| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Code generated by go generate; DO NOT EDIT. |
| |
| package suffixarray |
| |
| func text_64(text []byte, sa []int64) { |
| if int(int64(len(text))) != len(text) || len(text) != len(sa) { |
| panic("suffixarray: misuse of text_64") |
| } |
| sais_8_64(text, 256, sa, make([]int64, 2*256)) |
| } |
| |
| func sais_8_64(text []byte, textMax int, sa, tmp []int64) { |
| if len(sa) != len(text) || len(tmp) < int(textMax) { |
| panic("suffixarray: misuse of sais_8_64") |
| } |
| |
| // Trivial base cases. Sorting 0 or 1 things is easy. |
| if len(text) == 0 { |
| return |
| } |
| if len(text) == 1 { |
| sa[0] = 0 |
| return |
| } |
| |
| // Establish slices indexed by text character |
| // holding character frequency and bucket-sort offsets. |
| // If there's only enough tmp for one slice, |
| // we make it the bucket offsets and recompute |
| // the character frequency each time we need it. |
| var freq, bucket []int64 |
| if len(tmp) >= 2*textMax { |
| freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] |
| freq[0] = -1 // mark as uninitialized |
| } else { |
| freq, bucket = nil, tmp[:textMax] |
| } |
| |
| // The SAIS algorithm. |
| // Each of these calls makes one scan through sa. |
| // See the individual functions for documentation |
| // about each's role in the algorithm. |
| numLMS := placeLMS_8_64(text, sa, freq, bucket) |
| if numLMS <= 1 { |
| // 0 or 1 items are already sorted. Do nothing. |
| } else { |
| induceSubL_8_64(text, sa, freq, bucket) |
| induceSubS_8_64(text, sa, freq, bucket) |
| length_8_64(text, sa, numLMS) |
| maxID := assignID_8_64(text, sa, numLMS) |
| if maxID < numLMS { |
| map_64(sa, numLMS) |
| recurse_64(sa, tmp, numLMS, maxID) |
| unmap_8_64(text, sa, numLMS) |
| } else { |
| // If maxID == numLMS, then each LMS-substring |
| // is unique, so the relative ordering of two LMS-suffixes |
| // is determined by just the leading LMS-substring. |
| // That is, the LMS-suffix sort order matches the |
| // (simpler) LMS-substring sort order. |
| // Copy the original LMS-substring order into the |
| // suffix array destination. |
| copy(sa, sa[len(sa)-numLMS:]) |
| } |
| expand_8_64(text, freq, bucket, sa, numLMS) |
| } |
| induceL_8_64(text, sa, freq, bucket) |
| induceS_8_64(text, sa, freq, bucket) |
| |
| // Mark for caller that we overwrote tmp. |
| tmp[0] = -1 |
| } |
| |
| func sais_32(text []int32, textMax int, sa, tmp []int32) { |
| if len(sa) != len(text) || len(tmp) < int(textMax) { |
| panic("suffixarray: misuse of sais_32") |
| } |
| |
| // Trivial base cases. Sorting 0 or 1 things is easy. |
| if len(text) == 0 { |
| return |
| } |
| if len(text) == 1 { |
| sa[0] = 0 |
| return |
| } |
| |
| // Establish slices indexed by text character |
| // holding character frequency and bucket-sort offsets. |
| // If there's only enough tmp for one slice, |
| // we make it the bucket offsets and recompute |
| // the character frequency each time we need it. |
| var freq, bucket []int32 |
| if len(tmp) >= 2*textMax { |
| freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] |
| freq[0] = -1 // mark as uninitialized |
| } else { |
| freq, bucket = nil, tmp[:textMax] |
| } |
| |
| // The SAIS algorithm. |
| // Each of these calls makes one scan through sa. |
| // See the individual functions for documentation |
| // about each's role in the algorithm. |
| numLMS := placeLMS_32(text, sa, freq, bucket) |
| if numLMS <= 1 { |
| // 0 or 1 items are already sorted. Do nothing. |
| } else { |
| induceSubL_32(text, sa, freq, bucket) |
| induceSubS_32(text, sa, freq, bucket) |
| length_32(text, sa, numLMS) |
| maxID := assignID_32(text, sa, numLMS) |
| if maxID < numLMS { |
| map_32(sa, numLMS) |
| recurse_32(sa, tmp, numLMS, maxID) |
| unmap_32(text, sa, numLMS) |
| } else { |
| // If maxID == numLMS, then each LMS-substring |
| // is unique, so the relative ordering of two LMS-suffixes |
| // is determined by just the leading LMS-substring. |
| // That is, the LMS-suffix sort order matches the |
| // (simpler) LMS-substring sort order. |
| // Copy the original LMS-substring order into the |
| // suffix array destination. |
| copy(sa, sa[len(sa)-numLMS:]) |
| } |
| expand_32(text, freq, bucket, sa, numLMS) |
| } |
| induceL_32(text, sa, freq, bucket) |
| induceS_32(text, sa, freq, bucket) |
| |
| // Mark for caller that we overwrote tmp. |
| tmp[0] = -1 |
| } |
| |
| func sais_64(text []int64, textMax int, sa, tmp []int64) { |
| if len(sa) != len(text) || len(tmp) < int(textMax) { |
| panic("suffixarray: misuse of sais_64") |
| } |
| |
| // Trivial base cases. Sorting 0 or 1 things is easy. |
| if len(text) == 0 { |
| return |
| } |
| if len(text) == 1 { |
| sa[0] = 0 |
| return |
| } |
| |
| // Establish slices indexed by text character |
| // holding character frequency and bucket-sort offsets. |
| // If there's only enough tmp for one slice, |
| // we make it the bucket offsets and recompute |
| // the character frequency each time we need it. |
| var freq, bucket []int64 |
| if len(tmp) >= 2*textMax { |
| freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] |
| freq[0] = -1 // mark as uninitialized |
| } else { |
| freq, bucket = nil, tmp[:textMax] |
| } |
| |
| // The SAIS algorithm. |
| // Each of these calls makes one scan through sa. |
| // See the individual functions for documentation |
| // about each's role in the algorithm. |
| numLMS := placeLMS_64(text, sa, freq, bucket) |
| if numLMS <= 1 { |
| // 0 or 1 items are already sorted. Do nothing. |
| } else { |
| induceSubL_64(text, sa, freq, bucket) |
| induceSubS_64(text, sa, freq, bucket) |
| length_64(text, sa, numLMS) |
| maxID := assignID_64(text, sa, numLMS) |
| if maxID < numLMS { |
| map_64(sa, numLMS) |
| recurse_64(sa, tmp, numLMS, maxID) |
| unmap_64(text, sa, numLMS) |
| } else { |
| // If maxID == numLMS, then each LMS-substring |
| // is unique, so the relative ordering of two LMS-suffixes |
| // is determined by just the leading LMS-substring. |
| // That is, the LMS-suffix sort order matches the |
| // (simpler) LMS-substring sort order. |
| // Copy the original LMS-substring order into the |
| // suffix array destination. |
| copy(sa, sa[len(sa)-numLMS:]) |
| } |
| expand_64(text, freq, bucket, sa, numLMS) |
| } |
| induceL_64(text, sa, freq, bucket) |
| induceS_64(text, sa, freq, bucket) |
| |
| // Mark for caller that we overwrote tmp. |
| tmp[0] = -1 |
| } |
| |
| func freq_8_64(text []byte, freq, bucket []int64) []int64 { |
| if freq != nil && freq[0] >= 0 { |
| return freq // already computed |
| } |
| if freq == nil { |
| freq = bucket |
| } |
| |
| freq = freq[:256] // eliminate bounds check for freq[c] below |
| for i := range freq { |
| freq[i] = 0 |
| } |
| for _, c := range text { |
| freq[c]++ |
| } |
| return freq |
| } |
| |
| func freq_32(text []int32, freq, bucket []int32) []int32 { |
| if freq != nil && freq[0] >= 0 { |
| return freq // already computed |
| } |
| if freq == nil { |
| freq = bucket |
| } |
| |
| for i := range freq { |
| freq[i] = 0 |
| } |
| for _, c := range text { |
| freq[c]++ |
| } |
| return freq |
| } |
| |
| func freq_64(text []int64, freq, bucket []int64) []int64 { |
| if freq != nil && freq[0] >= 0 { |
| return freq // already computed |
| } |
| if freq == nil { |
| freq = bucket |
| } |
| |
| for i := range freq { |
| freq[i] = 0 |
| } |
| for _, c := range text { |
| freq[c]++ |
| } |
| return freq |
| } |
| |
| func bucketMin_8_64(text []byte, freq, bucket []int64) { |
| freq = freq_8_64(text, freq, bucket) |
| freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below |
| bucket = bucket[:256] // eliminate bounds check for bucket[i] below |
| total := int64(0) |
| for i, n := range freq { |
| bucket[i] = total |
| total += n |
| } |
| } |
| |
| func bucketMin_32(text []int32, freq, bucket []int32) { |
| freq = freq_32(text, freq, bucket) |
| total := int32(0) |
| for i, n := range freq { |
| bucket[i] = total |
| total += n |
| } |
| } |
| |
| func bucketMin_64(text []int64, freq, bucket []int64) { |
| freq = freq_64(text, freq, bucket) |
| total := int64(0) |
| for i, n := range freq { |
| bucket[i] = total |
| total += n |
| } |
| } |
| |
| func bucketMax_8_64(text []byte, freq, bucket []int64) { |
| freq = freq_8_64(text, freq, bucket) |
| freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below |
| bucket = bucket[:256] // eliminate bounds check for bucket[i] below |
| total := int64(0) |
| for i, n := range freq { |
| total += n |
| bucket[i] = total |
| } |
| } |
| |
| func bucketMax_32(text []int32, freq, bucket []int32) { |
| freq = freq_32(text, freq, bucket) |
| total := int32(0) |
| for i, n := range freq { |
| total += n |
| bucket[i] = total |
| } |
| } |
| |
| func bucketMax_64(text []int64, freq, bucket []int64) { |
| freq = freq_64(text, freq, bucket) |
| total := int64(0) |
| for i, n := range freq { |
| total += n |
| bucket[i] = total |
| } |
| } |
| |
| func placeLMS_8_64(text []byte, sa, freq, bucket []int64) int { |
| bucketMax_8_64(text, freq, bucket) |
| |
| numLMS := 0 |
| lastB := int64(-1) |
| bucket = bucket[:256] // eliminate bounds check for bucket[c1] below |
| |
| // The next stanza of code (until the blank line) loop backward |
| // over text, stopping to execute a code body at each position i |
| // such that text[i] is an L-character and text[i+1] is an S-character. |
| // That is, i+1 is the position of the start of an LMS-substring. |
| // These could be hoisted out into a function with a callback, |
| // but at a significant speed cost. Instead, we just write these |
| // seven lines a few times in this source file. The copies below |
| // refer back to the pattern established by this original as the |
| // "LMS-substring iterator". |
| // |
| // In every scan through the text, c0, c1 are successive characters of text. |
| // In this backward scan, c0 == text[i] and c1 == text[i+1]. |
| // By scanning backward, we can keep track of whether the current |
| // position is type-S or type-L according to the usual definition: |
| // |
| // - position len(text) is type S with text[len(text)] == -1 (the sentinel) |
| // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. |
| // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. |
| // |
| // The backward scan lets us maintain the current type, |
| // update it when we see c0 != c1, and otherwise leave it alone. |
| // We want to identify all S positions with a preceding L. |
| // Position len(text) is one such position by definition, but we have |
| // nowhere to write it down, so we eliminate it by untruthfully |
| // setting isTypeS = false at the start of the loop. |
| c0, c1, isTypeS := byte(0), byte(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Bucket the index i+1 for the start of an LMS-substring. |
| b := bucket[c1] - 1 |
| bucket[c1] = b |
| sa[b] = int64(i + 1) |
| lastB = b |
| numLMS++ |
| } |
| } |
| |
| // We recorded the LMS-substring starts but really want the ends. |
| // Luckily, with two differences, the start indexes and the end indexes are the same. |
| // The first difference is that the rightmost LMS-substring's end index is len(text), |
| // so the caller must pretend that sa[-1] == len(text), as noted above. |
| // The second difference is that the first leftmost LMS-substring start index |
| // does not end an earlier LMS-substring, so as an optimization we can omit |
| // that leftmost LMS-substring start index (the last one we wrote). |
| // |
| // Exception: if numLMS <= 1, the caller is not going to bother with |
| // the recursion at all and will treat the result as containing LMS-substring starts. |
| // In that case, we don't remove the final entry. |
| if numLMS > 1 { |
| sa[lastB] = 0 |
| } |
| return numLMS |
| } |
| |
| func placeLMS_32(text []int32, sa, freq, bucket []int32) int { |
| bucketMax_32(text, freq, bucket) |
| |
| numLMS := 0 |
| lastB := int32(-1) |
| |
| // The next stanza of code (until the blank line) loop backward |
| // over text, stopping to execute a code body at each position i |
| // such that text[i] is an L-character and text[i+1] is an S-character. |
| // That is, i+1 is the position of the start of an LMS-substring. |
| // These could be hoisted out into a function with a callback, |
| // but at a significant speed cost. Instead, we just write these |
| // seven lines a few times in this source file. The copies below |
| // refer back to the pattern established by this original as the |
| // "LMS-substring iterator". |
| // |
| // In every scan through the text, c0, c1 are successive characters of text. |
| // In this backward scan, c0 == text[i] and c1 == text[i+1]. |
| // By scanning backward, we can keep track of whether the current |
| // position is type-S or type-L according to the usual definition: |
| // |
| // - position len(text) is type S with text[len(text)] == -1 (the sentinel) |
| // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. |
| // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. |
| // |
| // The backward scan lets us maintain the current type, |
| // update it when we see c0 != c1, and otherwise leave it alone. |
| // We want to identify all S positions with a preceding L. |
| // Position len(text) is one such position by definition, but we have |
| // nowhere to write it down, so we eliminate it by untruthfully |
| // setting isTypeS = false at the start of the loop. |
| c0, c1, isTypeS := int32(0), int32(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Bucket the index i+1 for the start of an LMS-substring. |
| b := bucket[c1] - 1 |
| bucket[c1] = b |
| sa[b] = int32(i + 1) |
| lastB = b |
| numLMS++ |
| } |
| } |
| |
| // We recorded the LMS-substring starts but really want the ends. |
| // Luckily, with two differences, the start indexes and the end indexes are the same. |
| // The first difference is that the rightmost LMS-substring's end index is len(text), |
| // so the caller must pretend that sa[-1] == len(text), as noted above. |
| // The second difference is that the first leftmost LMS-substring start index |
| // does not end an earlier LMS-substring, so as an optimization we can omit |
| // that leftmost LMS-substring start index (the last one we wrote). |
| // |
| // Exception: if numLMS <= 1, the caller is not going to bother with |
| // the recursion at all and will treat the result as containing LMS-substring starts. |
| // In that case, we don't remove the final entry. |
| if numLMS > 1 { |
| sa[lastB] = 0 |
| } |
| return numLMS |
| } |
| |
| func placeLMS_64(text []int64, sa, freq, bucket []int64) int { |
| bucketMax_64(text, freq, bucket) |
| |
| numLMS := 0 |
| lastB := int64(-1) |
| |
| // The next stanza of code (until the blank line) loop backward |
| // over text, stopping to execute a code body at each position i |
| // such that text[i] is an L-character and text[i+1] is an S-character. |
| // That is, i+1 is the position of the start of an LMS-substring. |
| // These could be hoisted out into a function with a callback, |
| // but at a significant speed cost. Instead, we just write these |
| // seven lines a few times in this source file. The copies below |
| // refer back to the pattern established by this original as the |
| // "LMS-substring iterator". |
| // |
| // In every scan through the text, c0, c1 are successive characters of text. |
| // In this backward scan, c0 == text[i] and c1 == text[i+1]. |
| // By scanning backward, we can keep track of whether the current |
| // position is type-S or type-L according to the usual definition: |
| // |
| // - position len(text) is type S with text[len(text)] == -1 (the sentinel) |
| // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. |
| // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. |
| // |
| // The backward scan lets us maintain the current type, |
| // update it when we see c0 != c1, and otherwise leave it alone. |
| // We want to identify all S positions with a preceding L. |
| // Position len(text) is one such position by definition, but we have |
| // nowhere to write it down, so we eliminate it by untruthfully |
| // setting isTypeS = false at the start of the loop. |
| c0, c1, isTypeS := int64(0), int64(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Bucket the index i+1 for the start of an LMS-substring. |
| b := bucket[c1] - 1 |
| bucket[c1] = b |
| sa[b] = int64(i + 1) |
| lastB = b |
| numLMS++ |
| } |
| } |
| |
| // We recorded the LMS-substring starts but really want the ends. |
| // Luckily, with two differences, the start indexes and the end indexes are the same. |
| // The first difference is that the rightmost LMS-substring's end index is len(text), |
| // so the caller must pretend that sa[-1] == len(text), as noted above. |
| // The second difference is that the first leftmost LMS-substring start index |
| // does not end an earlier LMS-substring, so as an optimization we can omit |
| // that leftmost LMS-substring start index (the last one we wrote). |
| // |
| // Exception: if numLMS <= 1, the caller is not going to bother with |
| // the recursion at all and will treat the result as containing LMS-substring starts. |
| // In that case, we don't remove the final entry. |
| if numLMS > 1 { |
| sa[lastB] = 0 |
| } |
| return numLMS |
| } |
| |
| func induceSubL_8_64(text []byte, sa, freq, bucket []int64) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_8_64(text, freq, bucket) |
| bucket = bucket[:256] // eliminate bounds check for bucket[cB] below |
| |
| // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. |
| // Because j-1 is type L, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type L from type S. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type S. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type S, at which point it must stop. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing |
| // only the indexes of the leftmost L-type indexes for each LMS-substring. |
| // |
| // The suffix array sa therefore serves simultaneously as input, output, |
| // and a miraculously well-tailored work queue. |
| |
| // placeLMS_8_64 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index: |
| // we're processing suffixes in sorted order |
| // and accessing buckets indexed by the |
| // byte before the sorted order, which still |
| // has very good locality. |
| // Invariant: b is cached, possibly dirty copy of bucket[cB]. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int64(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| if j < 0 { |
| // Leave discovered type-S index for caller. |
| sa[i] = int64(-j) |
| continue |
| } |
| sa[i] = 0 |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int64(k) |
| b++ |
| } |
| } |
| |
| func induceSubL_32(text []int32, sa, freq, bucket []int32) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_32(text, freq, bucket) |
| |
| // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. |
| // Because j-1 is type L, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type L from type S. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type S. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type S, at which point it must stop. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing |
| // only the indexes of the leftmost L-type indexes for each LMS-substring. |
| // |
| // The suffix array sa therefore serves simultaneously as input, output, |
| // and a miraculously well-tailored work queue. |
| |
| // placeLMS_32 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index: |
| // we're processing suffixes in sorted order |
| // and accessing buckets indexed by the |
| // int32 before the sorted order, which still |
| // has very good locality. |
| // Invariant: b is cached, possibly dirty copy of bucket[cB]. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int32(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| if j < 0 { |
| // Leave discovered type-S index for caller. |
| sa[i] = int32(-j) |
| continue |
| } |
| sa[i] = 0 |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int32(k) |
| b++ |
| } |
| } |
| |
| func induceSubL_64(text []int64, sa, freq, bucket []int64) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_64(text, freq, bucket) |
| |
| // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. |
| // Because j-1 is type L, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type L from type S. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type S. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type S, at which point it must stop. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing |
| // only the indexes of the leftmost L-type indexes for each LMS-substring. |
| // |
| // The suffix array sa therefore serves simultaneously as input, output, |
| // and a miraculously well-tailored work queue. |
| |
| // placeLMS_64 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index: |
| // we're processing suffixes in sorted order |
| // and accessing buckets indexed by the |
| // int64 before the sorted order, which still |
| // has very good locality. |
| // Invariant: b is cached, possibly dirty copy of bucket[cB]. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int64(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| if j < 0 { |
| // Leave discovered type-S index for caller. |
| sa[i] = int64(-j) |
| continue |
| } |
| sa[i] = 0 |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int64(k) |
| b++ |
| } |
| } |
| |
| func induceSubS_8_64(text []byte, sa, freq, bucket []int64) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_8_64(text, freq, bucket) |
| bucket = bucket[:256] // eliminate bounds check for bucket[cB] below |
| |
| // Analogous to induceSubL_8_64 above, |
| // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. |
| // Because j-1 is type S, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type S from type L. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type L. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type L, at which point it must stop. |
| // That index (preceded by one of type L) is an LMS-substring start. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, |
| // so that the loop finishes with the top of sa containing exactly |
| // the LMS-substring start indexes, sorted by LMS-substring. |
| |
| // Cache recently used bucket index: |
| cB := byte(0) |
| b := bucket[cB] |
| |
| top := len(sa) |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| sa[i] = 0 |
| if j < 0 { |
| // Leave discovered LMS-substring start index for caller. |
| top-- |
| sa[top] = int64(-j) |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is S-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c1 := text[k] |
| c0 := text[k-1] |
| if c0 > c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int64(k) |
| } |
| } |
| |
| func induceSubS_32(text []int32, sa, freq, bucket []int32) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_32(text, freq, bucket) |
| |
| // Analogous to induceSubL_32 above, |
| // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. |
| // Because j-1 is type S, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type S from type L. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type L. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type L, at which point it must stop. |
| // That index (preceded by one of type L) is an LMS-substring start. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, |
| // so that the loop finishes with the top of sa containing exactly |
| // the LMS-substring start indexes, sorted by LMS-substring. |
| |
| // Cache recently used bucket index: |
| cB := int32(0) |
| b := bucket[cB] |
| |
| top := len(sa) |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| sa[i] = 0 |
| if j < 0 { |
| // Leave discovered LMS-substring start index for caller. |
| top-- |
| sa[top] = int32(-j) |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is S-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c1 := text[k] |
| c0 := text[k-1] |
| if c0 > c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int32(k) |
| } |
| } |
| |
| func induceSubS_64(text []int64, sa, freq, bucket []int64) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_64(text, freq, bucket) |
| |
| // Analogous to induceSubL_64 above, |
| // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly |
| // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. |
| // Because j-1 is type S, inserting it into sa now will sort it correctly. |
| // But we want to distinguish a j-1 with j-2 of type S from type L. |
| // We can process the former but want to leave the latter for the caller. |
| // We record the difference by negating j-1 if it is preceded by type L. |
| // Either way, the insertion (into the text[j-1] bucket) is guaranteed to |
| // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have |
| // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, |
| // and so on, in sorted but not necessarily adjacent order, until it finds |
| // one preceded by an index of type L, at which point it must stop. |
| // That index (preceded by one of type L) is an LMS-substring start. |
| // |
| // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, |
| // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, |
| // so that the loop finishes with the top of sa containing exactly |
| // the LMS-substring start indexes, sorted by LMS-substring. |
| |
| // Cache recently used bucket index: |
| cB := int64(0) |
| b := bucket[cB] |
| |
| top := len(sa) |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j == 0 { |
| // Skip empty entry. |
| continue |
| } |
| sa[i] = 0 |
| if j < 0 { |
| // Leave discovered LMS-substring start index for caller. |
| top-- |
| sa[top] = int64(-j) |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is S-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. |
| k := j - 1 |
| c1 := text[k] |
| c0 := text[k-1] |
| if c0 > c1 { |
| k = -k |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int64(k) |
| } |
| } |
| |
| func length_8_64(text []byte, sa []int64, numLMS int) { |
| end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) |
| |
| // The encoding of N text bytes into a “length” word |
| // adds 1 to each byte, packs them into the bottom |
| // N*8 bits of a word, and then bitwise inverts the result. |
| // That is, the text sequence A B C (hex 41 42 43) |
| // encodes as ^uint64(0x42_43_44). |
| // LMS-substrings can never start or end with 0xFF. |
| // Adding 1 ensures the encoded byte sequence never |
| // starts or ends with 0x00, so that present bytes can be |
| // distinguished from zero-padding in the top bits, |
| // so the length need not be separately encoded. |
| // Inverting the bytes increases the chance that a |
| // 4-byte encoding will still be ≥ len(text). |
| // In particular, if the first byte is ASCII (<= 0x7E, so +1 <= 0x7F) |
| // then the high bit of the inversion will be set, |
| // making it clearly not a valid length (it would be a negative one). |
| // |
| // cx holds the pre-inverted encoding (the packed incremented bytes). |
| cx := uint64(0) // byte-only |
| |
| // This stanza (until the blank line) is the "LMS-substring iterator", |
| // described in placeLMS_8_64 above, with one line added to maintain cx. |
| c0, c1, isTypeS := byte(0), byte(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| cx = cx<<8 | uint64(c1+1) // byte-only |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Index j = i+1 is the start of an LMS-substring. |
| // Compute length or encoded text to store in sa[j/2]. |
| j := i + 1 |
| var code int64 |
| if end == 0 { |
| code = 0 |
| } else { |
| code = int64(end - j) |
| if code <= 64/8 && ^cx >= uint64(len(text)) { // byte-only |
| code = int64(^cx) // byte-only |
| } // byte-only |
| } |
| sa[j>>1] = code |
| end = j + 1 |
| cx = uint64(c1 + 1) // byte-only |
| } |
| } |
| } |
| |
| func length_32(text []int32, sa []int32, numLMS int) { |
| end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) |
| |
| // The encoding of N text int32s into a “length” word |
| // adds 1 to each int32, packs them into the bottom |
| // N*8 bits of a word, and then bitwise inverts the result. |
| // That is, the text sequence A B C (hex 41 42 43) |
| // encodes as ^uint32(0x42_43_44). |
| // LMS-substrings can never start or end with 0xFF. |
| // Adding 1 ensures the encoded int32 sequence never |
| // starts or ends with 0x00, so that present int32s can be |
| // distinguished from zero-padding in the top bits, |
| // so the length need not be separately encoded. |
| // Inverting the int32s increases the chance that a |
| // 4-int32 encoding will still be ≥ len(text). |
| // In particular, if the first int32 is ASCII (<= 0x7E, so +1 <= 0x7F) |
| // then the high bit of the inversion will be set, |
| // making it clearly not a valid length (it would be a negative one). |
| // |
| // cx holds the pre-inverted encoding (the packed incremented int32s). |
| |
| // This stanza (until the blank line) is the "LMS-substring iterator", |
| // described in placeLMS_32 above, with one line added to maintain cx. |
| c0, c1, isTypeS := int32(0), int32(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Index j = i+1 is the start of an LMS-substring. |
| // Compute length or encoded text to store in sa[j/2]. |
| j := i + 1 |
| var code int32 |
| if end == 0 { |
| code = 0 |
| } else { |
| code = int32(end - j) |
| } |
| sa[j>>1] = code |
| end = j + 1 |
| } |
| } |
| } |
| |
| func length_64(text []int64, sa []int64, numLMS int) { |
| end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) |
| |
| // The encoding of N text int64s into a “length” word |
| // adds 1 to each int64, packs them into the bottom |
| // N*8 bits of a word, and then bitwise inverts the result. |
| // That is, the text sequence A B C (hex 41 42 43) |
| // encodes as ^uint64(0x42_43_44). |
| // LMS-substrings can never start or end with 0xFF. |
| // Adding 1 ensures the encoded int64 sequence never |
| // starts or ends with 0x00, so that present int64s can be |
| // distinguished from zero-padding in the top bits, |
| // so the length need not be separately encoded. |
| // Inverting the int64s increases the chance that a |
| // 4-int64 encoding will still be ≥ len(text). |
| // In particular, if the first int64 is ASCII (<= 0x7E, so +1 <= 0x7F) |
| // then the high bit of the inversion will be set, |
| // making it clearly not a valid length (it would be a negative one). |
| // |
| // cx holds the pre-inverted encoding (the packed incremented int64s). |
| |
| // This stanza (until the blank line) is the "LMS-substring iterator", |
| // described in placeLMS_64 above, with one line added to maintain cx. |
| c0, c1, isTypeS := int64(0), int64(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Index j = i+1 is the start of an LMS-substring. |
| // Compute length or encoded text to store in sa[j/2]. |
| j := i + 1 |
| var code int64 |
| if end == 0 { |
| code = 0 |
| } else { |
| code = int64(end - j) |
| } |
| sa[j>>1] = code |
| end = j + 1 |
| } |
| } |
| } |
| |
| func assignID_8_64(text []byte, sa []int64, numLMS int) int { |
| id := 0 |
| lastLen := int64(-1) // impossible |
| lastPos := int64(0) |
| for _, j := range sa[len(sa)-numLMS:] { |
| // Is the LMS-substring at index j new, or is it the same as the last one we saw? |
| n := sa[j/2] |
| if n != lastLen { |
| goto New |
| } |
| if uint64(n) >= uint64(len(text)) { |
| // “Length” is really encoded full text, and they match. |
| goto Same |
| } |
| { |
| // Compare actual texts. |
| n := int(n) |
| this := text[j:][:n] |
| last := text[lastPos:][:n] |
| for i := 0; i < n; i++ { |
| if this[i] != last[i] { |
| goto New |
| } |
| } |
| goto Same |
| } |
| New: |
| id++ |
| lastPos = j |
| lastLen = n |
| Same: |
| sa[j/2] = int64(id) |
| } |
| return id |
| } |
| |
| func assignID_32(text []int32, sa []int32, numLMS int) int { |
| id := 0 |
| lastLen := int32(-1) // impossible |
| lastPos := int32(0) |
| for _, j := range sa[len(sa)-numLMS:] { |
| // Is the LMS-substring at index j new, or is it the same as the last one we saw? |
| n := sa[j/2] |
| if n != lastLen { |
| goto New |
| } |
| if uint32(n) >= uint32(len(text)) { |
| // “Length” is really encoded full text, and they match. |
| goto Same |
| } |
| { |
| // Compare actual texts. |
| n := int(n) |
| this := text[j:][:n] |
| last := text[lastPos:][:n] |
| for i := 0; i < n; i++ { |
| if this[i] != last[i] { |
| goto New |
| } |
| } |
| goto Same |
| } |
| New: |
| id++ |
| lastPos = j |
| lastLen = n |
| Same: |
| sa[j/2] = int32(id) |
| } |
| return id |
| } |
| |
| func assignID_64(text []int64, sa []int64, numLMS int) int { |
| id := 0 |
| lastLen := int64(-1) // impossible |
| lastPos := int64(0) |
| for _, j := range sa[len(sa)-numLMS:] { |
| // Is the LMS-substring at index j new, or is it the same as the last one we saw? |
| n := sa[j/2] |
| if n != lastLen { |
| goto New |
| } |
| if uint64(n) >= uint64(len(text)) { |
| // “Length” is really encoded full text, and they match. |
| goto Same |
| } |
| { |
| // Compare actual texts. |
| n := int(n) |
| this := text[j:][:n] |
| last := text[lastPos:][:n] |
| for i := 0; i < n; i++ { |
| if this[i] != last[i] { |
| goto New |
| } |
| } |
| goto Same |
| } |
| New: |
| id++ |
| lastPos = j |
| lastLen = n |
| Same: |
| sa[j/2] = int64(id) |
| } |
| return id |
| } |
| |
| func map_64(sa []int64, numLMS int) { |
| w := len(sa) |
| for i := len(sa) / 2; i >= 0; i-- { |
| j := sa[i] |
| if j > 0 { |
| w-- |
| sa[w] = j - 1 |
| } |
| } |
| } |
| |
| func recurse_64(sa, oldTmp []int64, numLMS, maxID int) { |
| dst, saTmp, text := sa[:numLMS], sa[numLMS:len(sa)-numLMS], sa[len(sa)-numLMS:] |
| |
| // Set up temporary space for recursive call. |
| // We must pass sais_64 a tmp buffer wiith at least maxID entries. |
| // |
| // The subproblem is guaranteed to have length at most len(sa)/2, |
| // so that sa can hold both the subproblem and its suffix array. |
| // Nearly all the time, however, the subproblem has length < len(sa)/3, |
| // in which case there is a subproblem-sized middle of sa that |
| // we can reuse for temporary space (saTmp). |
| // When recurse_64 is called from sais_8_64, oldTmp is length 512 |
| // (from text_64), and saTmp will typically be much larger, so we'll use saTmp. |
| // When deeper recursions come back to recurse_64, now oldTmp is |
| // the saTmp from the top-most recursion, it is typically larger than |
| // the current saTmp (because the current sa gets smaller and smaller |
| // as the recursion gets deeper), and we keep reusing that top-most |
| // large saTmp instead of the offered smaller ones. |
| // |
| // Why is the subproblem length so often just under len(sa)/3? |
| // See Nong, Zhang, and Chen, section 3.6 for a plausible explanation. |
| // In brief, the len(sa)/2 case would correspond to an SLSLSLSLSLSL pattern |
| // in the input, perfect alternation of larger and smaller input bytes. |
| // Real text doesn't do that. If each L-type index is randomly followed |
| // by either an L-type or S-type index, then half the substrings will |
| // be of the form SLS, but the other half will be longer. Of that half, |
| // half (a quarter overall) will be SLLS; an eighth will be SLLLS, and so on. |
| // Not counting the final S in each (which overlaps the first S in the next), |
| // This works out to an average length 2×½ + 3×¼ + 4×⅛ + ... = 3. |
| // The space we need is further reduced by the fact that many of the |
| // short patterns like SLS will often be the same character sequences |
| // repeated throughout the text, reducing maxID relative to numLMS. |
| // |
| // For short inputs, the averages may not run in our favor, but then we |
| // can often fall back to using the length-512 tmp available in the |
| // top-most call. (Also a short allocation would not be a big deal.) |
| // |
| // For pathological inputs, we fall back to allocating a new tmp of length |
| // max(maxID, numLMS/2). This level of the recursion needs maxID, |
| // and all deeper levels of the recursion will need no more than numLMS/2, |
| // so this one allocation is guaranteed to suffice for the entire stack |
| // of recursive calls. |
| tmp := oldTmp |
| if len(tmp) < len(saTmp) { |
| tmp = saTmp |
| } |
| if len(tmp) < numLMS { |
| // TestSAIS/forcealloc reaches this code. |
| n := maxID |
| if n < numLMS/2 { |
| n = numLMS / 2 |
| } |
| tmp = make([]int64, n) |
| } |
| |
| // sais_64 requires that the caller arrange to clear dst, |
| // because in general the caller may know dst is |
| // freshly-allocated and already cleared. But this one is not. |
| for i := range dst { |
| dst[i] = 0 |
| } |
| sais_64(text, maxID, dst, tmp) |
| } |
| |
| func unmap_8_64(text []byte, sa []int64, numLMS int) { |
| unmap := sa[len(sa)-numLMS:] |
| j := len(unmap) |
| |
| // "LMS-substring iterator" (see placeLMS_8_64 above). |
| c0, c1, isTypeS := byte(0), byte(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Populate inverse map. |
| j-- |
| unmap[j] = int64(i + 1) |
| } |
| } |
| |
| // Apply inverse map to subproblem suffix array. |
| sa = sa[:numLMS] |
| for i := 0; i < len(sa); i++ { |
| sa[i] = unmap[sa[i]] |
| } |
| } |
| |
| func unmap_32(text []int32, sa []int32, numLMS int) { |
| unmap := sa[len(sa)-numLMS:] |
| j := len(unmap) |
| |
| // "LMS-substring iterator" (see placeLMS_32 above). |
| c0, c1, isTypeS := int32(0), int32(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Populate inverse map. |
| j-- |
| unmap[j] = int32(i + 1) |
| } |
| } |
| |
| // Apply inverse map to subproblem suffix array. |
| sa = sa[:numLMS] |
| for i := 0; i < len(sa); i++ { |
| sa[i] = unmap[sa[i]] |
| } |
| } |
| |
| func unmap_64(text []int64, sa []int64, numLMS int) { |
| unmap := sa[len(sa)-numLMS:] |
| j := len(unmap) |
| |
| // "LMS-substring iterator" (see placeLMS_64 above). |
| c0, c1, isTypeS := int64(0), int64(0), false |
| for i := len(text) - 1; i >= 0; i-- { |
| c0, c1 = text[i], c0 |
| if c0 < c1 { |
| isTypeS = true |
| } else if c0 > c1 && isTypeS { |
| isTypeS = false |
| |
| // Populate inverse map. |
| j-- |
| unmap[j] = int64(i + 1) |
| } |
| } |
| |
| // Apply inverse map to subproblem suffix array. |
| sa = sa[:numLMS] |
| for i := 0; i < len(sa); i++ { |
| sa[i] = unmap[sa[i]] |
| } |
| } |
| |
| func expand_8_64(text []byte, freq, bucket, sa []int64, numLMS int) { |
| bucketMax_8_64(text, freq, bucket) |
| bucket = bucket[:256] // eliminate bound check for bucket[c] below |
| |
| // Loop backward through sa, always tracking |
| // the next index to populate from sa[:numLMS]. |
| // When we get to one, populate it. |
| // Zero the rest of the slots; they have dead values in them. |
| x := numLMS - 1 |
| saX := sa[x] |
| c := text[saX] |
| b := bucket[c] - 1 |
| bucket[c] = b |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| if i != int(b) { |
| sa[i] = 0 |
| continue |
| } |
| sa[i] = saX |
| |
| // Load next entry to put down (if any). |
| if x > 0 { |
| x-- |
| saX = sa[x] // TODO bounds check |
| c = text[saX] |
| b = bucket[c] - 1 |
| bucket[c] = b |
| } |
| } |
| } |
| |
| func expand_32(text []int32, freq, bucket, sa []int32, numLMS int) { |
| bucketMax_32(text, freq, bucket) |
| |
| // Loop backward through sa, always tracking |
| // the next index to populate from sa[:numLMS]. |
| // When we get to one, populate it. |
| // Zero the rest of the slots; they have dead values in them. |
| x := numLMS - 1 |
| saX := sa[x] |
| c := text[saX] |
| b := bucket[c] - 1 |
| bucket[c] = b |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| if i != int(b) { |
| sa[i] = 0 |
| continue |
| } |
| sa[i] = saX |
| |
| // Load next entry to put down (if any). |
| if x > 0 { |
| x-- |
| saX = sa[x] // TODO bounds check |
| c = text[saX] |
| b = bucket[c] - 1 |
| bucket[c] = b |
| } |
| } |
| } |
| |
| func expand_64(text []int64, freq, bucket, sa []int64, numLMS int) { |
| bucketMax_64(text, freq, bucket) |
| |
| // Loop backward through sa, always tracking |
| // the next index to populate from sa[:numLMS]. |
| // When we get to one, populate it. |
| // Zero the rest of the slots; they have dead values in them. |
| x := numLMS - 1 |
| saX := sa[x] |
| c := text[saX] |
| b := bucket[c] - 1 |
| bucket[c] = b |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| if i != int(b) { |
| sa[i] = 0 |
| continue |
| } |
| sa[i] = saX |
| |
| // Load next entry to put down (if any). |
| if x > 0 { |
| x-- |
| saX = sa[x] // TODO bounds check |
| c = text[saX] |
| b = bucket[c] - 1 |
| bucket[c] = b |
| } |
| } |
| } |
| |
| func induceL_8_64(text []byte, sa, freq, bucket []int64) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_8_64(text, freq, bucket) |
| bucket = bucket[:256] // eliminate bounds check for bucket[cB] below |
| |
| // This scan is similar to the one in induceSubL_8_64 above. |
| // That one arranges to clear all but the leftmost L-type indexes. |
| // This scan leaves all the L-type indexes and the original S-type |
| // indexes, but it negates the positive leftmost L-type indexes |
| // (the ones that induceS_8_64 needs to process). |
| |
| // expand_8_64 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int64(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j <= 0 { |
| // Skip empty or negated entry (including negated zero). |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. The caller can't tell the difference between |
| // an empty slot and a non-empty zero, but there's no need |
| // to distinguish them anyway: the final suffix array will end up |
| // with one zero somewhere, and that will be a real zero. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 < c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int64(k) |
| b++ |
| } |
| } |
| |
| func induceL_32(text []int32, sa, freq, bucket []int32) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_32(text, freq, bucket) |
| |
| // This scan is similar to the one in induceSubL_32 above. |
| // That one arranges to clear all but the leftmost L-type indexes. |
| // This scan leaves all the L-type indexes and the original S-type |
| // indexes, but it negates the positive leftmost L-type indexes |
| // (the ones that induceS_32 needs to process). |
| |
| // expand_32 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int32(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j <= 0 { |
| // Skip empty or negated entry (including negated zero). |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. The caller can't tell the difference between |
| // an empty slot and a non-empty zero, but there's no need |
| // to distinguish them anyway: the final suffix array will end up |
| // with one zero somewhere, and that will be a real zero. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 < c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int32(k) |
| b++ |
| } |
| } |
| |
| func induceL_64(text []int64, sa, freq, bucket []int64) { |
| // Initialize positions for left side of character buckets. |
| bucketMin_64(text, freq, bucket) |
| |
| // This scan is similar to the one in induceSubL_64 above. |
| // That one arranges to clear all but the leftmost L-type indexes. |
| // This scan leaves all the L-type indexes and the original S-type |
| // indexes, but it negates the positive leftmost L-type indexes |
| // (the ones that induceS_64 needs to process). |
| |
| // expand_64 left out the implicit entry sa[-1] == len(text), |
| // corresponding to the identified type-L index len(text)-1. |
| // Process it before the left-to-right scan of sa proper. |
| // See body in loop for commentary. |
| k := len(text) - 1 |
| c0, c1 := text[k-1], text[k] |
| if c0 < c1 { |
| k = -k |
| } |
| |
| // Cache recently used bucket index. |
| cB := c1 |
| b := bucket[cB] |
| sa[b] = int64(k) |
| b++ |
| |
| for i := 0; i < len(sa); i++ { |
| j := int(sa[i]) |
| if j <= 0 { |
| // Skip empty or negated entry (including negated zero). |
| continue |
| } |
| |
| // Index j was on work queue, meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is L-type, queue k for processing later in this loop. |
| // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. The caller can't tell the difference between |
| // an empty slot and a non-empty zero, but there's no need |
| // to distinguish them anyway: the final suffix array will end up |
| // with one zero somewhere, and that will be a real zero. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 < c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| sa[b] = int64(k) |
| b++ |
| } |
| } |
| |
| func induceS_8_64(text []byte, sa, freq, bucket []int64) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_8_64(text, freq, bucket) |
| bucket = bucket[:256] // eliminate bounds check for bucket[cB] below |
| |
| cB := byte(0) |
| b := bucket[cB] |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j >= 0 { |
| // Skip non-flagged entry. |
| // (This loop can't see an empty entry; 0 means the real zero index.) |
| continue |
| } |
| |
| // Negative j is a work queue entry; rewrite to positive j for final suffix array. |
| j = -j |
| sa[i] = int64(j) |
| |
| // Index j was on work queue (encoded as -j but now decoded), |
| // meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue -k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 <= c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int64(k) |
| } |
| } |
| |
| func induceS_32(text []int32, sa, freq, bucket []int32) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_32(text, freq, bucket) |
| |
| cB := int32(0) |
| b := bucket[cB] |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j >= 0 { |
| // Skip non-flagged entry. |
| // (This loop can't see an empty entry; 0 means the real zero index.) |
| continue |
| } |
| |
| // Negative j is a work queue entry; rewrite to positive j for final suffix array. |
| j = -j |
| sa[i] = int32(j) |
| |
| // Index j was on work queue (encoded as -j but now decoded), |
| // meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue -k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 <= c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int32(k) |
| } |
| } |
| |
| func induceS_64(text []int64, sa, freq, bucket []int64) { |
| // Initialize positions for right side of character buckets. |
| bucketMax_64(text, freq, bucket) |
| |
| cB := int64(0) |
| b := bucket[cB] |
| |
| for i := len(sa) - 1; i >= 0; i-- { |
| j := int(sa[i]) |
| if j >= 0 { |
| // Skip non-flagged entry. |
| // (This loop can't see an empty entry; 0 means the real zero index.) |
| continue |
| } |
| |
| // Negative j is a work queue entry; rewrite to positive j for final suffix array. |
| j = -j |
| sa[i] = int64(j) |
| |
| // Index j was on work queue (encoded as -j but now decoded), |
| // meaning k := j-1 is L-type, |
| // so we can now place k correctly into sa. |
| // If k-1 is S-type, queue -k for processing later in this loop. |
| // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. |
| // If k is zero, k-1 doesn't exist, so we only need to leave it |
| // for the caller. |
| k := j - 1 |
| c1 := text[k] |
| if k > 0 { |
| if c0 := text[k-1]; c0 <= c1 { |
| k = -k |
| } |
| } |
| |
| if cB != c1 { |
| bucket[cB] = b |
| cB = c1 |
| b = bucket[cB] |
| } |
| b-- |
| sa[b] = int64(k) |
| } |
| } |