blob: f54746c323682ae81b1f85bdf4e1b1b125a4a572 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"fmt";
"os";
"reflect";
"strings";
"sync";
"unicode";
)
type kind reflect.Type
// Reflection types are themselves interface values holding structs
// describing the type. Each type has a different struct so that struct can
// be the kind. For example, if typ is the reflect type for an int8, typ is
// a pointer to a reflect.Int8Type struct; if typ is the reflect type for a
// function, typ is a pointer to a reflect.FuncType struct; we use the type
// of that pointer as the kind.
// typeKind returns a reflect.Type representing typ's kind. The kind is the
// general kind of type:
// int8, int16, int, uint, float, func, chan, struct, and so on.
// That is, all struct types have the same kind, all func types have the same
// kind, all int8 types have the same kind, and so on.
func typeKind(typ reflect.Type) kind {
return kind(reflect.Typeof(typ));
}
// valueKind returns the kind of the value type
// stored inside the interface v.
func valueKind(v interface{}) reflect.Type {
return typeKind(reflect.Typeof(v));
}
// A typeId represents a gob Type as an integer that can be passed on the wire.
// Internally, typeIds are used as keys to a map to recover the underlying type info.
type typeId int32
var nextId typeId // incremented for each new type we build
var typeLock sync.Mutex // set while building a type
type gobType interface {
id() typeId;
setId(id typeId);
Name() string;
String() string;
safeString(seen map[typeId] bool) string;
}
var types = make(map[reflect.Type] gobType)
var idToType = make(map[typeId] gobType)
func setTypeId(typ gobType) {
nextId++;
typ.setId(nextId);
idToType[nextId] = typ;
}
func (t typeId) gobType() gobType {
if t == 0 {
return nil
}
return idToType[t]
}
// String returns the string representation of the type associated with the typeId.
func (t typeId) String() string {
return t.gobType().String()
}
// Name returns the name of the type associated with the typeId.
func (t typeId) Name() string {
return t.gobType().Name()
}
// Common elements of all types.
type commonType struct {
name string;
_id typeId;
}
func (t *commonType) id() typeId {
return t._id
}
func (t *commonType) setId(id typeId) {
t._id = id
}
func (t *commonType) String() string {
return t.name
}
func (t *commonType) safeString(seen map[uint32] bool) string {
return t.name
}
func (t *commonType) Name() string {
return t.name
}
// Basic type identifiers, predefined.
var tBool typeId
var tInt typeId
var tUint typeId
var tFloat typeId
var tString typeId
var tBytes typeId
// Predefined because it's needed by the Decoder
var tWireType typeId
// Array type
type arrayType struct {
commonType;
Elem typeId;
Len int;
}
func newArrayType(name string, elem gobType, length int) *arrayType {
a := &arrayType{ commonType{ name: name }, elem.id(), length };
setTypeId(a);
return a;
}
func (a *arrayType) safeString(seen map[typeId] bool) string {
if _, ok := seen[a._id]; ok {
return a.name
}
seen[a._id] = true;
return fmt.Sprintf("[%d]%s", a.Len, a.Elem.gobType().safeString(seen));
}
func (a *arrayType) String() string {
return a.safeString(make(map[uint32] bool))
}
// Slice type
type sliceType struct {
commonType;
Elem typeId;
}
func newSliceType(name string, elem gobType) *sliceType {
s := &sliceType{ commonType{ name: name }, elem.id() };
setTypeId(s);
return s;
}
func (s *sliceType) safeString(seen map[typeId] bool) string {
if _, ok := seen[s._id]; ok {
return s.name
}
seen[s._id] = true;
return fmt.Sprintf("[]%s", s.Elem.gobType().safeString(seen));
}
func (s *sliceType) String() string {
return s.safeString(make(map[typeId] bool))
}
// Struct type
type fieldType struct {
name string;
id typeId;
}
type structType struct {
commonType;
field []*fieldType;
}
func (s *structType) safeString(seen map[typeId] bool) string {
if s == nil {
return "<nil>"
}
if _, ok := seen[s._id]; ok {
return s.name
}
seen[s._id] = true;
str := s.name + " = struct { ";
for _, f := range s.field {
str += fmt.Sprintf("%s %s; ", f.name, f.id.gobType().safeString(seen));
}
str += "}";
return str;
}
func (s *structType) String() string {
return s.safeString(make(map[typeId] bool))
}
func newStructType(name string) *structType {
s := &structType{ commonType{ name: name }, nil };
setTypeId(s);
return s;
}
// Construction
func newType(name string, rt reflect.Type) gobType
// Step through the indirections on a type to discover the base type.
// Return the number of indirections.
func indirect(t reflect.Type) (rt reflect.Type, count int) {
rt = t;
for {
pt, ok := rt.(*reflect.PtrType);
if !ok {
break;
}
rt = pt.Elem();
count++;
}
return;
}
func newTypeObject(name string, rt reflect.Type) gobType {
switch t := rt.(type) {
// All basic types are easy: they are predefined.
case *reflect.BoolType:
return tBool.gobType()
case *reflect.IntType:
return tInt.gobType()
case *reflect.Int8Type:
return tInt.gobType()
case *reflect.Int16Type:
return tInt.gobType()
case *reflect.Int32Type:
return tInt.gobType()
case *reflect.Int64Type:
return tInt.gobType()
case *reflect.UintType:
return tUint.gobType()
case *reflect.Uint8Type:
return tUint.gobType()
case *reflect.Uint16Type:
return tUint.gobType()
case *reflect.Uint32Type:
return tUint.gobType()
case *reflect.Uint64Type:
return tUint.gobType()
case *reflect.UintptrType:
return tUint.gobType()
case *reflect.FloatType:
return tFloat.gobType()
case *reflect.Float32Type:
return tFloat.gobType()
case *reflect.Float64Type:
return tFloat.gobType()
case *reflect.StringType:
return tString.gobType()
case *reflect.ArrayType:
return newArrayType(name, newType("", t.Elem()), t.Len());
case *reflect.SliceType:
// []byte == []uint8 is a special case
if _, ok := t.Elem().(*reflect.Uint8Type); ok {
return tBytes.gobType()
}
return newSliceType(name, newType(t.Elem().Name(), t.Elem()));
case *reflect.StructType:
// Install the struct type itself before the fields so recursive
// structures can be constructed safely.
strType := newStructType(name);
types[rt] = strType;
idToType[strType.id()] = strType;
field := make([]*fieldType, t.NumField());
for i := 0; i < t.NumField(); i++ {
f := t.Field(i);
typ, _indir := indirect(f.Type);
tname := typ.Name();
if tname == "" {
tname = f.Type.String();
}
field[i] = &fieldType{ f.Name, newType(tname, f.Type).id() };
}
strType.field = field;
return strType;
default:
panicln("gob NewTypeObject can't handle type", rt.String()); // TODO(r): panic?
}
return nil
}
func newType(name string, rt reflect.Type) gobType {
// Flatten the data structure by collapsing out pointers
for {
pt, ok := rt.(*reflect.PtrType);
if !ok {
break;
}
rt = pt.Elem();
}
typ, present := types[rt];
if present {
return typ
}
typ = newTypeObject(name, rt);
types[rt] = typ;
return typ
}
// getType returns the Gob type describing the given reflect.Type.
// typeLock must be held.
func getType(name string, rt reflect.Type) gobType {
// Set lock; all code running under here is synchronized.
t := newType(name, rt);
return t;
}
func checkId(want, got typeId) {
if want != got {
panicln("bootstrap type wrong id:", got.Name(), got, "not", want);
}
}
// used for building the basic types; called only from init()
func bootstrapType(name string, e interface{}, expect typeId) typeId {
rt := reflect.Typeof(e);
_, present := types[rt];
if present {
panicln("bootstrap type already present:", name);
}
typ := &commonType{ name: name };
types[rt] = typ;
setTypeId(typ);
checkId(expect, nextId);
return nextId
}
// Representation of the information we send and receive about this type.
// Each value we send is preceded by its type definition: an encoded int.
// However, the very first time we send the value, we first send the pair
// (-id, wireType).
// For bootstrapping purposes, we assume that the recipient knows how
// to decode a wireType; it is exactly the wireType struct here, interpreted
// using the gob rules for sending a structure, except that we assume the
// ids for wireType and structType are known. The relevant pieces
// are built in encode.go's init() function.
type wireType struct {
s *structType;
}
func (w *wireType) name() string {
// generalize once we can have non-struct types on the wire.
return w.s.name
}
type decEngine struct // defined in decode.go
type encEngine struct // defined in encode.go
type typeInfo struct {
id typeId;
encoder *encEngine;
wire *wireType;
}
var typeInfoMap = make(map[reflect.Type] *typeInfo) // protected by typeLock
// The reflection type must have all its indirections processed out.
// typeLock must be held.
func getTypeInfo(rt reflect.Type) *typeInfo {
if pt, ok := rt.(*reflect.PtrType); ok {
panicln("pointer type in getTypeInfo:", rt.String())
}
info, ok := typeInfoMap[rt];
if !ok {
info = new(typeInfo);
name := rt.Name();
info.id = getType(name, rt).id();
// assume it's a struct type
info.wire = &wireType{info.id.gobType().(*structType)};
typeInfoMap[rt] = info;
}
return info;
}
func init() {
// Create and check predefined types
tBool = bootstrapType("bool", false, 1);
tInt = bootstrapType("int", int(0), 2);
tUint = bootstrapType("uint", uint(0), 3);
tFloat = bootstrapType("float", float64(0), 4);
// The string for tBytes is "bytes" not "[]byte" to signify its specialness.
tBytes = bootstrapType("bytes", make([]byte, 0), 5);
tString= bootstrapType("string", "", 6);
tWireType = getTypeInfo(reflect.Typeof(wireType{})).id;
checkId(7, tWireType);
checkId(8, getTypeInfo(reflect.Typeof(structType{})).id);
checkId(9, getTypeInfo(reflect.Typeof(commonType{})).id);
checkId(10, getTypeInfo(reflect.Typeof(fieldType{})).id);
}