<ABIInternal>(SB) |
| TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicIndexU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSliceAlen<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSliceAlenU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSliceAcap<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSliceAcapU<ABIInternal>(SB) |
| TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicSliceB<ABIInternal>(SB) |
| TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicSliceBU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ DX, AX |
| JMP runtime·goPanicSlice3Alen<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ DX, AX |
| JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ DX, AX |
| JMP runtime·goPanicSlice3Acap<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ DX, AX |
| JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSlice3B<ABIInternal>(SB) |
| TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, AX |
| MOVQ DX, BX |
| JMP runtime·goPanicSlice3BU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicSlice3C<ABIInternal>(SB) |
| TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ CX, BX |
| JMP runtime·goPanicSlice3CU<ABIInternal>(SB) |
| TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVQ DX, AX |
| JMP runtime·goPanicSliceConvert<ABIInternal>(SB) |
| |
| #ifdef GOOS_android |
| // Use the free TLS_SLOT_APP slot #2 on Android Q. |
| // Earlier androids are set up in gcc_android.c. |
| DATA runtime·tls_g+0(SB)/8, $16 |
| GLOBL runtime·tls_g+0(SB), NOPTR, $8 |
| #endif |
| |
| // The compiler and assembler's -spectre=ret mode rewrites |
| // all indirect CALL AX / JMP AX instructions to be |
| // CALL retpolineAX / JMP retpolineAX. |
| // See https://support.google.com/faqs/answer/7625886. |
| #define RETPOLINE(reg) \ |
| /* CALL setup */ BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0; \ |
| /* nospec: */ \ |
| /* PAUSE */ BYTE $0xF3; BYTE $0x90; \ |
| /* JMP nospec */ BYTE $0xEB; BYTE $-(2+2); \ |
| /* setup: */ \ |
| /* MOVQ AX, 0(SP) */ BYTE $0x48|((reg&8)>>1); BYTE $0x89; \ |
| BYTE $0x04|((reg&7)<<3); BYTE $0x24; \ |
| /* RET */ BYTE $0xC3 |
| |
| TEXT runtime·retpolineAX(SB),NOSPLIT,$0; RETPOLINE(0) |
| TEXT runtime·retpolineCX(SB),NOSPLIT,$0; RETPOLINE(1) |
| TEXT runtime·retpolineDX(SB),NOSPLIT,$0; RETPOLINE(2) |
| TEXT runtime·retpolineBX(SB),NOSPLIT,$0; RETPOLINE(3) |
| /* SP is 4, can't happen / magic encodings */ |
| TEXT runtime·retpolineBP(SB),NOSPLIT,$0; RETPOLINE(5) |
| TEXT runtime·retpolineSI(SB),NOSPLIT,$0; RETPOLINE(6) |
| TEXT runtime·retpolineDI(SB),NOSPLIT,$0; RETPOLINE(7) |
| TEXT runtime·retpolineR8(SB),NOSPLIT,$0; RETPOLINE(8) |
| TEXT runtime·retpolineR9(SB),NOSPLIT,$0; RETPOLINE(9) |
| TEXT runtime·retpolineR10(SB),NOSPLIT,$0; RETPOLINE(10) |
| TEXT runtime·retpolineR11(SB),NOSPLIT,$0; RETPOLINE(11) |
| TEXT runtime·retpolineR12(SB),NOSPLIT,$0; RETPOLINE(12) |
| TEXT runtime·retpolineR13(SB),NOSPLIT,$0; RETPOLINE(13) |
| TEXT runtime·retpolineR14(SB),NOSPLIT,$0; RETPOLINE(14) |
| TEXT runtime·retpolineR15(SB),NOSPLIT,$0; RETPOLINE(15) |