blob: 75f17634ec57eeb6cbf0ecdd25c83004f373608c [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/abi"
"cmd/compile/internal/base"
"cmd/compile/internal/types"
"cmd/internal/notsha256"
"cmd/internal/src"
"fmt"
"io"
"math"
"os"
"strings"
)
type writeSyncer interface {
io.Writer
Sync() error
}
// A Func represents a Go func declaration (or function literal) and its body.
// This package compiles each Func independently.
// Funcs are single-use; a new Func must be created for every compiled function.
type Func struct {
Config *Config // architecture information
Cache *Cache // re-usable cache
fe Frontend // frontend state associated with this Func, callbacks into compiler frontend
pass *pass // current pass information (name, options, etc.)
Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix)
Type *types.Type // type signature of the function.
Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID)
Entry *Block // the entry basic block
bid idAlloc // block ID allocator
vid idAlloc // value ID allocator
// Given an environment variable used for debug hash match,
// what file (if any) receives the yes/no logging?
logfiles map[string]writeSyncer
HTMLWriter *HTMLWriter // html writer, for debugging
DebugTest bool // default true unless $GOSSAHASH != ""; as a debugging aid, make new code conditional on this and use GOSSAHASH to binary search for failing cases
PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf.
ruleMatches map[string]int // number of times countRule was called during compilation for any given string
ABI0 *abi.ABIConfig // A copy, for no-sync access
ABI1 *abi.ABIConfig // A copy, for no-sync access
ABISelf *abi.ABIConfig // ABI for function being compiled
ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions.
scheduled bool // Values in Blocks are in final order
laidout bool // Blocks are ordered
NoSplit bool // true if function is marked as nosplit. Used by schedule check pass.
dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName)
// when register allocation is done, maps value ids to locations
RegAlloc []Location
// map from LocalSlot to set of Values that we want to store in that slot.
NamedValues map[LocalSlot][]*Value
// Names is a copy of NamedValues.Keys. We keep a separate list
// of keys to make iteration order deterministic.
Names []*LocalSlot
// Canonicalize root/top-level local slots, and canonicalize their pieces.
// Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal.
CanonicalLocalSlots map[LocalSlot]*LocalSlot
CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot
// RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry.
RegArgs []Spill
// AuxCall describing parameters and results for this function.
OwnAux *AuxCall
// WBLoads is a list of Blocks that branch on the write
// barrier flag. Safe-points are disabled from the OpLoad that
// reads the write-barrier flag until the control flow rejoins
// below the two successors of this block.
WBLoads []*Block
freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil.
freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil.
cachedPostorder []*Block // cached postorder traversal
cachedIdom []*Block // cached immediate dominators
cachedSdom SparseTree // cached dominator tree
cachedLoopnest *loopnest // cached loop nest information
cachedLineStarts *xposmap // cached map/set of xpos to integers
auxmap auxmap // map from aux values to opaque ids used by CSE
constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
}
type LocalSlotSplitKey struct {
parent *LocalSlot
Off int64 // offset of slot in N
Type *types.Type // type of slot
}
// NewFunc returns a new, empty function object.
// Caller must set f.Config and f.Cache before using f.
func NewFunc(fe Frontend) *Func {
return &Func{fe: fe, NamedValues: make(map[LocalSlot][]*Value), CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot)}
}
// NumBlocks returns an integer larger than the id of any Block in the Func.
func (f *Func) NumBlocks() int {
return f.bid.num()
}
// NumValues returns an integer larger than the id of any Value in the Func.
func (f *Func) NumValues() int {
return f.vid.num()
}
// newSparseSet returns a sparse set that can store at least up to n integers.
func (f *Func) newSparseSet(n int) *sparseSet {
for i, scr := range f.Cache.scrSparseSet {
if scr != nil && scr.cap() >= n {
f.Cache.scrSparseSet[i] = nil
scr.clear()
return scr
}
}
return newSparseSet(n)
}
// retSparseSet returns a sparse set to the config's cache of sparse
// sets to be reused by f.newSparseSet.
func (f *Func) retSparseSet(ss *sparseSet) {
for i, scr := range f.Cache.scrSparseSet {
if scr == nil {
f.Cache.scrSparseSet[i] = ss
return
}
}
f.Cache.scrSparseSet = append(f.Cache.scrSparseSet, ss)
}
// newSparseMap returns a sparse map that can store at least up to n integers.
func (f *Func) newSparseMap(n int) *sparseMap {
for i, scr := range f.Cache.scrSparseMap {
if scr != nil && scr.cap() >= n {
f.Cache.scrSparseMap[i] = nil
scr.clear()
return scr
}
}
return newSparseMap(n)
}
// retSparseMap returns a sparse map to the config's cache of sparse
// sets to be reused by f.newSparseMap.
func (f *Func) retSparseMap(ss *sparseMap) {
for i, scr := range f.Cache.scrSparseMap {
if scr == nil {
f.Cache.scrSparseMap[i] = ss
return
}
}
f.Cache.scrSparseMap = append(f.Cache.scrSparseMap, ss)
}
// newPoset returns a new poset from the internal cache
func (f *Func) newPoset() *poset {
if len(f.Cache.scrPoset) > 0 {
po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1]
f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1]
return po
}
return newPoset()
}
// retPoset returns a poset to the internal cache
func (f *Func) retPoset(po *poset) {
f.Cache.scrPoset = append(f.Cache.scrPoset, po)
}
// newDeadcodeLive returns a slice for the
// deadcode pass to use to indicate which values are live.
func (f *Func) newDeadcodeLive() []bool {
r := f.Cache.deadcode.live
f.Cache.deadcode.live = nil
return r
}
// retDeadcodeLive returns a deadcode live value slice for re-use.
func (f *Func) retDeadcodeLive(live []bool) {
f.Cache.deadcode.live = live
}
// newDeadcodeLiveOrderStmts returns a slice for the
// deadcode pass to use to indicate which values
// need special treatment for statement boundaries.
func (f *Func) newDeadcodeLiveOrderStmts() []*Value {
r := f.Cache.deadcode.liveOrderStmts
f.Cache.deadcode.liveOrderStmts = nil
return r
}
// retDeadcodeLiveOrderStmts returns a deadcode liveOrderStmts slice for re-use.
func (f *Func) retDeadcodeLiveOrderStmts(liveOrderStmts []*Value) {
f.Cache.deadcode.liveOrderStmts = liveOrderStmts
}
func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot {
a, ok := f.CanonicalLocalSlots[slot]
if !ok {
a = new(LocalSlot)
*a = slot // don't escape slot
f.CanonicalLocalSlots[slot] = a
}
return a
}
func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) {
ptrType := types.NewPtr(types.Types[types.TUINT8])
lenType := types.Types[types.TINT]
// Split this string up into two separate variables.
p := f.SplitSlot(name, ".ptr", 0, ptrType)
l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
return p, l
}
func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) {
n := name.N
u := types.Types[types.TUINTPTR]
t := types.NewPtr(types.Types[types.TUINT8])
// Split this interface up into two separate variables.
sfx := ".itab"
if n.Type().IsEmptyInterface() {
sfx = ".type"
}
c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set
d := f.SplitSlot(name, ".data", u.Size(), t)
return c, d
}
func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) {
ptrType := types.NewPtr(name.Type.Elem())
lenType := types.Types[types.TINT]
p := f.SplitSlot(name, ".ptr", 0, ptrType)
l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType)
return p, l, c
}
func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) {
s := name.Type.Size() / 2
var t *types.Type
if s == 8 {
t = types.Types[types.TFLOAT64]
} else {
t = types.Types[types.TFLOAT32]
}
r := f.SplitSlot(name, ".real", 0, t)
i := f.SplitSlot(name, ".imag", t.Size(), t)
return r, i
}
func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) {
var t *types.Type
if name.Type.IsSigned() {
t = types.Types[types.TINT32]
} else {
t = types.Types[types.TUINT32]
}
if f.Config.BigEndian {
return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32])
}
return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32])
}
func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot {
st := name.Type
return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i))
}
func (f *Func) SplitArray(name *LocalSlot) *LocalSlot {
n := name.N
at := name.Type
if at.NumElem() != 1 {
base.FatalfAt(n.Pos(), "bad array size")
}
et := at.Elem()
return f.SplitSlot(name, "[0]", 0, et)
}
func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot {
lssk := LocalSlotSplitKey{name, offset, t}
if als, ok := f.CanonicalLocalSplits[lssk]; ok {
return als
}
// Note: the _ field may appear several times. But
// have no fear, identically-named but distinct Autos are
// ok, albeit maybe confusing for a debugger.
ls := f.fe.SplitSlot(name, sfx, offset, t)
f.CanonicalLocalSplits[lssk] = &ls
return &ls
}
// newValue allocates a new Value with the given fields and places it at the end of b.Values.
func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = b
if notStmtBoundary(op) {
pos = pos.WithNotStmt()
}
v.Pos = pos
b.Values = append(b.Values, v)
return v
}
// newValueNoBlock allocates a new Value with the given fields.
// The returned value is not placed in any block. Once the caller
// decides on a block b, it must set b.Block and append
// the returned value to b.Values.
func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
var v *Value
if f.freeValues != nil {
v = f.freeValues
f.freeValues = v.argstorage[0]
v.argstorage[0] = nil
} else {
ID := f.vid.get()
if int(ID) < len(f.Cache.values) {
v = &f.Cache.values[ID]
v.ID = ID
} else {
v = &Value{ID: ID}
}
}
v.Op = op
v.Type = t
v.Block = nil // caller must fix this.
if notStmtBoundary(op) {
pos = pos.WithNotStmt()
}
v.Pos = pos
return v
}
// logPassStat writes a string key and int value as a warning in a
// tab-separated format easily handled by spreadsheets or awk.
// file names, lines, and function names are included to provide enough (?)
// context to allow item-by-item comparisons across runs.
// For example:
// awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
func (f *Func) LogStat(key string, args ...interface{}) {
value := ""
for _, a := range args {
value += fmt.Sprintf("\t%v", a)
}
n := "missing_pass"
if f.pass != nil {
n = strings.Replace(f.pass.name, " ", "_", -1)
}
f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
}
// unCacheLine removes v from f's constant cache "line" for aux,
// resets v.InCache when it is found (and removed),
// and returns whether v was found in that line.
func (f *Func) unCacheLine(v *Value, aux int64) bool {
vv := f.constants[aux]
for i, cv := range vv {
if v == cv {
vv[i] = vv[len(vv)-1]
vv[len(vv)-1] = nil
f.constants[aux] = vv[0 : len(vv)-1]
v.InCache = false
return true
}
}
return false
}
// unCache removes v from f's constant cache.
func (f *Func) unCache(v *Value) {
if v.InCache {
aux := v.AuxInt
if f.unCacheLine(v, aux) {
return
}
if aux == 0 {
switch v.Op {
case OpConstNil:
aux = constNilMagic
case OpConstSlice:
aux = constSliceMagic
case OpConstString:
aux = constEmptyStringMagic
case OpConstInterface:
aux = constInterfaceMagic
}
if aux != 0 && f.unCacheLine(v, aux) {
return
}
}
f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux)
}
}
// freeValue frees a value. It must no longer be referenced or have any args.
func (f *Func) freeValue(v *Value) {
if v.Block == nil {
f.Fatalf("trying to free an already freed value")
}
if v.Uses != 0 {
f.Fatalf("value %s still has %d uses", v, v.Uses)
}
if len(v.Args) != 0 {
f.Fatalf("value %s still has %d args", v, len(v.Args))
}
// Clear everything but ID (which we reuse).
id := v.ID
if v.InCache {
f.unCache(v)
}
*v = Value{}
v.ID = id
v.argstorage[0] = f.freeValues
f.freeValues = v
}
// newBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
func (f *Func) NewBlock(kind BlockKind) *Block {
var b *Block
if f.freeBlocks != nil {
b = f.freeBlocks
f.freeBlocks = b.succstorage[0].b
b.succstorage[0].b = nil
} else {
ID := f.bid.get()
if int(ID) < len(f.Cache.blocks) {
b = &f.Cache.blocks[ID]
b.ID = ID
} else {
b = &Block{ID: ID}
}
}
b.Kind = kind
b.Func = f
b.Preds = b.predstorage[:0]
b.Succs = b.succstorage[:0]
b.Values = b.valstorage[:0]
f.Blocks = append(f.Blocks, b)
f.invalidateCFG()
return b
}
func (f *Func) freeBlock(b *Block) {
if b.Func == nil {
f.Fatalf("trying to free an already freed block")
}
// Clear everything but ID (which we reuse).
id := b.ID
*b = Block{}
b.ID = id
b.succstorage[0].b = f.freeBlocks
f.freeBlocks = b
}
// NewValue0 returns a new value in the block with no arguments and zero aux values.
func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an auxint value.
func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and an aux value.
func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue returns a new value in the block with no arguments and both an auxint and aux values.
func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:0]
return v
}
// NewValue1 returns a new value in the block with one argument and zero aux values.
func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1I returns a new value in the block with one argument and an auxint value.
func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1A returns a new value in the block with one argument and an aux value.
func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:1]
v.argstorage[0] = arg
arg.Uses++
return v
}
// NewValue2 returns a new value in the block with two arguments and zero aux values.
func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2A returns a new value in the block with two arguments and one aux values.
func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2I returns a new value in the block with two arguments and an auxint value.
func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values.
func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Aux = aux
v.Args = v.argstorage[:2]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
arg0.Uses++
arg1.Uses++
return v
}
// NewValue3 returns a new value in the block with three arguments and zero aux values.
func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3I returns a new value in the block with three arguments and an auxint value.
func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue3A returns a new value in the block with three argument and an aux value.
func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Aux = aux
v.Args = v.argstorage[:3]
v.argstorage[0] = arg0
v.argstorage[1] = arg1
v.argstorage[2] = arg2
arg0.Uses++
arg1.Uses++
arg2.Uses++
return v
}
// NewValue4 returns a new value in the block with four arguments and zero aux values.
func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = 0
v.Args = []*Value{arg0, arg1, arg2, arg3}
arg0.Uses++
arg1.Uses++
arg2.Uses++
arg3.Uses++
return v
}
// NewValue4I returns a new value in the block with four arguments and auxint value.
func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value {
v := b.Func.newValue(op, t, b, pos)
v.AuxInt = auxint
v.Args = []*Value{arg0, arg1, arg2, arg3}
arg0.Uses++
arg1.Uses++
arg2.Uses++
arg3.Uses++
return v
}
// constVal returns a constant value for c.
func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value {
if f.constants == nil {
f.constants = make(map[int64][]*Value)
}
vv := f.constants[c]
for _, v := range vv {
if v.Op == op && v.Type.Compare(t) == types.CMPeq {
if setAuxInt && v.AuxInt != c {
panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
}
return v
}
}
var v *Value
if setAuxInt {
v = f.Entry.NewValue0I(src.NoXPos, op, t, c)
} else {
v = f.Entry.NewValue0(src.NoXPos, op, t)
}
f.constants[c] = append(vv, v)
v.InCache = true
return v
}
// These magic auxint values let us easily cache non-numeric constants
// using the same constants map while making collisions unlikely.
// These values are unlikely to occur in regular code and
// are easy to grep for in case of bugs.
const (
constSliceMagic = 1122334455
constInterfaceMagic = 2233445566
constNilMagic = 3344556677
constEmptyStringMagic = 4455667788
)
// ConstInt returns an int constant representing its argument.
func (f *Func) ConstBool(t *types.Type, c bool) *Value {
i := int64(0)
if c {
i = 1
}
return f.constVal(OpConstBool, t, i, true)
}
func (f *Func) ConstInt8(t *types.Type, c int8) *Value {
return f.constVal(OpConst8, t, int64(c), true)
}
func (f *Func) ConstInt16(t *types.Type, c int16) *Value {
return f.constVal(OpConst16, t, int64(c), true)
}
func (f *Func) ConstInt32(t *types.Type, c int32) *Value {
return f.constVal(OpConst32, t, int64(c), true)
}
func (f *Func) ConstInt64(t *types.Type, c int64) *Value {
return f.constVal(OpConst64, t, c, true)
}
func (f *Func) ConstFloat32(t *types.Type, c float64) *Value {
return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
}
func (f *Func) ConstFloat64(t *types.Type, c float64) *Value {
return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true)
}
func (f *Func) ConstSlice(t *types.Type) *Value {
return f.constVal(OpConstSlice, t, constSliceMagic, false)
}
func (f *Func) ConstInterface(t *types.Type) *Value {
return f.constVal(OpConstInterface, t, constInterfaceMagic, false)
}
func (f *Func) ConstNil(t *types.Type) *Value {
return f.constVal(OpConstNil, t, constNilMagic, false)
}
func (f *Func) ConstEmptyString(t *types.Type) *Value {
v := f.constVal(OpConstString, t, constEmptyStringMagic, false)
v.Aux = StringToAux("")
return v
}
func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value {
v := f.constVal(OpOffPtr, t, c, true)
if len(v.Args) == 0 {
v.AddArg(sp)
}
return v
}
func (f *Func) Frontend() Frontend { return f.fe }
func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) }
func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) }
func (f *Func) Log() bool { return f.fe.Log() }
func (f *Func) Fatalf(msg string, args ...interface{}) {
stats := "crashed"
if f.Log() {
f.Logf(" pass %s end %s\n", f.pass.name, stats)
printFunc(f)
}
if f.HTMLWriter != nil {
f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats))
f.HTMLWriter.flushPhases()
}
f.fe.Fatalf(f.Entry.Pos, msg, args...)
}
// postorder returns the reachable blocks in f in a postorder traversal.
func (f *Func) postorder() []*Block {
if f.cachedPostorder == nil {
f.cachedPostorder = postorder(f)
}
return f.cachedPostorder
}
func (f *Func) Postorder() []*Block {
return f.postorder()
}
// Idom returns a map from block ID to the immediate dominator of that block.
// f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
func (f *Func) Idom() []*Block {
if f.cachedIdom == nil {
f.cachedIdom = dominators(f)
}
return f.cachedIdom
}
// Sdom returns a sparse tree representing the dominator relationships
// among the blocks of f.
func (f *Func) Sdom() SparseTree {
if f.cachedSdom == nil {
f.cachedSdom = newSparseTree(f, f.Idom())
}
return f.cachedSdom
}
// loopnest returns the loop nest information for f.
func (f *Func) loopnest() *loopnest {
if f.cachedLoopnest == nil {
f.cachedLoopnest = loopnestfor(f)
}
return f.cachedLoopnest
}
// invalidateCFG tells f that its CFG has changed.
func (f *Func) invalidateCFG() {
f.cachedPostorder = nil
f.cachedIdom = nil
f.cachedSdom = nil
f.cachedLoopnest = nil
}
// DebugHashMatch reports whether environment variable evname
// 1. is empty (this is a special more-quickly implemented case of 3)
// 2. is "y" or "Y"
// 3. is a suffix of the sha1 hash of name
// 4. is a suffix of the environment variable
// fmt.Sprintf("%s%d", evname, n)
// provided that all such variables are nonempty for 0 <= i <= n
//
// Otherwise it returns false.
// When true is returned the message
//
// "%s triggered %s\n", evname, name
//
// is printed on the file named in environment variable
//
// GSHS_LOGFILE
//
// or standard out if that is empty or there is an error
// opening the file.
func (f *Func) DebugHashMatch(evname string) bool {
name := f.fe.MyImportPath() + "." + f.Name
evhash := os.Getenv(evname)
switch evhash {
case "":
return true // default behavior with no EV is "on"
case "y", "Y":
f.logDebugHashMatch(evname, name)
return true
case "n", "N":
return false
}
// Check the hash of the name against a partial input hash.
// We use this feature to do a binary search to
// find a function that is incorrectly compiled.
hstr := ""
for _, b := range notsha256.Sum256([]byte(name)) {
hstr += fmt.Sprintf("%08b", b)
}
if strings.HasSuffix(hstr, evhash) {
f.logDebugHashMatch(evname, name)
return true
}
// Iteratively try additional hashes to allow tests for multi-point
// failure.
for i := 0; true; i++ {
ev := fmt.Sprintf("%s%d", evname, i)
evv := os.Getenv(ev)
if evv == "" {
break
}
if strings.HasSuffix(hstr, evv) {
f.logDebugHashMatch(ev, name)
return true
}
}
return false
}
func (f *Func) logDebugHashMatch(evname, name string) {
if f.logfiles == nil {
f.logfiles = make(map[string]writeSyncer)
}
file := f.logfiles[evname]
if file == nil {
file = os.Stdout
if tmpfile := os.Getenv("GSHS_LOGFILE"); tmpfile != "" {
var err error
file, err = os.OpenFile(tmpfile, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0666)
if err != nil {
f.Fatalf("could not open hash-testing logfile %s", tmpfile)
}
}
f.logfiles[evname] = file
}
fmt.Fprintf(file, "%s triggered %s\n", evname, name)
file.Sync()
}
func DebugNameMatch(evname, name string) bool {
return os.Getenv(evname) == name
}
func (f *Func) spSb() (sp, sb *Value) {
initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same.
for _, v := range f.Entry.Values {
if v.Op == OpSB {
sb = v
}
if v.Op == OpSP {
sp = v
}
if sb != nil && sp != nil {
return
}
}
if sb == nil {
sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr)
}
if sp == nil {
sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr)
}
return
}