| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package suffixarray implements substring search in logarithmic time using |
| // an in-memory suffix array. |
| // |
| // Example use: |
| // |
| // // create index for some data |
| // index := suffixarray.New(data) |
| // |
| // // lookup byte slice s |
| // offsets1 := index.Lookup(s, -1) // the list of all indices where s occurs in data |
| // offsets2 := index.Lookup(s, 3) // the list of at most 3 indices where s occurs in data |
| // |
| package suffixarray |
| |
| import ( |
| "bytes" |
| "encoding/binary" |
| "errors" |
| "io" |
| "math" |
| "regexp" |
| "sort" |
| ) |
| |
| // Can change for testing |
| var maxData32 int = realMaxData32 |
| |
| const realMaxData32 = math.MaxInt32 |
| |
| // Index implements a suffix array for fast substring search. |
| type Index struct { |
| data []byte |
| sa ints // suffix array for data; sa.len() == len(data) |
| } |
| |
| // An ints is either an []int32 or an []int64. |
| // That is, one of them is empty, and one is the real data. |
| // The int64 form is used when len(data) > maxData32 |
| type ints struct { |
| int32 []int32 |
| int64 []int64 |
| } |
| |
| func (a *ints) len() int { |
| return len(a.int32) + len(a.int64) |
| } |
| |
| func (a *ints) get(i int) int64 { |
| if a.int32 != nil { |
| return int64(a.int32[i]) |
| } |
| return a.int64[i] |
| } |
| |
| func (a *ints) set(i int, v int64) { |
| if a.int32 != nil { |
| a.int32[i] = int32(v) |
| } else { |
| a.int64[i] = v |
| } |
| } |
| |
| func (a *ints) slice(i, j int) ints { |
| if a.int32 != nil { |
| return ints{a.int32[i:j], nil} |
| } |
| return ints{nil, a.int64[i:j]} |
| } |
| |
| // New creates a new Index for data. |
| // Index creation time is O(N) for N = len(data). |
| func New(data []byte) *Index { |
| ix := &Index{data: data} |
| if len(data) <= maxData32 { |
| ix.sa.int32 = make([]int32, len(data)) |
| text_32(data, ix.sa.int32) |
| } else { |
| ix.sa.int64 = make([]int64, len(data)) |
| text_64(data, ix.sa.int64) |
| } |
| return ix |
| } |
| |
| // writeInt writes an int x to w using buf to buffer the write. |
| func writeInt(w io.Writer, buf []byte, x int) error { |
| binary.PutVarint(buf, int64(x)) |
| _, err := w.Write(buf[0:binary.MaxVarintLen64]) |
| return err |
| } |
| |
| // readInt reads an int x from r using buf to buffer the read and returns x. |
| func readInt(r io.Reader, buf []byte) (int64, error) { |
| _, err := io.ReadFull(r, buf[0:binary.MaxVarintLen64]) // ok to continue with error |
| x, _ := binary.Varint(buf) |
| return x, err |
| } |
| |
| // writeSlice writes data[:n] to w and returns n. |
| // It uses buf to buffer the write. |
| func writeSlice(w io.Writer, buf []byte, data ints) (n int, err error) { |
| // encode as many elements as fit into buf |
| p := binary.MaxVarintLen64 |
| m := data.len() |
| for ; n < m && p+binary.MaxVarintLen64 <= len(buf); n++ { |
| p += binary.PutUvarint(buf[p:], uint64(data.get(n))) |
| } |
| |
| // update buffer size |
| binary.PutVarint(buf, int64(p)) |
| |
| // write buffer |
| _, err = w.Write(buf[0:p]) |
| return |
| } |
| |
| var errTooBig = errors.New("suffixarray: data too large") |
| |
| // readSlice reads data[:n] from r and returns n. |
| // It uses buf to buffer the read. |
| func readSlice(r io.Reader, buf []byte, data ints) (n int, err error) { |
| // read buffer size |
| var size64 int64 |
| size64, err = readInt(r, buf) |
| if err != nil { |
| return |
| } |
| if int64(int(size64)) != size64 || int(size64) < 0 { |
| // We never write chunks this big anyway. |
| return 0, errTooBig |
| } |
| size := int(size64) |
| |
| // read buffer w/o the size |
| if _, err = io.ReadFull(r, buf[binary.MaxVarintLen64:size]); err != nil { |
| return |
| } |
| |
| // decode as many elements as present in buf |
| for p := binary.MaxVarintLen64; p < size; n++ { |
| x, w := binary.Uvarint(buf[p:]) |
| data.set(n, int64(x)) |
| p += w |
| } |
| |
| return |
| } |
| |
| const bufSize = 16 << 10 // reasonable for BenchmarkSaveRestore |
| |
| // Read reads the index from r into x; x must not be nil. |
| func (x *Index) Read(r io.Reader) error { |
| // buffer for all reads |
| buf := make([]byte, bufSize) |
| |
| // read length |
| n64, err := readInt(r, buf) |
| if err != nil { |
| return err |
| } |
| if int64(int(n64)) != n64 || int(n64) < 0 { |
| return errTooBig |
| } |
| n := int(n64) |
| |
| // allocate space |
| if 2*n < cap(x.data) || cap(x.data) < n || x.sa.int32 != nil && n > maxData32 || x.sa.int64 != nil && n <= maxData32 { |
| // new data is significantly smaller or larger than |
| // existing buffers - allocate new ones |
| x.data = make([]byte, n) |
| x.sa.int32 = nil |
| x.sa.int64 = nil |
| if n <= maxData32 { |
| x.sa.int32 = make([]int32, n) |
| } else { |
| x.sa.int64 = make([]int64, n) |
| } |
| } else { |
| // re-use existing buffers |
| x.data = x.data[0:n] |
| x.sa = x.sa.slice(0, n) |
| } |
| |
| // read data |
| if _, err := io.ReadFull(r, x.data); err != nil { |
| return err |
| } |
| |
| // read index |
| sa := x.sa |
| for sa.len() > 0 { |
| n, err := readSlice(r, buf, sa) |
| if err != nil { |
| return err |
| } |
| sa = sa.slice(n, sa.len()) |
| } |
| return nil |
| } |
| |
| // Write writes the index x to w. |
| func (x *Index) Write(w io.Writer) error { |
| // buffer for all writes |
| buf := make([]byte, bufSize) |
| |
| // write length |
| if err := writeInt(w, buf, len(x.data)); err != nil { |
| return err |
| } |
| |
| // write data |
| if _, err := w.Write(x.data); err != nil { |
| return err |
| } |
| |
| // write index |
| sa := x.sa |
| for sa.len() > 0 { |
| n, err := writeSlice(w, buf, sa) |
| if err != nil { |
| return err |
| } |
| sa = sa.slice(n, sa.len()) |
| } |
| return nil |
| } |
| |
| // Bytes returns the data over which the index was created. |
| // It must not be modified. |
| // |
| func (x *Index) Bytes() []byte { |
| return x.data |
| } |
| |
| func (x *Index) at(i int) []byte { |
| return x.data[x.sa.get(i):] |
| } |
| |
| // lookupAll returns a slice into the matching region of the index. |
| // The runtime is O(log(N)*len(s)). |
| func (x *Index) lookupAll(s []byte) ints { |
| // find matching suffix index range [i:j] |
| // find the first index where s would be the prefix |
| i := sort.Search(x.sa.len(), func(i int) bool { return bytes.Compare(x.at(i), s) >= 0 }) |
| // starting at i, find the first index at which s is not a prefix |
| j := i + sort.Search(x.sa.len()-i, func(j int) bool { return !bytes.HasPrefix(x.at(j+i), s) }) |
| return x.sa.slice(i, j) |
| } |
| |
| // Lookup returns an unsorted list of at most n indices where the byte string s |
| // occurs in the indexed data. If n < 0, all occurrences are returned. |
| // The result is nil if s is empty, s is not found, or n == 0. |
| // Lookup time is O(log(N)*len(s) + len(result)) where N is the |
| // size of the indexed data. |
| // |
| func (x *Index) Lookup(s []byte, n int) (result []int) { |
| if len(s) > 0 && n != 0 { |
| matches := x.lookupAll(s) |
| count := matches.len() |
| if n < 0 || count < n { |
| n = count |
| } |
| // 0 <= n <= count |
| if n > 0 { |
| result = make([]int, n) |
| if matches.int32 != nil { |
| for i := range result { |
| result[i] = int(matches.int32[i]) |
| } |
| } else { |
| for i := range result { |
| result[i] = int(matches.int64[i]) |
| } |
| } |
| } |
| } |
| return |
| } |
| |
| // FindAllIndex returns a sorted list of non-overlapping matches of the |
| // regular expression r, where a match is a pair of indices specifying |
| // the matched slice of x.Bytes(). If n < 0, all matches are returned |
| // in successive order. Otherwise, at most n matches are returned and |
| // they may not be successive. The result is nil if there are no matches, |
| // or if n == 0. |
| // |
| func (x *Index) FindAllIndex(r *regexp.Regexp, n int) (result [][]int) { |
| // a non-empty literal prefix is used to determine possible |
| // match start indices with Lookup |
| prefix, complete := r.LiteralPrefix() |
| lit := []byte(prefix) |
| |
| // worst-case scenario: no literal prefix |
| if prefix == "" { |
| return r.FindAllIndex(x.data, n) |
| } |
| |
| // if regexp is a literal just use Lookup and convert its |
| // result into match pairs |
| if complete { |
| // Lookup returns indices that may belong to overlapping matches. |
| // After eliminating them, we may end up with fewer than n matches. |
| // If we don't have enough at the end, redo the search with an |
| // increased value n1, but only if Lookup returned all the requested |
| // indices in the first place (if it returned fewer than that then |
| // there cannot be more). |
| for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { |
| indices := x.Lookup(lit, n1) |
| if len(indices) == 0 { |
| return |
| } |
| sort.Ints(indices) |
| pairs := make([]int, 2*len(indices)) |
| result = make([][]int, len(indices)) |
| count := 0 |
| prev := 0 |
| for _, i := range indices { |
| if count == n { |
| break |
| } |
| // ignore indices leading to overlapping matches |
| if prev <= i { |
| j := 2 * count |
| pairs[j+0] = i |
| pairs[j+1] = i + len(lit) |
| result[count] = pairs[j : j+2] |
| count++ |
| prev = i + len(lit) |
| } |
| } |
| result = result[0:count] |
| if len(result) >= n || len(indices) != n1 { |
| // found all matches or there's no chance to find more |
| // (n and n1 can be negative) |
| break |
| } |
| } |
| if len(result) == 0 { |
| result = nil |
| } |
| return |
| } |
| |
| // regexp has a non-empty literal prefix; Lookup(lit) computes |
| // the indices of possible complete matches; use these as starting |
| // points for anchored searches |
| // (regexp "^" matches beginning of input, not beginning of line) |
| r = regexp.MustCompile("^" + r.String()) // compiles because r compiled |
| |
| // same comment about Lookup applies here as in the loop above |
| for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { |
| indices := x.Lookup(lit, n1) |
| if len(indices) == 0 { |
| return |
| } |
| sort.Ints(indices) |
| result = result[0:0] |
| prev := 0 |
| for _, i := range indices { |
| if len(result) == n { |
| break |
| } |
| m := r.FindIndex(x.data[i:]) // anchored search - will not run off |
| // ignore indices leading to overlapping matches |
| if m != nil && prev <= i { |
| m[0] = i // correct m |
| m[1] += i |
| result = append(result, m) |
| prev = m[1] |
| } |
| } |
| if len(result) >= n || len(indices) != n1 { |
| // found all matches or there's no chance to find more |
| // (n and n1 can be negative) |
| break |
| } |
| } |
| if len(result) == 0 { |
| result = nil |
| } |
| return |
| } |