blob: c4563ae752c96e1631c44ed1208afbc90ebd821d [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"bytes"
"sort"
"strconv"
"unicode"
)
// Compiled program.
// May not belong in this package, but convenient for now.
// A Prog is a compiled regular expression program.
type Prog struct {
Inst []Inst
Start int // index of start instruction
NumCap int // number of InstCapture insts in re
}
// An InstOp is an instruction opcode.
type InstOp uint8
const (
InstAlt InstOp = iota
InstAltMatch
InstCapture
InstEmptyWidth
InstMatch
InstFail
InstNop
InstRune
InstRune1
InstRuneAny
InstRuneAnyNotNL
)
var instOpNames = []string{
"InstAlt",
"InstAltMatch",
"InstCapture",
"InstEmptyWidth",
"InstMatch",
"InstFail",
"InstNop",
"InstRune",
"InstRune1",
"InstRuneAny",
"InstRuneAnyNotNL",
}
func (i InstOp) String() string {
if uint(i) >= uint(len(instOpNames)) {
return ""
}
return instOpNames[i]
}
// An EmptyOp specifies a kind or mixture of zero-width assertions.
type EmptyOp uint8
const (
EmptyBeginLine EmptyOp = 1 << iota
EmptyEndLine
EmptyBeginText
EmptyEndText
EmptyWordBoundary
EmptyNoWordBoundary
)
// EmptyOpContext returns the zero-width assertions
// satisfied at the position between the runes r1 and r2.
// Passing r1 == -1 indicates that the position is
// at the beginning of the text.
// Passing r2 == -1 indicates that the position is
// at the end of the text.
func EmptyOpContext(r1, r2 rune) EmptyOp {
var op EmptyOp = EmptyNoWordBoundary
var boundary byte
switch {
case IsWordChar(r1):
boundary = 1
case r1 == '\n':
op |= EmptyBeginLine
case r1 < 0:
op |= EmptyBeginText | EmptyBeginLine
}
switch {
case IsWordChar(r2):
boundary ^= 1
case r2 == '\n':
op |= EmptyEndLine
case r2 < 0:
op |= EmptyEndText | EmptyEndLine
}
if boundary != 0 { // IsWordChar(r1) != IsWordChar(r2)
op ^= (EmptyWordBoundary | EmptyNoWordBoundary)
}
return op
}
// IsWordChar reports whether r is consider a ``word character''
// during the evaluation of the \b and \B zero-width assertions.
// These assertions are ASCII-only: the word characters are [A-Za-z0-9_].
func IsWordChar(r rune) bool {
return 'A' <= r && r <= 'Z' || 'a' <= r && r <= 'z' || '0' <= r && r <= '9' || r == '_'
}
// An Inst is a single instruction in a regular expression program.
type Inst struct {
Op InstOp
Out uint32 // all but InstMatch, InstFail
Arg uint32 // InstAlt, InstAltMatch, InstCapture, InstEmptyWidth
Rune []rune
Next []uint32 // If input rune matches
}
func (p *Prog) String() string {
var b bytes.Buffer
dumpProg(&b, p)
return b.String()
}
// skipNop follows any no-op or capturing instructions
// and returns the resulting pc.
func (p *Prog) skipNop(pc uint32) (*Inst, uint32) {
i := &p.Inst[pc]
for i.Op == InstNop || i.Op == InstCapture {
pc = i.Out
i = &p.Inst[pc]
}
return i, pc
}
// op returns i.Op but merges all the Rune special cases into InstRune
func (i *Inst) op() InstOp {
op := i.Op
switch op {
case InstRune1, InstRuneAny, InstRuneAnyNotNL:
op = InstRune
}
return op
}
// Prefix returns a literal string that all matches for the
// regexp must start with. Complete is true if the prefix
// is the entire match.
func (p *Prog) Prefix() (prefix string, complete bool) {
i, _ := p.skipNop(uint32(p.Start))
// Avoid allocation of buffer if prefix is empty.
if i.op() != InstRune || len(i.Rune) != 1 {
return "", i.Op == InstMatch
}
// Have prefix; gather characters.
var buf bytes.Buffer
for i.op() == InstRune && len(i.Rune) == 1 && Flags(i.Arg)&FoldCase == 0 {
buf.WriteRune(i.Rune[0])
i, _ = p.skipNop(i.Out)
}
return buf.String(), i.Op == InstMatch
}
// OnePassPrefix returns a literal string that all matches for the
// regexp must start with. Complete is true if the prefix
// is the entire match. Pc is the index of the last rune instruction
// in the string. The OnePassPrefix skips over the mandatory
// EmptyBeginText
func (p *Prog) OnePassPrefix() (prefix string, complete bool, pc uint32) {
i := &p.Inst[p.Start]
if i.Op != InstEmptyWidth || (EmptyOp(i.Arg))&EmptyBeginText == 0 {
return "", i.Op == InstMatch, uint32(p.Start)
}
pc = i.Out
i = &p.Inst[pc]
for i.Op == InstNop {
pc = i.Out
i = &p.Inst[pc]
}
// Avoid allocation of buffer if prefix is empty.
if i.op() != InstRune || len(i.Rune) != 1 {
return "", i.Op == InstMatch, uint32(p.Start)
}
// Have prefix; gather characters.
var buf bytes.Buffer
for i.op() == InstRune && len(i.Rune) == 1 && Flags(i.Arg)&FoldCase == 0 {
buf.WriteRune(i.Rune[0])
pc, i = i.Out, &p.Inst[i.Out]
}
return buf.String(), i.Op == InstEmptyWidth && (EmptyOp(i.Arg))&EmptyBeginText != 0, pc
}
// StartCond returns the leading empty-width conditions that must
// be true in any match. It returns ^EmptyOp(0) if no matches are possible.
func (p *Prog) StartCond() EmptyOp {
var flag EmptyOp
pc := uint32(p.Start)
i := &p.Inst[pc]
Loop:
for {
switch i.Op {
case InstEmptyWidth:
flag |= EmptyOp(i.Arg)
case InstFail:
return ^EmptyOp(0)
case InstCapture, InstNop:
// skip
default:
break Loop
}
pc = i.Out
i = &p.Inst[pc]
}
return flag
}
const noMatch = -1
// OnePassNext selects the next actionable state of the prog, based on the input character.
// It should only be called when i.Op == InstAlt or InstAltMatch, and from the one-pass machine.
// One of the alternates may ultimately lead without input to end of line. If the instruction
// is InstAltMatch the path to the InstMatch is in i.Out, the normal node in i.Next.
func (i *Inst) OnePassNext(r rune) uint32 {
next := i.MatchRunePos(r)
if next != noMatch {
return i.Next[next]
}
if i.Op == InstAltMatch {
return i.Out
}
return 0
}
// MatchRune returns true if the instruction matches (and consumes) r.
// It should only be called when i.Op == InstRune.
func (i *Inst) MatchRune(r rune) bool {
return i.MatchRunePos(r) != noMatch
}
// MatchRunePos returns the index of the rune pair if the instruction matches.
// It should only be called when i.Op == InstRune.
func (i *Inst) MatchRunePos(r rune) int {
rune := i.Rune
// Special case: single-rune slice is from literal string, not char class.
if len(rune) == 1 {
r0 := rune[0]
if r == r0 {
return 0
}
if Flags(i.Arg)&FoldCase != 0 {
for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
if r == r1 {
return 0
}
}
}
return noMatch
}
// Peek at the first few pairs.
// Should handle ASCII well.
for j := 0; j < len(rune) && j <= 8; j += 2 {
if r < rune[j] {
return noMatch
}
if r <= rune[j+1] {
return j / 2
}
}
// Otherwise binary search.
lo := 0
hi := len(rune) / 2
for lo < hi {
m := lo + (hi-lo)/2
if c := rune[2*m]; c <= r {
if r <= rune[2*m+1] {
return m
}
lo = m + 1
} else {
hi = m
}
}
return noMatch
}
// As per re2's Prog::IsWordChar. Determines whether rune is an ASCII word char.
// Since we act on runes, it would be easy to support Unicode here.
func wordRune(r rune) bool {
return r == '_' ||
('A' <= r && r <= 'Z') ||
('a' <= r && r <= 'z') ||
('0' <= r && r <= '9')
}
// MatchEmptyWidth returns true if the instruction matches
// an empty string between the runes before and after.
// It should only be called when i.Op == InstEmptyWidth.
func (i *Inst) MatchEmptyWidth(before rune, after rune) bool {
switch EmptyOp(i.Arg) {
case EmptyBeginLine:
return before == '\n' || before == -1
case EmptyEndLine:
return after == '\n' || after == -1
case EmptyBeginText:
return before == -1
case EmptyEndText:
return after == -1
case EmptyWordBoundary:
return wordRune(before) != wordRune(after)
case EmptyNoWordBoundary:
return wordRune(before) == wordRune(after)
}
panic("unknown empty width arg")
}
func (i *Inst) String() string {
var b bytes.Buffer
dumpInst(&b, i)
return b.String()
}
func bw(b *bytes.Buffer, args ...string) {
for _, s := range args {
b.WriteString(s)
}
}
func dumpProg(b *bytes.Buffer, p *Prog) {
for j := range p.Inst {
i := &p.Inst[j]
pc := strconv.Itoa(j)
if len(pc) < 3 {
b.WriteString(" "[len(pc):])
}
if j == p.Start {
pc += "*"
}
bw(b, pc, "\t")
dumpInst(b, i)
bw(b, "\n")
}
}
func u32(i uint32) string {
return strconv.FormatUint(uint64(i), 10)
}
func dumpInst(b *bytes.Buffer, i *Inst) {
switch i.Op {
case InstAlt:
bw(b, "alt -> ", u32(i.Out), ", ", u32(i.Arg))
case InstAltMatch:
bw(b, "altmatch -> ", u32(i.Out), ", ", u32(i.Arg))
case InstCapture:
bw(b, "cap ", u32(i.Arg), " -> ", u32(i.Out))
case InstEmptyWidth:
bw(b, "empty ", u32(i.Arg), " -> ", u32(i.Out))
case InstMatch:
bw(b, "match")
case InstFail:
bw(b, "fail")
case InstNop:
bw(b, "nop -> ", u32(i.Out))
case InstRune:
if i.Rune == nil {
// shouldn't happen
bw(b, "rune <nil>")
}
bw(b, "rune ", strconv.QuoteToASCII(string(i.Rune)))
if Flags(i.Arg)&FoldCase != 0 {
bw(b, "/i")
}
bw(b, " -> ", u32(i.Out))
case InstRune1:
bw(b, "rune1 ", strconv.QuoteToASCII(string(i.Rune)), " -> ", u32(i.Out))
case InstRuneAny:
bw(b, "any -> ", u32(i.Out))
case InstRuneAnyNotNL:
bw(b, "anynotnl -> ", u32(i.Out))
}
}
// Sparse Array implementation is used as a queue.
type queue struct {
sparse []uint32
dense []uint32
size, nextIndex uint32
}
func (q *queue) empty() bool {
return q.nextIndex >= q.size
}
func (q *queue) next() (n uint32) {
n = q.dense[q.nextIndex]
q.nextIndex++
return
}
func (q *queue) clear() {
q.size = 0
q.nextIndex = 0
}
func (q *queue) reset() {
q.nextIndex = 0
}
func (q *queue) contains(u uint32) bool {
if u >= uint32(len(q.sparse)) {
return false
}
return q.sparse[u] < q.size && q.dense[q.sparse[u]] == u
}
func (q *queue) insert(u uint32) {
if !q.contains(u) {
q.insertNew(u)
}
}
func (q *queue) insertNew(u uint32) {
if u >= uint32(len(q.sparse)) {
return
}
q.sparse[u] = q.size
q.dense[q.size] = u
q.size++
}
func newQueue(size int) (q *queue) {
return &queue{
sparse: make([]uint32, size),
dense: make([]uint32, size),
}
}
// mergeRuneSets merges two non-intersecting runesets, and returns the merged result,
// and a NextIp array. The idea is that if a rune matches the OnePassRunes at index
// i, NextIp[i/2] is the target. If the input sets intersect, an empty runeset and a
// NextIp array with the single element mergeFailed is returned.
// The code assumes that both inputs contain ordered and non-intersecting rune pairs.
const mergeFailed = uint32(0xffffffff)
var (
noRune = []rune{}
noNext = []uint32{mergeFailed}
)
func mergeRuneSets(leftRunes, rightRunes *[]rune, leftPC, rightPC uint32) ([]rune, []uint32) {
leftLen := len(*leftRunes)
rightLen := len(*rightRunes)
if leftLen&0x1 != 0 || rightLen&0x1 != 0 {
panic("mergeRuneSets odd length []rune")
}
var (
lx, rx int
)
merged := make([]rune, 0)
next := make([]uint32, 0)
ok := true
defer func() {
if !ok {
merged = nil
next = nil
}
}()
ix := -1
extend := func(newLow *int, newArray *[]rune, pc uint32) bool {
if ix > 0 && (*newArray)[*newLow] <= merged[ix] {
return false
}
merged = append(merged, (*newArray)[*newLow], (*newArray)[*newLow+1])
*newLow += 2
ix += 2
next = append(next, pc)
return true
}
for lx < leftLen || rx < rightLen {
switch {
case rx >= rightLen:
ok = extend(&lx, leftRunes, leftPC)
case lx >= leftLen:
ok = extend(&rx, rightRunes, rightPC)
case (*rightRunes)[rx] < (*leftRunes)[lx]:
ok = extend(&rx, rightRunes, rightPC)
default:
ok = extend(&lx, leftRunes, leftPC)
}
if !ok {
return noRune, noNext
}
}
return merged, next
}
// cleanupOnePass drops working memory, and restores certain shortcut instructions.
func (prog *Prog) cleanupOnePass(pOriginal *Prog) {
for ix, instOriginal := range pOriginal.Inst {
switch instOriginal.Op {
case InstAlt, InstAltMatch, InstRune:
case InstCapture, InstEmptyWidth, InstNop, InstMatch, InstFail:
prog.Inst[ix].Next = nil
case InstRune1, InstRuneAny, InstRuneAnyNotNL:
prog.Inst[ix].Next = nil
prog.Inst[ix] = instOriginal
}
}
}
// onePassCopy creates a copy of the original Prog, as we'll be modifying it
func (prog *Prog) onePassCopy() *Prog {
p := &Prog{
Inst: append([]Inst{}[:], prog.Inst...),
Start: prog.Start,
NumCap: prog.NumCap,
}
for _, inst := range p.Inst {
inst.Next = make([]uint32, 0)
}
// rewrites one or more common Prog constructs that enable some otherwise
// non-onepass Progs to be onepass. A:BD (for example) means an InstAlt at
// ip A, that points to ips B & C.
// A:BC + B:DA => A:BC + B:CD
// A:BC + B:DC => A:DC + B:DC
for pc := range p.Inst {
switch p.Inst[pc].Op {
default:
continue
case InstAlt, InstAltMatch:
// A:Bx + B:Ay
p_A_Other := &p.Inst[pc].Out
p_A_Alt := &p.Inst[pc].Arg
// make sure a target is another Alt
instAlt := p.Inst[*p_A_Alt]
if !(instAlt.Op == InstAlt || instAlt.Op == InstAltMatch) {
p_A_Alt, p_A_Other = p_A_Other, p_A_Alt
instAlt = p.Inst[*p_A_Alt]
if !(instAlt.Op == InstAlt || instAlt.Op == InstAltMatch) {
continue
}
}
instOther := p.Inst[*p_A_Other]
// Analyzing both legs pointing to Alts is for another day
if instOther.Op == InstAlt || instOther.Op == InstAltMatch {
// too complicated
continue
}
// simple empty transition loop
// A:BC + B:DA => A:BC + B:DC
p_B_Alt := &p.Inst[*p_A_Alt].Out
p_B_Other := &p.Inst[*p_A_Alt].Arg
patch := false
if instAlt.Out == uint32(pc) {
patch = true
} else if instAlt.Arg == uint32(pc) {
patch = true
p_B_Alt, p_B_Other = p_B_Other, p_B_Alt
}
if patch {
*p_B_Alt = *p_A_Other
}
// empty transition to common target
// A:BC + B:DC => A:DC + B:DC
if *p_A_Other == *p_B_Alt {
*p_A_Alt = *p_B_Other
}
}
}
return p
}
// runeSlice exists to permit sorting the case-folded rune sets.
type runeSlice []rune
func (p runeSlice) Len() int { return len(p) }
func (p runeSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p runeSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p runeSlice) Sort() {
sort.Sort(p)
}
// makeOnePass creates a onepass Prog, if possible. It is possible if at any alt,
// the match engine can always tell which branch to take. The routine may modify
// p if it is turned into a onepass Prog. If it isn't possible for this to be a
// onepass Prog, the Prog syntax.NotOnePass is returned. makeOnePass is resursive
// to the size of the Prog
func (p *Prog) makeOnePass() *Prog {
var (
instQueue = newQueue(len(p.Inst))
visitQueue = newQueue(len(p.Inst))
build func(uint32, *queue)
check func(uint32, map[uint32]bool) bool
onePassRunes = make([][]rune, len(p.Inst))
)
build = func(pc uint32, q *queue) {
if q.contains(pc) {
return
}
inst := p.Inst[pc]
switch inst.Op {
case InstAlt, InstAltMatch:
q.insert(inst.Out)
build(inst.Out, q)
q.insert(inst.Arg)
case InstMatch, InstFail:
default:
q.insert(inst.Out)
}
}
// check that paths from Alt instructions are unambiguous, and rebuild the new
// program as a onepass program
check = func(pc uint32, m map[uint32]bool) (ok bool) {
ok = true
inst := &p.Inst[pc]
if visitQueue.contains(pc) {
return
}
visitQueue.insert(pc)
switch inst.Op {
case InstAlt, InstAltMatch:
ok = check(inst.Out, m) && check(inst.Arg, m)
// check no-input paths to InstMatch
matchOut := m[inst.Out]
matchArg := m[inst.Arg]
if matchOut && matchArg {
ok = false
break
}
// Match on empty goes in inst.Out
if matchArg {
inst.Out, inst.Arg = inst.Arg, inst.Out
matchOut, matchArg = matchArg, matchOut
}
if matchOut {
m[pc] = true
inst.Op = InstAltMatch
}
// build a dispatch operator from the two legs of the alt.
onePassRunes[pc], inst.Next = mergeRuneSets(
&onePassRunes[inst.Out], &onePassRunes[inst.Arg], inst.Out, inst.Arg)
if len(inst.Next) > 0 && inst.Next[0] == mergeFailed {
ok = false
break
}
case InstCapture, InstNop:
ok = check(inst.Out, m)
m[pc] = m[inst.Out]
// pass matching runes back through these no-ops.
onePassRunes[pc] = append([]rune{}[:], onePassRunes[inst.Out][:]...)
inst.Next = []uint32{}
for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
inst.Next = append(inst.Next, inst.Out)
}
case InstEmptyWidth:
ok = check(inst.Out, m)
m[pc] = m[inst.Out]
onePassRunes[pc] = append([]rune{}[:], onePassRunes[inst.Out][:]...)
inst.Next = []uint32{}
for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
inst.Next = append(inst.Next, inst.Out)
}
case InstMatch, InstFail:
m[pc] = inst.Op == InstMatch
break
case InstRune:
ok = check(inst.Out, m)
m[pc] = false
if len(inst.Next) > 0 {
break
}
if len(inst.Rune) == 0 {
onePassRunes[pc] = []rune{}[:]
inst.Next = []uint32{inst.Out}
break
}
runes := make([]rune, 0)
if len(inst.Rune) == 1 && Flags(inst.Arg)&FoldCase != 0 {
r0 := inst.Rune[0]
runes = append(runes, r0, r0)
for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
runes = append(runes, r1, r1)
}
sort.Sort(runeSlice(runes))
} else {
runes = append(runes, inst.Rune...)
}
onePassRunes[pc] = runes
inst.Next = []uint32{}
for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
inst.Next = append(inst.Next, inst.Out)
}
inst.Op = InstRune
case InstRune1:
ok = check(inst.Out, m)
m[pc] = false
if len(inst.Next) > 0 {
break
}
runes := []rune{}[:]
// expand case-folded runes
if Flags(inst.Arg)&FoldCase != 0 {
r0 := inst.Rune[0]
runes = append(runes, r0, r0)
for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
runes = append(runes, r1, r1)
}
sort.Sort(runeSlice(runes))
} else {
runes = append(runes, inst.Rune[0], inst.Rune[0])
}
onePassRunes[pc] = runes
inst.Next = []uint32{}
for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
inst.Next = append(inst.Next, inst.Out)
}
inst.Op = InstRune
case InstRuneAny:
ok = check(inst.Out, m)
m[pc] = false
if len(inst.Next) > 0 {
break
}
onePassRunes[pc] = append([]rune{}[:], anyRune[:]...)
inst.Next = []uint32{inst.Out}
case InstRuneAnyNotNL:
ok = check(inst.Out, m)
m[pc] = false
if len(inst.Next) > 0 {
break
}
onePassRunes[pc] = append([]rune{}[:], anyRuneNotNL[:]...)
inst.Next = []uint32{}
for i := len(onePassRunes[pc]) / 2; i >= 0; i-- {
inst.Next = append(inst.Next, inst.Out)
}
}
return
}
instQueue.clear()
instQueue.insert(uint32(p.Start))
m := make(map[uint32]bool, len(p.Inst))
for !instQueue.empty() {
pc := instQueue.next()
inst := p.Inst[pc]
visitQueue.clear()
if !check(uint32(pc), m) {
p = NotOnePass
break
}
switch inst.Op {
case InstAlt, InstAltMatch:
instQueue.insert(inst.Out)
instQueue.insert(inst.Arg)
case InstCapture, InstEmptyWidth, InstNop:
instQueue.insert(inst.Out)
case InstMatch:
case InstFail:
case InstRune, InstRune1, InstRuneAny, InstRuneAnyNotNL:
default:
}
}
if p != NotOnePass {
for i, _ := range p.Inst {
p.Inst[i].Rune = onePassRunes[i][:]
}
}
return p
}
// walk visits each Inst in the prog once, and applies the argument
// function(ip, next), in pre-order.
func (prog *Prog) walk(funcs ...func(ip, next uint32)) {
var walk1 func(uint32)
progQueue := newQueue(len(prog.Inst))
walk1 = func(ip uint32) {
if progQueue.contains(ip) {
return
}
progQueue.insert(ip)
inst := prog.Inst[ip]
switch inst.Op {
case InstAlt, InstAltMatch:
for _, f := range funcs {
f(ip, inst.Out)
f(ip, inst.Arg)
}
walk1(inst.Out)
walk1(inst.Arg)
default:
for _, f := range funcs {
f(ip, inst.Out)
}
walk1(inst.Out)
}
}
walk1(uint32(prog.Start))
}
// find returns the Insts that match the argument predicate function
func (prog *Prog) find(f func(*Prog, int) bool) (matches []uint32) {
matches = []uint32{}
for ip := range prog.Inst {
if f(prog, ip) {
matches = append(matches, uint32(ip))
}
}
return
}
var NotOnePass *Prog = nil
var debug = false
// CompileOnePass returns a new *Prog suitable for onePass execution if the original Prog
// can be recharacterized as a one-pass regexp program, or syntax.NotOnePass if the
// Prog cannot be converted. For a one pass prog, the fundamental condition that must
// be true is: at any InstAlt, there must be no ambiguity about what branch to take.
func (prog *Prog) CompileOnePass() (p *Prog) {
if prog.Start == 0 {
return NotOnePass
}
// onepass regexp is anchored
if prog.Inst[prog.Start].Op != InstEmptyWidth ||
EmptyOp(prog.Inst[prog.Start].Arg)&EmptyBeginText != EmptyBeginText {
return NotOnePass
}
// every instruction leading to InstMatch must be EmptyEndText
for _, inst := range prog.Inst {
opOut := prog.Inst[inst.Out].Op
switch inst.Op {
default:
if opOut == InstMatch {
return NotOnePass
}
case InstAlt, InstAltMatch:
if opOut == InstMatch || prog.Inst[inst.Arg].Op == InstMatch {
return NotOnePass
}
case InstEmptyWidth:
if opOut == InstMatch {
if EmptyOp(inst.Arg)&EmptyEndText == EmptyEndText {
continue
}
return NotOnePass
}
}
}
// Creates a slightly optimized copy of the original Prog
// that cleans up some Prog idioms that block valid onepass programs
p = prog.onePassCopy()
// checkAmbiguity on InstAlts, build onepass Prog if possible
p = p.makeOnePass()
if p != NotOnePass {
p.cleanupOnePass(prog)
}
return p
}