blob: 67b3d5069197dcfb0c6171dd3d59707e92179681 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ppc64 ppc64le
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
#include "asm_ppc64x.h"
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer
// initialize essential registers
BL runtime·reginit(SB)
SUB $(FIXED_FRAME+16), R1
MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame
MOVW R3, FIXED_FRAME+0(R1) // argc
MOVD R4, FIXED_FRAME+8(R1) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD $(-64*1024), R31
ADD R31, R1, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
MOVD R3, (g_stack+stack_lo)(g)
MOVD R1, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R12
CMP R0, R12
BEQ nocgo
MOVD R12, CTR // r12 = "global function entry point"
MOVD R13, R5 // arg 2: TLS base pointer
MOVD $setg_gcc<>(SB), R4 // arg 1: setg
MOVD g, R3 // arg 0: G
// C functions expect 32 bytes of space on caller stack frame
// and a 16-byte aligned R1
MOVD R1, R14 // save current stack
SUB $32, R1 // reserve 32 bytes
RLDCR $0, R1, $~15, R1 // 16-byte align
BL (CTR) // may clobber R0, R3-R12
MOVD R14, R1 // restore stack
MOVD 24(R1), R2
XOR R0, R0 // fix R0
nocgo:
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R3
ADD $const__StackGuard, R3
MOVD R3, g_stackguard0(g)
MOVD R3, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R3
// save m->g0 = g0
MOVD g, m_g0(R3)
// save m0 to g0->m
MOVD R3, g_m(g)
BL runtime·check(SB)
// args are already prepared
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R3 // entry
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
BL runtime·newproc(SB)
ADD $(16+FIXED_FRAME), R1
// start this M
BL runtime·mstart(SB)
MOVD R0, 1(R0)
RET
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
MOVD R0, 2(R0) // TODO: TD
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0
// crosscall_ppc64 and crosscall2 need to reginit, but can't
// get at the 'runtime.reginit' symbol.
BR runtime·reginit(SB)
TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0
// set R0 to zero, it's expected by the toolchain
XOR R0, R0
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R3
MOVD R1, gobuf_sp(R3)
MOVD LR, R31
MOVD R31, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD R0, gobuf_lr(R3)
MOVD R0, gobuf_ret(R3)
MOVD R0, gobuf_ctxt(R3)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g // make sure g is not nil
BL runtime·save_g(SB)
MOVD 0(g), R4
MOVD gobuf_sp(R5), R1
MOVD gobuf_lr(R5), R31
MOVD R31, LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R11
MOVD R0, gobuf_sp(R5)
MOVD R0, gobuf_ret(R5)
MOVD R0, gobuf_lr(R5)
MOVD R0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R12
MOVD R12, CTR
BR (CTR)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8
// Save caller state in g->sched
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
BR runtime·badmcall(SB)
MOVD fn+0(FP), R11 // context
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
BL (CTR)
MOVD 24(R1), R2
BR runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
// We have several undefs here so that 16 bytes past
// $runtime·systemstack_switch lies within them whether or not the
// instructions that derive r2 from r12 are there.
UNDEF
UNDEF
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R11 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMP g, R5
BEQ noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ noswitch
MOVD m_curg(R4), R6
CMP g, R6
BEQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R12
MOVD R12, CTR
BL (CTR)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $16, R6 // get past prologue (including r2-setting instructions when they're there)
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $FIXED_FRAME, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, R1
// call target function
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
BL (CTR)
// restore TOC pointer. It seems unlikely that we will use systemstack
// to call a function defined in another module, but the results of
// doing so would be so confusing that it's worth doing this.
MOVD g_m(g), R3
MOVD m_curg(R3), g
MOVD (g_sched+gobuf_sp)(g), R3
MOVD 24(R3), R2
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD R0, (g_sched+gobuf_sp)(g)
RET
noswitch:
// already on m stack, just call directly
MOVD 0(R11), R12 // code pointer
MOVD R12, CTR
BL (CTR)
MOVD 24(R1), R2
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
// Called from f.
// Set g->sched to context in f.
MOVD R11, (g_sched+gobuf_ctxt)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R8
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVD R0, R11
BR runtime·morestack(SB)
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
// We came here via a RET to an overwritten LR.
// R3 may be live. Other registers are available.
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
MOVD (g_stkbar+slice_array)(g), R4
MOVD g_stkbarPos(g), R5
MOVD $stkbar__size, R6
MULLD R5, R6
ADD R4, R6
MOVD stkbar_savedLRVal(R6), R6
// Record that this stack barrier was hit.
ADD $1, R5
MOVD R5, g_stkbarPos(g)
// Jump to the original return PC.
MOVD R6, CTR
BR (CTR)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R31; \
CMP R3, R31; \
BGT 4(PC); \
MOVD $NAME(SB), R12; \
MOVD R12, CTR; \
BR (CTR)
// Note: can't just "BR NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $0-0
BR ·reflectcall(SB)
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32
MOVWZ argsize+24(FP), R3
// NOTE(rsc): No call16, because CALLFN needs four words
// of argument space to invoke callwritebarrier.
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R12
MOVD R12, CTR
BR (CTR)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWZ argsize+24(FP), R4; \
MOVD R1, R5; \
ADD $(FIXED_FRAME-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 4(PC); \
MOVBZU 1(R3), R6; \
MOVBZU R6, 1(R5); \
BR -4(PC); \
/* call function */ \
MOVD f+8(FP), R11; \
MOVD (R11), R12; \
MOVD R12, CTR; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (CTR); \
MOVD 24(R1), R2; \
/* copy return values back */ \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R1, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
ADD $(FIXED_FRAME-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
loop: \
CMP R5, R4; \
BEQ end; \
MOVBZU 1(R5), R6; \
MOVBZU R6, 1(R3); \
BR loop; \
end: \
/* execute write barrier updates */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R7, FIXED_FRAME+0(R1); \
MOVD R3, FIXED_FRAME+8(R1); \
MOVD R4, FIXED_FRAME+16(R1); \
MOVD R6, FIXED_FRAME+24(R1); \
BL runtime·callwritebarrier(SB); \
RET
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 8 bytes to get back to either nop or toc reload before deferreturn
// 3. BR to fn
// When dynamically linking Go, it is not sufficient to rewind to the BL
// deferreturn -- we might be jumping between modules and so we need to reset
// the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before*
// the BL deferreturn and jmpdefer rewinds to that.
TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16
MOVD 0(R1), R31
SUB $8, R31
MOVD R31, LR
MOVD fv+0(FP), R11
MOVD argp+8(FP), R1
SUB $FIXED_FRAME, R1
MOVD 0(R11), R12
MOVD R12, CTR
BR (CTR)
// Save state of caller into g->sched. Smashes R31.
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD R0, (g_sched+gobuf_ret)(g)
MOVD R0, (g_sched+gobuf_ctxt)(g)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R1, R7 // save original stack pointer
MOVD g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R6
MOVD m_g0(R6), R6
CMP R6, g
BEQ g0
BL gosave<>(SB)
MOVD R6, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
// Now on a scheduling stack (a pthread-created stack).
g0:
// Save room for two of our pointers, plus 32 bytes of callee
// save area that lives on the caller stack.
SUB $48, R1
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
MOVD R5, 40(R1) // save old g on stack
MOVD (g_stack+stack_hi)(R5), R5
SUB R7, R5
MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?)
// This is a "global call", so put the global entry point in r12
MOVD R3, R12
MOVD R12, CTR
MOVD R4, R3 // arg in r3
BL (CTR)
// C code can clobber R0, so set it back to 0. F27-F31 are
// callee save, so we don't need to recover those.
XOR R0, R0
// Restore g, stack pointer, toc pointer.
// R3 is errno, so don't touch it
MOVD 40(R1), g
MOVD (g_stack+stack_hi)(g), R5
MOVD 32(R1), R6
SUB R6, R5
MOVD 24(R5), R2
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 32(R1), R6
SUB R6, R5
MOVD R5, R1
MOVW R3, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$32-32
MOVD $fn+0(FP), R3
MOVD R3, FIXED_FRAME+0(R1)
MOVD frame+8(FP), R3
MOVD R3, FIXED_FRAME+8(R1)
MOVD framesize+16(FP), R3
MOVD R3, FIXED_FRAME+16(R1)
MOVD ctxt+24(FP), R3
MOVD R3, FIXED_FRAME+24(R1)
MOVD $runtime·cgocallback_gofunc(SB), R12
MOVD R12, CTR
BL (CTR)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32
NO_LOCAL_POINTERS
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMP R3, $0
BEQ nocgo
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMP g, $0
BEQ needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
BR havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R12
MOVD R12, CTR
BL (CTR)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD R1, (g_sched+gobuf_sp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD R1, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -8(SP) is unused (where SP refers to
// m->curg's SP while we're setting it up, before we've adjusted it).
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -(FIXED_FRAME+16)(R4)
MOVD ctxt+24(FP), R3
MOVD R3, -16(R4)
MOVD $-(FIXED_FRAME+16)(R4), R1
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(R1), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD $(FIXED_FRAME+16)(R1), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R1
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMP R6, $0
BNE droppedm
MOVD $runtime·dropm(SB), R12
MOVD R12, CTR
BL (CTR)
droppedm:
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
// The standard prologue clobbers R31, which is callee-save in
// the C ABI, so we have to use $-8-0 and save LR ourselves.
MOVD LR, R4
// Also save g and R31, since they're callee-save in C ABI
MOVD R31, R5
MOVD g, R6
MOVD R3, g
BL runtime·save_g(SB)
MOVD R6, g
MOVD R5, R31
MOVD R4, LR
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
MOVD FIXED_FRAME+8(R1), R3 // LR saved by caller
MOVD runtime·stackBarrierPC(SB), R4
CMP R3, R4
BNE nobar
// Get original return PC.
BL runtime·nextBarrierPC(SB)
MOVD FIXED_FRAME+0(R1), R3
nobar:
MOVD R3, ret+8(FP)
RET
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
MOVD pc+8(FP), R3
MOVD FIXED_FRAME+8(R1), R4
MOVD runtime·stackBarrierPC(SB), R5
CMP R4, R5
BEQ setbar
MOVD R3, FIXED_FRAME+8(R1) // set LR in caller
RET
setbar:
// Set the stack barrier return PC.
MOVD R3, FIXED_FRAME+0(R1)
BL runtime·setNextBarrierPC(SB)
RET
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
MOVD argp+0(FP), R3
SUB $FIXED_FRAME, R3
MOVD R3, ret+8(FP)
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R0
UNDEF
#define TBRL 268
#define TBRU 269 /* Time base Upper/Lower */
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
MOVW SPR(TBRU), R4
MOVW SPR(TBRL), R3
MOVW SPR(TBRU), R5
CMPW R4, R5
BNE -4(PC)
SLD $32, R5
OR R5, R3
MOVD R3, ret+0(FP)
RET
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
GO_ARGS
NO_LOCAL_POINTERS
MOVD p+0(FP), R3
MOVD h+8(FP), R4
MOVD 8(R11), R5
MOVD R3, FIXED_FRAME+0(R1)
MOVD R4, FIXED_FRAME+8(R1)
MOVD R5, FIXED_FRAME+16(R1)
BL runtime·memhash(SB)
MOVD FIXED_FRAME+24(R1), R3
MOVD R3, ret+16(FP)
RET
// AES hashing not implemented for ppc64
TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R1
TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R1
TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R1
TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R1
TEXT runtime·memequal(SB),NOSPLIT,$0-25
MOVD a+0(FP), R3
MOVD b+8(FP), R4
MOVD size+16(FP), R5
BL runtime·memeqbody(SB)
MOVB R9, ret+24(FP)
RET
// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17
MOVD a+0(FP), R3
MOVD b+8(FP), R4
CMP R3, R4
BEQ eq
MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure
BL runtime·memeqbody(SB)
MOVB R9, ret+16(FP)
RET
eq:
MOVD $1, R3
MOVB R3, ret+16(FP)
RET
// Do an efficieint memequal for ppc64
// for reuse where possible.
// R3 = s1
// R4 = s2
// R5 = len
// R9 = return value
// R6, R7 clobbered
TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0
MOVD R5,CTR
CMP R5,$8 // only optimize >=8
BLT simplecheck
DCBT (R3) // cache hint
DCBT (R4)
CMP R5,$32 // optimize >= 32
MOVD R5,R6 // needed if setup8a branch
BLT setup8a // 8 byte moves only
setup32a: // 8 byte aligned, >= 32 bytes
SRADCC $5,R5,R6 // number of 32 byte chunks to compare
MOVD R6,CTR
loop32a:
MOVD 0(R3),R6 // doublewords to compare
MOVD 0(R4),R7
MOVD 8(R3),R8 //
MOVD 8(R4),R9
CMP R6,R7 // bytes batch?
BNE noteq
MOVD 16(R3),R6
MOVD 16(R4),R7
CMP R8,R9 // bytes match?
MOVD 24(R3),R8
MOVD 24(R4),R9
BNE noteq
CMP R6,R7 // bytes match?
BNE noteq
ADD $32,R3 // bump up to next 32
ADD $32,R4
CMP R8,R9 // bytes match?
BC 8,2,loop32a // br ctr and cr
BNE noteq
ANDCC $24,R5,R6 // Any 8 byte chunks?
BEQ leftover // and result is 0
setup8a:
SRADCC $3,R6,R6 // get the 8 byte count
BEQ leftover // shifted value is 0
MOVD R6,CTR
loop8:
MOVD 0(R3),R6 // doublewords to compare
ADD $8,R3
MOVD 0(R4),R7
ADD $8,R4
CMP R6,R7 // match?
BC 8,2,loop8 // bt ctr <> 0 && cr
BNE noteq
leftover:
ANDCC $7,R5,R6 // check for leftover bytes
BEQ equal
MOVD R6,CTR
BR simple
simplecheck:
CMP R5,$0
BEQ equal
simple:
MOVBZ 0(R3), R6
ADD $1,R3
MOVBZ 0(R4), R7
ADD $1,R4
CMP R6, R7
BNE noteq
BC 8,2,simple
BNE noteq
BR equal
noteq:
MOVD $0, R9
RET
equal:
MOVD $1, R9
RET
// eqstring tests whether two strings are equal.
// The compiler guarantees that strings passed
// to eqstring have equal length.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
MOVD s1_base+0(FP), R3
MOVD s2_base+16(FP), R4
MOVD $1, R5
MOVB R5, ret+32(FP)
CMP R3, R4
BNE 2(PC)
RET
MOVD s1_len+8(FP), R5
BL runtime·memeqbody(SB)
MOVB R9, ret+32(FP)
RET
TEXT bytes·Equal(SB),NOSPLIT,$0-49
MOVD a_len+8(FP), R4
MOVD b_len+32(FP), R5
CMP R5, R4 // unequal lengths are not equal
BNE noteq
MOVD a+0(FP), R3
MOVD b+24(FP), R4
BL runtime·memeqbody(SB)
MOVBZ R9,ret+48(FP)
RET
noteq:
MOVBZ $0,ret+48(FP)
RET
equal:
MOVD $1,R3
MOVBZ R3,ret+48(FP)
RET
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
MOVD s+0(FP), R3
MOVD s_len+8(FP), R4
MOVBZ c+24(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
loop:
CMP R3, R4
BEQ notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE loop
SUB R6, R3 // remove base
MOVD R3, ret+32(FP)
RET
notfound:
MOVD $-1, R3
MOVD R3, ret+32(FP)
RET
TEXT strings·IndexByte(SB),NOSPLIT,$0-32
MOVD p+0(FP), R3
MOVD b_len+8(FP), R4
MOVBZ c+16(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
loop:
CMP R3, R4
BEQ notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE loop
SUB R6, R3 // remove base
MOVD R3, ret+24(FP)
RET
notfound:
MOVD $-1, R3
MOVD R3, ret+24(FP)
RET
TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40
MOVD s1_base+0(FP), R5
MOVD s1_len+8(FP), R3
MOVD s2_base+16(FP), R6
MOVD s2_len+24(FP), R4
MOVD $ret+32(FP), R7
BR runtime·cmpbody<>(SB)
TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56
MOVD s1+0(FP), R5
MOVD s1+8(FP), R3
MOVD s2+24(FP), R6
MOVD s2+32(FP), R4
MOVD $ret+48(FP), R7
BR runtime·cmpbody<>(SB)
// On entry:
// R3 is the length of s1
// R4 is the length of s2
// R5 points to the start of s1
// R6 points to the start of s2
// R7 points to return value (-1/0/1 will be written here)
//
// On exit:
// R5, R6, R8, R9 and R10 are clobbered
TEXT runtime·cmpbody<>(SB),NOSPLIT|NOFRAME,$0-0
CMP R5, R6
BEQ samebytes // same starting pointers; compare lengths
SUB $1, R5
SUB $1, R6
MOVD R4, R8
CMP R3, R4
BGE 2(PC)
MOVD R3, R8 // R8 is min(R3, R4)
ADD R5, R8 // R5 is current byte in s1, R8 is last byte in s1 to compare
loop:
CMP R5, R8
BEQ samebytes // all compared bytes were the same; compare lengths
MOVBZU 1(R5), R9
MOVBZU 1(R6), R10
CMP R9, R10
BEQ loop
// bytes differed
MOVD $1, R4
BGT 2(PC)
NEG R4
MOVD R4, (R7)
RET
samebytes:
MOVD $1, R8
CMP R3, R4
BNE 3(PC)
MOVD R0, (R7)
RET
BGT 2(PC)
NEG R8
MOVD R8, (R7)
RET
TEXT runtime·fastrand(SB), NOSPLIT, $0-4
MOVD g_m(g), R4
MOVWZ m_fastrand(R4), R3
ADD R3, R3
CMPW R3, $0
BGE 2(PC)
XOR $0x88888eef, R3
MOVW R3, m_fastrand(R4)
MOVW R3, ret+0(FP)
RET
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R3
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
// g (R30) and R31 are callee-save in the C ABI, so save them
MOVD g, R4
MOVD R31, R5
MOVD LR, R6
BL runtime·load_g(SB) // clobbers g (R30), R31
MOVD g_m(g), R3
MOVD m_curg(R3), R3
MOVD (g_stack+stack_hi)(R3), R3
MOVD R4, g
MOVD R5, R31
MOVD R6, LR
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
//
// When dynamically linking Go, it can be returned to from a function
// implemented in a different module and so needs to reload the TOC pointer
// from the stack (although this function declares that it does not set up x-a
// frame, newproc1 does in fact allocate one for goexit and saves the TOC
// pointer in the correct place).
// goexit+_PCQuantum is halfway through the usual global entry point prologue
// that derives r2 from r12 which is a bit silly, but not harmful.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0
MOVD 24(R1), R2
BL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
MOVD R0, R0 // NOP
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
RET
TEXT runtime·sigreturn(SB),NOSPLIT,$0-0
RET
// prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the
// module containing runtime) to the frame that goexit will execute in when
// the goroutine exits. It's implemented in assembly mainly because that's the
// easiest way to get access to R2.
TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8
MOVD sp+0(FP), R3
MOVD R2, 24(R3)
RET
TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0
ADD $-8, R1
MOVD R31, 0(R1)
MOVD runtime·lastmoduledatap(SB), R4
MOVD R3, moduledata_next(R4)
MOVD R3, runtime·lastmoduledatap(SB)
MOVD 0(R1), R31
ADD $8, R1
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVW $1, R3
MOVB R3, ret+0(FP)
RET