| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package utf8 implements functions and constants to support text encoded in |
| // UTF-8. It includes functions to translate between runes and UTF-8 byte sequences. |
| // See https://en.wikipedia.org/wiki/UTF-8 |
| package utf8 |
| |
| // The conditions RuneError==unicode.ReplacementChar and |
| // MaxRune==unicode.MaxRune are verified in the tests. |
| // Defining them locally avoids this package depending on package unicode. |
| |
| // Numbers fundamental to the encoding. |
| const ( |
| RuneError = '\uFFFD' // the "error" Rune or "Unicode replacement character" |
| RuneSelf = 0x80 // characters below RuneSelf are represented as themselves in a single byte. |
| MaxRune = '\U0010FFFF' // Maximum valid Unicode code point. |
| UTFMax = 4 // maximum number of bytes of a UTF-8 encoded Unicode character. |
| ) |
| |
| // Code points in the surrogate range are not valid for UTF-8. |
| const ( |
| surrogateMin = 0xD800 |
| surrogateMax = 0xDFFF |
| ) |
| |
| const ( |
| t1 = 0b00000000 |
| tx = 0b10000000 |
| t2 = 0b11000000 |
| t3 = 0b11100000 |
| t4 = 0b11110000 |
| t5 = 0b11111000 |
| |
| maskx = 0b00111111 |
| mask2 = 0b00011111 |
| mask3 = 0b00001111 |
| mask4 = 0b00000111 |
| |
| rune1Max = 1<<7 - 1 |
| rune2Max = 1<<11 - 1 |
| rune3Max = 1<<16 - 1 |
| |
| // The default lowest and highest continuation byte. |
| locb = 0b10000000 |
| hicb = 0b10111111 |
| |
| // These names of these constants are chosen to give nice alignment in the |
| // table below. The first nibble is an index into acceptRanges or F for |
| // special one-byte cases. The second nibble is the Rune length or the |
| // Status for the special one-byte case. |
| xx = 0xF1 // invalid: size 1 |
| as = 0xF0 // ASCII: size 1 |
| s1 = 0x02 // accept 0, size 2 |
| s2 = 0x13 // accept 1, size 3 |
| s3 = 0x03 // accept 0, size 3 |
| s4 = 0x23 // accept 2, size 3 |
| s5 = 0x34 // accept 3, size 4 |
| s6 = 0x04 // accept 0, size 4 |
| s7 = 0x44 // accept 4, size 4 |
| ) |
| |
| // first is information about the first byte in a UTF-8 sequence. |
| var first = [256]uint8{ |
| // 1 2 3 4 5 6 7 8 9 A B C D E F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F |
| as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F |
| // 1 2 3 4 5 6 7 8 9 A B C D E F |
| xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F |
| xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F |
| xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF |
| xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF |
| xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF |
| s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF |
| s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF |
| s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF |
| } |
| |
| // acceptRange gives the range of valid values for the second byte in a UTF-8 |
| // sequence. |
| type acceptRange struct { |
| lo uint8 // lowest value for second byte. |
| hi uint8 // highest value for second byte. |
| } |
| |
| // acceptRanges has size 16 to avoid bounds checks in the code that uses it. |
| var acceptRanges = [16]acceptRange{ |
| 0: {locb, hicb}, |
| 1: {0xA0, hicb}, |
| 2: {locb, 0x9F}, |
| 3: {0x90, hicb}, |
| 4: {locb, 0x8F}, |
| } |
| |
| // FullRune reports whether the bytes in p begin with a full UTF-8 encoding of a rune. |
| // An invalid encoding is considered a full Rune since it will convert as a width-1 error rune. |
| func FullRune(p []byte) bool { |
| n := len(p) |
| if n == 0 { |
| return false |
| } |
| x := first[p[0]] |
| if n >= int(x&7) { |
| return true // ASCII, invalid or valid. |
| } |
| // Must be short or invalid. |
| accept := acceptRanges[x>>4] |
| if n > 1 && (p[1] < accept.lo || accept.hi < p[1]) { |
| return true |
| } else if n > 2 && (p[2] < locb || hicb < p[2]) { |
| return true |
| } |
| return false |
| } |
| |
| // FullRuneInString is like FullRune but its input is a string. |
| func FullRuneInString(s string) bool { |
| n := len(s) |
| if n == 0 { |
| return false |
| } |
| x := first[s[0]] |
| if n >= int(x&7) { |
| return true // ASCII, invalid, or valid. |
| } |
| // Must be short or invalid. |
| accept := acceptRanges[x>>4] |
| if n > 1 && (s[1] < accept.lo || accept.hi < s[1]) { |
| return true |
| } else if n > 2 && (s[2] < locb || hicb < s[2]) { |
| return true |
| } |
| return false |
| } |
| |
| // DecodeRune unpacks the first UTF-8 encoding in p and returns the rune and |
| // its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if |
| // the encoding is invalid, it returns (RuneError, 1). Both are impossible |
| // results for correct, non-empty UTF-8. |
| // |
| // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is |
| // out of range, or is not the shortest possible UTF-8 encoding for the |
| // value. No other validation is performed. |
| func DecodeRune(p []byte) (r rune, size int) { |
| n := len(p) |
| if n < 1 { |
| return RuneError, 0 |
| } |
| p0 := p[0] |
| x := first[p0] |
| if x >= as { |
| // The following code simulates an additional check for x == xx and |
| // handling the ASCII and invalid cases accordingly. This mask-and-or |
| // approach prevents an additional branch. |
| mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. |
| return rune(p[0])&^mask | RuneError&mask, 1 |
| } |
| sz := int(x & 7) |
| accept := acceptRanges[x>>4] |
| if n < sz { |
| return RuneError, 1 |
| } |
| b1 := p[1] |
| if b1 < accept.lo || accept.hi < b1 { |
| return RuneError, 1 |
| } |
| if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks |
| return rune(p0&mask2)<<6 | rune(b1&maskx), 2 |
| } |
| b2 := p[2] |
| if b2 < locb || hicb < b2 { |
| return RuneError, 1 |
| } |
| if sz <= 3 { |
| return rune(p0&mask3)<<12 | rune(b1&maskx)<<6 | rune(b2&maskx), 3 |
| } |
| b3 := p[3] |
| if b3 < locb || hicb < b3 { |
| return RuneError, 1 |
| } |
| return rune(p0&mask4)<<18 | rune(b1&maskx)<<12 | rune(b2&maskx)<<6 | rune(b3&maskx), 4 |
| } |
| |
| // DecodeRuneInString is like DecodeRune but its input is a string. If s is |
| // empty it returns (RuneError, 0). Otherwise, if the encoding is invalid, it |
| // returns (RuneError, 1). Both are impossible results for correct, non-empty |
| // UTF-8. |
| // |
| // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is |
| // out of range, or is not the shortest possible UTF-8 encoding for the |
| // value. No other validation is performed. |
| func DecodeRuneInString(s string) (r rune, size int) { |
| n := len(s) |
| if n < 1 { |
| return RuneError, 0 |
| } |
| s0 := s[0] |
| x := first[s0] |
| if x >= as { |
| // The following code simulates an additional check for x == xx and |
| // handling the ASCII and invalid cases accordingly. This mask-and-or |
| // approach prevents an additional branch. |
| mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. |
| return rune(s[0])&^mask | RuneError&mask, 1 |
| } |
| sz := int(x & 7) |
| accept := acceptRanges[x>>4] |
| if n < sz { |
| return RuneError, 1 |
| } |
| s1 := s[1] |
| if s1 < accept.lo || accept.hi < s1 { |
| return RuneError, 1 |
| } |
| if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks |
| return rune(s0&mask2)<<6 | rune(s1&maskx), 2 |
| } |
| s2 := s[2] |
| if s2 < locb || hicb < s2 { |
| return RuneError, 1 |
| } |
| if sz <= 3 { |
| return rune(s0&mask3)<<12 | rune(s1&maskx)<<6 | rune(s2&maskx), 3 |
| } |
| s3 := s[3] |
| if s3 < locb || hicb < s3 { |
| return RuneError, 1 |
| } |
| return rune(s0&mask4)<<18 | rune(s1&maskx)<<12 | rune(s2&maskx)<<6 | rune(s3&maskx), 4 |
| } |
| |
| // DecodeLastRune unpacks the last UTF-8 encoding in p and returns the rune and |
| // its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if |
| // the encoding is invalid, it returns (RuneError, 1). Both are impossible |
| // results for correct, non-empty UTF-8. |
| // |
| // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is |
| // out of range, or is not the shortest possible UTF-8 encoding for the |
| // value. No other validation is performed. |
| func DecodeLastRune(p []byte) (r rune, size int) { |
| end := len(p) |
| if end == 0 { |
| return RuneError, 0 |
| } |
| start := end - 1 |
| r = rune(p[start]) |
| if r < RuneSelf { |
| return r, 1 |
| } |
| // guard against O(n^2) behavior when traversing |
| // backwards through strings with long sequences of |
| // invalid UTF-8. |
| lim := end - UTFMax |
| if lim < 0 { |
| lim = 0 |
| } |
| for start--; start >= lim; start-- { |
| if RuneStart(p[start]) { |
| break |
| } |
| } |
| if start < 0 { |
| start = 0 |
| } |
| r, size = DecodeRune(p[start:end]) |
| if start+size != end { |
| return RuneError, 1 |
| } |
| return r, size |
| } |
| |
| // DecodeLastRuneInString is like DecodeLastRune but its input is a string. If |
| // s is empty it returns (RuneError, 0). Otherwise, if the encoding is invalid, |
| // it returns (RuneError, 1). Both are impossible results for correct, |
| // non-empty UTF-8. |
| // |
| // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is |
| // out of range, or is not the shortest possible UTF-8 encoding for the |
| // value. No other validation is performed. |
| func DecodeLastRuneInString(s string) (r rune, size int) { |
| end := len(s) |
| if end == 0 { |
| return RuneError, 0 |
| } |
| start := end - 1 |
| r = rune(s[start]) |
| if r < RuneSelf { |
| return r, 1 |
| } |
| // guard against O(n^2) behavior when traversing |
| // backwards through strings with long sequences of |
| // invalid UTF-8. |
| lim := end - UTFMax |
| if lim < 0 { |
| lim = 0 |
| } |
| for start--; start >= lim; start-- { |
| if RuneStart(s[start]) { |
| break |
| } |
| } |
| if start < 0 { |
| start = 0 |
| } |
| r, size = DecodeRuneInString(s[start:end]) |
| if start+size != end { |
| return RuneError, 1 |
| } |
| return r, size |
| } |
| |
| // RuneLen returns the number of bytes required to encode the rune. |
| // It returns -1 if the rune is not a valid value to encode in UTF-8. |
| func RuneLen(r rune) int { |
| switch { |
| case r < 0: |
| return -1 |
| case r <= rune1Max: |
| return 1 |
| case r <= rune2Max: |
| return 2 |
| case surrogateMin <= r && r <= surrogateMax: |
| return -1 |
| case r <= rune3Max: |
| return 3 |
| case r <= MaxRune: |
| return 4 |
| } |
| return -1 |
| } |
| |
| // EncodeRune writes into p (which must be large enough) the UTF-8 encoding of the rune. |
| // If the rune is out of range, it writes the encoding of RuneError. |
| // It returns the number of bytes written. |
| func EncodeRune(p []byte, r rune) int { |
| // Negative values are erroneous. Making it unsigned addresses the problem. |
| switch i := uint32(r); { |
| case i <= rune1Max: |
| p[0] = byte(r) |
| return 1 |
| case i <= rune2Max: |
| _ = p[1] // eliminate bounds checks |
| p[0] = t2 | byte(r>>6) |
| p[1] = tx | byte(r)&maskx |
| return 2 |
| case i > MaxRune, surrogateMin <= i && i <= surrogateMax: |
| r = RuneError |
| fallthrough |
| case i <= rune3Max: |
| _ = p[2] // eliminate bounds checks |
| p[0] = t3 | byte(r>>12) |
| p[1] = tx | byte(r>>6)&maskx |
| p[2] = tx | byte(r)&maskx |
| return 3 |
| default: |
| _ = p[3] // eliminate bounds checks |
| p[0] = t4 | byte(r>>18) |
| p[1] = tx | byte(r>>12)&maskx |
| p[2] = tx | byte(r>>6)&maskx |
| p[3] = tx | byte(r)&maskx |
| return 4 |
| } |
| } |
| |
| // AppendRune appends the UTF-8 encoding of r to the end of p and |
| // returns the extended buffer. If the rune is out of range, |
| // it appends the encoding of RuneError. |
| func AppendRune(p []byte, r rune) []byte { |
| // This function is inlineable for fast handling of ASCII. |
| if uint32(r) <= rune1Max { |
| return append(p, byte(r)) |
| } |
| return appendRuneNonASCII(p, r) |
| } |
| |
| func appendRuneNonASCII(p []byte, r rune) []byte { |
| // Negative values are erroneous. Making it unsigned addresses the problem. |
| switch i := uint32(r); { |
| case i <= rune2Max: |
| return append(p, t2|byte(r>>6), tx|byte(r)&maskx) |
| case i > MaxRune, surrogateMin <= i && i <= surrogateMax: |
| r = RuneError |
| fallthrough |
| case i <= rune3Max: |
| return append(p, t3|byte(r>>12), tx|byte(r>>6)&maskx, tx|byte(r)&maskx) |
| default: |
| return append(p, t4|byte(r>>18), tx|byte(r>>12)&maskx, tx|byte(r>>6)&maskx, tx|byte(r)&maskx) |
| } |
| } |
| |
| // RuneCount returns the number of runes in p. Erroneous and short |
| // encodings are treated as single runes of width 1 byte. |
| func RuneCount(p []byte) int { |
| np := len(p) |
| var n int |
| for i := 0; i < np; { |
| n++ |
| c := p[i] |
| if c < RuneSelf { |
| // ASCII fast path |
| i++ |
| continue |
| } |
| x := first[c] |
| if x == xx { |
| i++ // invalid. |
| continue |
| } |
| size := int(x & 7) |
| if i+size > np { |
| i++ // Short or invalid. |
| continue |
| } |
| accept := acceptRanges[x>>4] |
| if c := p[i+1]; c < accept.lo || accept.hi < c { |
| size = 1 |
| } else if size == 2 { |
| } else if c := p[i+2]; c < locb || hicb < c { |
| size = 1 |
| } else if size == 3 { |
| } else if c := p[i+3]; c < locb || hicb < c { |
| size = 1 |
| } |
| i += size |
| } |
| return n |
| } |
| |
| // RuneCountInString is like RuneCount but its input is a string. |
| func RuneCountInString(s string) (n int) { |
| ns := len(s) |
| for i := 0; i < ns; n++ { |
| c := s[i] |
| if c < RuneSelf { |
| // ASCII fast path |
| i++ |
| continue |
| } |
| x := first[c] |
| if x == xx { |
| i++ // invalid. |
| continue |
| } |
| size := int(x & 7) |
| if i+size > ns { |
| i++ // Short or invalid. |
| continue |
| } |
| accept := acceptRanges[x>>4] |
| if c := s[i+1]; c < accept.lo || accept.hi < c { |
| size = 1 |
| } else if size == 2 { |
| } else if c := s[i+2]; c < locb || hicb < c { |
| size = 1 |
| } else if size == 3 { |
| } else if c := s[i+3]; c < locb || hicb < c { |
| size = 1 |
| } |
| i += size |
| } |
| return n |
| } |
| |
| // RuneStart reports whether the byte could be the first byte of an encoded, |
| // possibly invalid rune. Second and subsequent bytes always have the top two |
| // bits set to 10. |
| func RuneStart(b byte) bool { return b&0xC0 != 0x80 } |
| |
| // Valid reports whether p consists entirely of valid UTF-8-encoded runes. |
| func Valid(p []byte) bool { |
| // This optimization avoids the need to recompute the capacity |
| // when generating code for p[8:], bringing it to parity with |
| // ValidString, which was 20% faster on long ASCII strings. |
| p = p[:len(p):len(p)] |
| |
| // Fast path. Check for and skip 8 bytes of ASCII characters per iteration. |
| for len(p) >= 8 { |
| // Combining two 32 bit loads allows the same code to be used |
| // for 32 and 64 bit platforms. |
| // The compiler can generate a 32bit load for first32 and second32 |
| // on many platforms. See test/codegen/memcombine.go. |
| first32 := uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24 |
| second32 := uint32(p[4]) | uint32(p[5])<<8 | uint32(p[6])<<16 | uint32(p[7])<<24 |
| if (first32|second32)&0x80808080 != 0 { |
| // Found a non ASCII byte (>= RuneSelf). |
| break |
| } |
| p = p[8:] |
| } |
| n := len(p) |
| for i := 0; i < n; { |
| pi := p[i] |
| if pi < RuneSelf { |
| i++ |
| continue |
| } |
| x := first[pi] |
| if x == xx { |
| return false // Illegal starter byte. |
| } |
| size := int(x & 7) |
| if i+size > n { |
| return false // Short or invalid. |
| } |
| accept := acceptRanges[x>>4] |
| if c := p[i+1]; c < accept.lo || accept.hi < c { |
| return false |
| } else if size == 2 { |
| } else if c := p[i+2]; c < locb || hicb < c { |
| return false |
| } else if size == 3 { |
| } else if c := p[i+3]; c < locb || hicb < c { |
| return false |
| } |
| i += size |
| } |
| return true |
| } |
| |
| // ValidString reports whether s consists entirely of valid UTF-8-encoded runes. |
| func ValidString(s string) bool { |
| // Fast path. Check for and skip 8 bytes of ASCII characters per iteration. |
| for len(s) >= 8 { |
| // Combining two 32 bit loads allows the same code to be used |
| // for 32 and 64 bit platforms. |
| // The compiler can generate a 32bit load for first32 and second32 |
| // on many platforms. See test/codegen/memcombine.go. |
| first32 := uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 | uint32(s[3])<<24 |
| second32 := uint32(s[4]) | uint32(s[5])<<8 | uint32(s[6])<<16 | uint32(s[7])<<24 |
| if (first32|second32)&0x80808080 != 0 { |
| // Found a non ASCII byte (>= RuneSelf). |
| break |
| } |
| s = s[8:] |
| } |
| n := len(s) |
| for i := 0; i < n; { |
| si := s[i] |
| if si < RuneSelf { |
| i++ |
| continue |
| } |
| x := first[si] |
| if x == xx { |
| return false // Illegal starter byte. |
| } |
| size := int(x & 7) |
| if i+size > n { |
| return false // Short or invalid. |
| } |
| accept := acceptRanges[x>>4] |
| if c := s[i+1]; c < accept.lo || accept.hi < c { |
| return false |
| } else if size == 2 { |
| } else if c := s[i+2]; c < locb || hicb < c { |
| return false |
| } else if size == 3 { |
| } else if c := s[i+3]; c < locb || hicb < c { |
| return false |
| } |
| i += size |
| } |
| return true |
| } |
| |
| // ValidRune reports whether r can be legally encoded as UTF-8. |
| // Code points that are out of range or a surrogate half are illegal. |
| func ValidRune(r rune) bool { |
| switch { |
| case 0 <= r && r < surrogateMin: |
| return true |
| case surrogateMax < r && r <= MaxRune: |
| return true |
| } |
| return false |
| } |