blob: 9943d2ed39ce787fd14eba0e85775c78126f424d [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
. "runtime"
"sync"
"sync/atomic"
"testing"
)
// TestSemaHandoff checks that when semrelease+handoff is
// requested, the G that releases the semaphore yields its
// P directly to the first waiter in line.
// See issue 33747 for discussion.
func TestSemaHandoff(t *testing.T) {
const iter = 10000
ok := 0
for i := 0; i < iter; i++ {
if testSemaHandoff() {
ok++
}
}
// As long as two thirds of handoffs are direct, we
// consider the test successful. The scheduler is
// nondeterministic, so this test checks that we get the
// desired outcome in a significant majority of cases.
// The actual ratio of direct handoffs is much higher
// (>90%) but we use a lower threshold to minimize the
// chances that unrelated changes in the runtime will
// cause the test to fail or become flaky.
if ok < iter*2/3 {
t.Fatal("direct handoff < 2/3:", ok, iter)
}
}
func TestSemaHandoff1(t *testing.T) {
if GOMAXPROCS(-1) <= 1 {
t.Skip("GOMAXPROCS <= 1")
}
defer GOMAXPROCS(GOMAXPROCS(-1))
GOMAXPROCS(1)
TestSemaHandoff(t)
}
func TestSemaHandoff2(t *testing.T) {
if GOMAXPROCS(-1) <= 2 {
t.Skip("GOMAXPROCS <= 2")
}
defer GOMAXPROCS(GOMAXPROCS(-1))
GOMAXPROCS(2)
TestSemaHandoff(t)
}
func testSemaHandoff() bool {
var sema, res uint32
done := make(chan struct{})
// We're testing that the current goroutine is able to yield its time slice
// to another goroutine. Stop the current goroutine from migrating to
// another CPU where it can win the race (and appear to have not yielded) by
// keeping the CPUs slightly busy.
var wg sync.WaitGroup
for i := 0; i < GOMAXPROCS(-1); i++ {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case <-done:
return
default:
}
Gosched()
}
}()
}
wg.Add(1)
go func() {
defer wg.Done()
Semacquire(&sema)
atomic.CompareAndSwapUint32(&res, 0, 1)
Semrelease1(&sema, true, 0)
close(done)
}()
for SemNwait(&sema) == 0 {
Gosched() // wait for goroutine to block in Semacquire
}
// The crux of the test: we release the semaphore with handoff
// and immediately perform a CAS both here and in the waiter; we
// want the CAS in the waiter to execute first.
Semrelease1(&sema, true, 0)
atomic.CompareAndSwapUint32(&res, 0, 2)
wg.Wait() // wait for goroutines to finish to avoid data races
return res == 1 // did the waiter run first?
}
func BenchmarkSemTable(b *testing.B) {
for _, n := range []int{1000, 2000, 4000, 8000} {
b.Run(fmt.Sprintf("OneAddrCollision/n=%d", n), func(b *testing.B) {
tab := Escape(new(SemTable))
u := make([]uint32, SemTableSize+1)
b.ResetTimer()
for j := 0; j < b.N; j++ {
// Simulate two locks colliding on the same semaRoot.
//
// Specifically enqueue all the waiters for the first lock,
// then all the waiters for the second lock.
//
// Then, dequeue all the waiters from the first lock, then
// the second.
//
// Each enqueue/dequeue operation should be O(1), because
// there are exactly 2 locks. This could be O(n) if all
// the waiters for both locks are on the same list, as it
// once was.
for i := 0; i < n; i++ {
if i < n/2 {
tab.Enqueue(&u[0])
} else {
tab.Enqueue(&u[SemTableSize])
}
}
for i := 0; i < n; i++ {
var ok bool
if i < n/2 {
ok = tab.Dequeue(&u[0])
} else {
ok = tab.Dequeue(&u[SemTableSize])
}
if !ok {
b.Fatal("failed to dequeue")
}
}
}
})
b.Run(fmt.Sprintf("ManyAddrCollision/n=%d", n), func(b *testing.B) {
tab := Escape(new(SemTable))
u := make([]uint32, n*SemTableSize)
b.ResetTimer()
for j := 0; j < b.N; j++ {
// Simulate n locks colliding on the same semaRoot.
//
// Each enqueue/dequeue operation should be O(log n), because
// each semaRoot is a tree. This could be O(n) if it was
// some simpler data structure.
for i := 0; i < n; i++ {
tab.Enqueue(&u[i*SemTableSize])
}
for i := 0; i < n; i++ {
if !tab.Dequeue(&u[i*SemTableSize]) {
b.Fatal("failed to dequeue")
}
}
}
})
}
}