| // Copyright (c) 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package edwards25519 |
| |
| import ( |
| "bytes" |
| "encoding/hex" |
| "math/big" |
| mathrand "math/rand" |
| "reflect" |
| "testing" |
| "testing/quick" |
| ) |
| |
| // Generate returns a valid (reduced modulo l) Scalar with a distribution |
| // weighted towards high, low, and edge values. |
| func (Scalar) Generate(rand *mathrand.Rand, size int) reflect.Value { |
| s := scZero |
| diceRoll := rand.Intn(100) |
| switch { |
| case diceRoll == 0: |
| case diceRoll == 1: |
| s = scOne |
| case diceRoll == 2: |
| s = scMinusOne |
| case diceRoll < 5: |
| // Generate a low scalar in [0, 2^125). |
| rand.Read(s.s[:16]) |
| s.s[15] &= (1 << 5) - 1 |
| case diceRoll < 10: |
| // Generate a high scalar in [2^252, 2^252 + 2^124). |
| s.s[31] = 1 << 4 |
| rand.Read(s.s[:16]) |
| s.s[15] &= (1 << 4) - 1 |
| default: |
| // Generate a valid scalar in [0, l) by returning [0, 2^252) which has a |
| // negligibly different distribution (the former has a 2^-127.6 chance |
| // of being out of the latter range). |
| rand.Read(s.s[:]) |
| s.s[31] &= (1 << 4) - 1 |
| } |
| return reflect.ValueOf(s) |
| } |
| |
| // quickCheckConfig1024 will make each quickcheck test run (1024 * -quickchecks) |
| // times. The default value of -quickchecks is 100. |
| var quickCheckConfig1024 = &quick.Config{MaxCountScale: 1 << 10} |
| |
| func TestScalarGenerate(t *testing.T) { |
| f := func(sc Scalar) bool { |
| return isReduced(&sc) |
| } |
| if err := quick.Check(f, quickCheckConfig1024); err != nil { |
| t.Errorf("generated unreduced scalar: %v", err) |
| } |
| } |
| |
| func TestScalarSetCanonicalBytes(t *testing.T) { |
| f1 := func(in [32]byte, sc Scalar) bool { |
| // Mask out top 4 bits to guarantee value falls in [0, l). |
| in[len(in)-1] &= (1 << 4) - 1 |
| if _, err := sc.SetCanonicalBytes(in[:]); err != nil { |
| return false |
| } |
| return bytes.Equal(in[:], sc.Bytes()) && isReduced(&sc) |
| } |
| if err := quick.Check(f1, quickCheckConfig1024); err != nil { |
| t.Errorf("failed bytes->scalar->bytes round-trip: %v", err) |
| } |
| |
| f2 := func(sc1, sc2 Scalar) bool { |
| if _, err := sc2.SetCanonicalBytes(sc1.Bytes()); err != nil { |
| return false |
| } |
| return sc1 == sc2 |
| } |
| if err := quick.Check(f2, quickCheckConfig1024); err != nil { |
| t.Errorf("failed scalar->bytes->scalar round-trip: %v", err) |
| } |
| |
| b := scMinusOne.s |
| b[31] += 1 |
| s := scOne |
| if out, err := s.SetCanonicalBytes(b[:]); err == nil { |
| t.Errorf("SetCanonicalBytes worked on a non-canonical value") |
| } else if s != scOne { |
| t.Errorf("SetCanonicalBytes modified its receiver") |
| } else if out != nil { |
| t.Errorf("SetCanonicalBytes did not return nil with an error") |
| } |
| } |
| |
| func TestScalarSetUniformBytes(t *testing.T) { |
| mod, _ := new(big.Int).SetString("27742317777372353535851937790883648493", 10) |
| mod.Add(mod, new(big.Int).Lsh(big.NewInt(1), 252)) |
| f := func(in [64]byte, sc Scalar) bool { |
| sc.SetUniformBytes(in[:]) |
| if !isReduced(&sc) { |
| return false |
| } |
| scBig := bigIntFromLittleEndianBytes(sc.s[:]) |
| inBig := bigIntFromLittleEndianBytes(in[:]) |
| return inBig.Mod(inBig, mod).Cmp(scBig) == 0 |
| } |
| if err := quick.Check(f, quickCheckConfig1024); err != nil { |
| t.Error(err) |
| } |
| } |
| |
| func TestScalarSetBytesWithClamping(t *testing.T) { |
| // Generated with libsodium.js 1.0.18 crypto_scalarmult_ed25519_base. |
| |
| random := "633d368491364dc9cd4c1bf891b1d59460face1644813240a313e61f2c88216e" |
| s := new(Scalar).SetBytesWithClamping(decodeHex(random)) |
| p := new(Point).ScalarBaseMult(s) |
| want := "1d87a9026fd0126a5736fe1628c95dd419172b5b618457e041c9c861b2494a94" |
| if got := hex.EncodeToString(p.Bytes()); got != want { |
| t.Errorf("random: got %q, want %q", got, want) |
| } |
| |
| zero := "0000000000000000000000000000000000000000000000000000000000000000" |
| s = new(Scalar).SetBytesWithClamping(decodeHex(zero)) |
| p = new(Point).ScalarBaseMult(s) |
| want = "693e47972caf527c7883ad1b39822f026f47db2ab0e1919955b8993aa04411d1" |
| if got := hex.EncodeToString(p.Bytes()); got != want { |
| t.Errorf("zero: got %q, want %q", got, want) |
| } |
| |
| one := "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" |
| s = new(Scalar).SetBytesWithClamping(decodeHex(one)) |
| p = new(Point).ScalarBaseMult(s) |
| want = "12e9a68b73fd5aacdbcaf3e88c46fea6ebedb1aa84eed1842f07f8edab65e3a7" |
| if got := hex.EncodeToString(p.Bytes()); got != want { |
| t.Errorf("one: got %q, want %q", got, want) |
| } |
| } |
| |
| func bigIntFromLittleEndianBytes(b []byte) *big.Int { |
| bb := make([]byte, len(b)) |
| for i := range b { |
| bb[i] = b[len(b)-i-1] |
| } |
| return new(big.Int).SetBytes(bb) |
| } |
| |
| func TestScalarMultiplyDistributesOverAdd(t *testing.T) { |
| multiplyDistributesOverAdd := func(x, y, z Scalar) bool { |
| // Compute t1 = (x+y)*z |
| var t1 Scalar |
| t1.Add(&x, &y) |
| t1.Multiply(&t1, &z) |
| |
| // Compute t2 = x*z + y*z |
| var t2 Scalar |
| var t3 Scalar |
| t2.Multiply(&x, &z) |
| t3.Multiply(&y, &z) |
| t2.Add(&t2, &t3) |
| |
| return t1 == t2 && isReduced(&t1) && isReduced(&t3) |
| } |
| |
| if err := quick.Check(multiplyDistributesOverAdd, quickCheckConfig1024); err != nil { |
| t.Error(err) |
| } |
| } |
| |
| func TestScalarAddLikeSubNeg(t *testing.T) { |
| addLikeSubNeg := func(x, y Scalar) bool { |
| // Compute t1 = x - y |
| var t1 Scalar |
| t1.Subtract(&x, &y) |
| |
| // Compute t2 = -y + x |
| var t2 Scalar |
| t2.Negate(&y) |
| t2.Add(&t2, &x) |
| |
| return t1 == t2 && isReduced(&t1) |
| } |
| |
| if err := quick.Check(addLikeSubNeg, quickCheckConfig1024); err != nil { |
| t.Error(err) |
| } |
| } |
| |
| func TestScalarNonAdjacentForm(t *testing.T) { |
| s := Scalar{[32]byte{ |
| 0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d, |
| 0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d, |
| 0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1, |
| 0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09, |
| }} |
| expectedNaf := [256]int8{ |
| 0, 13, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, -9, 0, 0, 0, 0, -11, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, |
| 0, 0, 0, 0, 9, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 11, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, |
| -9, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 9, 0, |
| 0, 0, 0, -15, 0, 0, 0, 0, -7, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, -3, 0, |
| 0, 0, 0, -11, 0, 0, 0, 0, -7, 0, 0, 0, 0, -13, 0, 0, 0, 0, 11, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 1, 0, 0, |
| 0, 0, 0, -15, 0, 0, 0, 0, 1, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 13, 0, 0, 0, |
| 0, 0, 0, 11, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, -9, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 7, |
| 0, 0, 0, 0, 0, -15, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 15, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, |
| } |
| |
| sNaf := s.nonAdjacentForm(5) |
| |
| for i := 0; i < 256; i++ { |
| if expectedNaf[i] != sNaf[i] { |
| t.Errorf("Wrong digit at position %d, got %d, expected %d", i, sNaf[i], expectedNaf[i]) |
| } |
| } |
| } |
| |
| type notZeroScalar Scalar |
| |
| func (notZeroScalar) Generate(rand *mathrand.Rand, size int) reflect.Value { |
| var s Scalar |
| for s == scZero { |
| s = Scalar{}.Generate(rand, size).Interface().(Scalar) |
| } |
| return reflect.ValueOf(notZeroScalar(s)) |
| } |
| |
| func TestScalarEqual(t *testing.T) { |
| if scOne.Equal(&scMinusOne) == 1 { |
| t.Errorf("scOne.Equal(&scMinusOne) is true") |
| } |
| if scMinusOne.Equal(&scMinusOne) == 0 { |
| t.Errorf("scMinusOne.Equal(&scMinusOne) is false") |
| } |
| } |