| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package draw |
| |
| import ( |
| "image" |
| "image/color" |
| "image/png" |
| "os" |
| "testing" |
| "testing/quick" |
| ) |
| |
| // slowestRGBA is a draw.Image like image.RGBA but it is a different type and |
| // therefore does not trigger the draw.go fastest code paths. |
| // |
| // Unlike slowerRGBA, it does not implement the draw.RGBA64Image interface. |
| type slowestRGBA struct { |
| Pix []uint8 |
| Stride int |
| Rect image.Rectangle |
| } |
| |
| func (p *slowestRGBA) ColorModel() color.Model { return color.RGBAModel } |
| |
| func (p *slowestRGBA) Bounds() image.Rectangle { return p.Rect } |
| |
| func (p *slowestRGBA) At(x, y int) color.Color { |
| return p.RGBA64At(x, y) |
| } |
| |
| func (p *slowestRGBA) RGBA64At(x, y int) color.RGBA64 { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return color.RGBA64{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| r := uint16(s[0]) |
| g := uint16(s[1]) |
| b := uint16(s[2]) |
| a := uint16(s[3]) |
| return color.RGBA64{ |
| (r << 8) | r, |
| (g << 8) | g, |
| (b << 8) | b, |
| (a << 8) | a, |
| } |
| } |
| |
| func (p *slowestRGBA) Set(x, y int, c color.Color) { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.RGBAModel.Convert(c).(color.RGBA) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c1.R |
| s[1] = c1.G |
| s[2] = c1.B |
| s[3] = c1.A |
| } |
| |
| func (p *slowestRGBA) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 |
| } |
| |
| func convertToSlowestRGBA(m image.Image) *slowestRGBA { |
| if rgba, ok := m.(*image.RGBA); ok { |
| return &slowestRGBA{ |
| Pix: append([]byte(nil), rgba.Pix...), |
| Stride: rgba.Stride, |
| Rect: rgba.Rect, |
| } |
| } |
| rgba := image.NewRGBA(m.Bounds()) |
| Draw(rgba, rgba.Bounds(), m, m.Bounds().Min, Src) |
| return &slowestRGBA{ |
| Pix: rgba.Pix, |
| Stride: rgba.Stride, |
| Rect: rgba.Rect, |
| } |
| } |
| |
| func init() { |
| var p interface{} = (*slowestRGBA)(nil) |
| if _, ok := p.(RGBA64Image); ok { |
| panic("slowestRGBA should not be an RGBA64Image") |
| } |
| } |
| |
| // slowerRGBA is a draw.Image like image.RGBA but it is a different type and |
| // therefore does not trigger the draw.go fastest code paths. |
| // |
| // Unlike slowestRGBA, it still implements the draw.RGBA64Image interface. |
| type slowerRGBA struct { |
| Pix []uint8 |
| Stride int |
| Rect image.Rectangle |
| } |
| |
| func (p *slowerRGBA) ColorModel() color.Model { return color.RGBAModel } |
| |
| func (p *slowerRGBA) Bounds() image.Rectangle { return p.Rect } |
| |
| func (p *slowerRGBA) At(x, y int) color.Color { |
| return p.RGBA64At(x, y) |
| } |
| |
| func (p *slowerRGBA) RGBA64At(x, y int) color.RGBA64 { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return color.RGBA64{} |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| r := uint16(s[0]) |
| g := uint16(s[1]) |
| b := uint16(s[2]) |
| a := uint16(s[3]) |
| return color.RGBA64{ |
| (r << 8) | r, |
| (g << 8) | g, |
| (b << 8) | b, |
| (a << 8) | a, |
| } |
| } |
| |
| func (p *slowerRGBA) Set(x, y int, c color.Color) { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| c1 := color.RGBAModel.Convert(c).(color.RGBA) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = c1.R |
| s[1] = c1.G |
| s[2] = c1.B |
| s[3] = c1.A |
| } |
| |
| func (p *slowerRGBA) SetRGBA64(x, y int, c color.RGBA64) { |
| if !(image.Point{x, y}.In(p.Rect)) { |
| return |
| } |
| i := p.PixOffset(x, y) |
| s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857 |
| s[0] = uint8(c.R >> 8) |
| s[1] = uint8(c.G >> 8) |
| s[2] = uint8(c.B >> 8) |
| s[3] = uint8(c.A >> 8) |
| } |
| |
| func (p *slowerRGBA) PixOffset(x, y int) int { |
| return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4 |
| } |
| |
| func convertToSlowerRGBA(m image.Image) *slowerRGBA { |
| if rgba, ok := m.(*image.RGBA); ok { |
| return &slowerRGBA{ |
| Pix: append([]byte(nil), rgba.Pix...), |
| Stride: rgba.Stride, |
| Rect: rgba.Rect, |
| } |
| } |
| rgba := image.NewRGBA(m.Bounds()) |
| Draw(rgba, rgba.Bounds(), m, m.Bounds().Min, Src) |
| return &slowerRGBA{ |
| Pix: rgba.Pix, |
| Stride: rgba.Stride, |
| Rect: rgba.Rect, |
| } |
| } |
| |
| func init() { |
| var p interface{} = (*slowerRGBA)(nil) |
| if _, ok := p.(RGBA64Image); !ok { |
| panic("slowerRGBA should be an RGBA64Image") |
| } |
| } |
| |
| func eq(c0, c1 color.Color) bool { |
| r0, g0, b0, a0 := c0.RGBA() |
| r1, g1, b1, a1 := c1.RGBA() |
| return r0 == r1 && g0 == g1 && b0 == b1 && a0 == a1 |
| } |
| |
| func fillBlue(alpha int) image.Image { |
| return image.NewUniform(color.RGBA{0, 0, uint8(alpha), uint8(alpha)}) |
| } |
| |
| func fillAlpha(alpha int) image.Image { |
| return image.NewUniform(color.Alpha{uint8(alpha)}) |
| } |
| |
| func vgradGreen(alpha int) image.Image { |
| m := image.NewRGBA(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.RGBA{0, uint8(y * alpha / 15), 0, uint8(alpha)}) |
| } |
| } |
| return m |
| } |
| |
| func vgradAlpha(alpha int) image.Image { |
| m := image.NewAlpha(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.Alpha{uint8(y * alpha / 15)}) |
| } |
| } |
| return m |
| } |
| |
| func vgradGreenNRGBA(alpha int) image.Image { |
| m := image.NewNRGBA(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.RGBA{0, uint8(y * 0x11), 0, uint8(alpha)}) |
| } |
| } |
| return m |
| } |
| |
| func vgradCr() image.Image { |
| m := &image.YCbCr{ |
| Y: make([]byte, 16*16), |
| Cb: make([]byte, 16*16), |
| Cr: make([]byte, 16*16), |
| YStride: 16, |
| CStride: 16, |
| SubsampleRatio: image.YCbCrSubsampleRatio444, |
| Rect: image.Rect(0, 0, 16, 16), |
| } |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Cr[y*m.CStride+x] = uint8(y * 0x11) |
| } |
| } |
| return m |
| } |
| |
| func vgradGray() image.Image { |
| m := image.NewGray(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.Gray{uint8(y * 0x11)}) |
| } |
| } |
| return m |
| } |
| |
| func vgradMagenta() image.Image { |
| m := image.NewCMYK(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.CMYK{0, uint8(y * 0x11), 0, 0x3f}) |
| } |
| } |
| return m |
| } |
| |
| func hgradRed(alpha int) Image { |
| m := image.NewRGBA(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.RGBA{uint8(x * alpha / 15), 0, 0, uint8(alpha)}) |
| } |
| } |
| return m |
| } |
| |
| func gradYellow(alpha int) Image { |
| m := image.NewRGBA(image.Rect(0, 0, 16, 16)) |
| for y := 0; y < 16; y++ { |
| for x := 0; x < 16; x++ { |
| m.Set(x, y, color.RGBA{uint8(x * alpha / 15), uint8(y * alpha / 15), 0, uint8(alpha)}) |
| } |
| } |
| return m |
| } |
| |
| type drawTest struct { |
| desc string |
| src image.Image |
| mask image.Image |
| op Op |
| expected color.Color |
| } |
| |
| var drawTests = []drawTest{ |
| // Uniform mask (0% opaque). |
| {"nop", vgradGreen(255), fillAlpha(0), Over, color.RGBA{136, 0, 0, 255}}, |
| {"clear", vgradGreen(255), fillAlpha(0), Src, color.RGBA{0, 0, 0, 0}}, |
| // Uniform mask (100%, 75%, nil) and uniform source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 0, 90, 90}. |
| {"fill", fillBlue(90), fillAlpha(255), Over, color.RGBA{88, 0, 90, 255}}, |
| {"fillSrc", fillBlue(90), fillAlpha(255), Src, color.RGBA{0, 0, 90, 90}}, |
| {"fillAlpha", fillBlue(90), fillAlpha(192), Over, color.RGBA{100, 0, 68, 255}}, |
| {"fillAlphaSrc", fillBlue(90), fillAlpha(192), Src, color.RGBA{0, 0, 68, 68}}, |
| {"fillNil", fillBlue(90), nil, Over, color.RGBA{88, 0, 90, 255}}, |
| {"fillNilSrc", fillBlue(90), nil, Src, color.RGBA{0, 0, 90, 90}}, |
| // Uniform mask (100%, 75%, nil) and variable source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 48, 0, 90}. |
| {"copy", vgradGreen(90), fillAlpha(255), Over, color.RGBA{88, 48, 0, 255}}, |
| {"copySrc", vgradGreen(90), fillAlpha(255), Src, color.RGBA{0, 48, 0, 90}}, |
| {"copyAlpha", vgradGreen(90), fillAlpha(192), Over, color.RGBA{100, 36, 0, 255}}, |
| {"copyAlphaSrc", vgradGreen(90), fillAlpha(192), Src, color.RGBA{0, 36, 0, 68}}, |
| {"copyNil", vgradGreen(90), nil, Over, color.RGBA{88, 48, 0, 255}}, |
| {"copyNilSrc", vgradGreen(90), nil, Src, color.RGBA{0, 48, 0, 90}}, |
| // Uniform mask (100%, 75%, nil) and variable NRGBA source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 136, 0, 90} in NRGBA-space, which is {0, 48, 0, 90} in RGBA-space. |
| // The result pixel is different than in the "copy*" test cases because of rounding errors. |
| {"nrgba", vgradGreenNRGBA(90), fillAlpha(255), Over, color.RGBA{88, 46, 0, 255}}, |
| {"nrgbaSrc", vgradGreenNRGBA(90), fillAlpha(255), Src, color.RGBA{0, 46, 0, 90}}, |
| {"nrgbaAlpha", vgradGreenNRGBA(90), fillAlpha(192), Over, color.RGBA{100, 34, 0, 255}}, |
| {"nrgbaAlphaSrc", vgradGreenNRGBA(90), fillAlpha(192), Src, color.RGBA{0, 34, 0, 68}}, |
| {"nrgbaNil", vgradGreenNRGBA(90), nil, Over, color.RGBA{88, 46, 0, 255}}, |
| {"nrgbaNilSrc", vgradGreenNRGBA(90), nil, Src, color.RGBA{0, 46, 0, 90}}, |
| // Uniform mask (100%, 75%, nil) and variable YCbCr source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 0, 136} in YCbCr-space, which is {11, 38, 0, 255} in RGB-space. |
| {"ycbcr", vgradCr(), fillAlpha(255), Over, color.RGBA{11, 38, 0, 255}}, |
| {"ycbcrSrc", vgradCr(), fillAlpha(255), Src, color.RGBA{11, 38, 0, 255}}, |
| {"ycbcrAlpha", vgradCr(), fillAlpha(192), Over, color.RGBA{42, 28, 0, 255}}, |
| {"ycbcrAlphaSrc", vgradCr(), fillAlpha(192), Src, color.RGBA{8, 28, 0, 192}}, |
| {"ycbcrNil", vgradCr(), nil, Over, color.RGBA{11, 38, 0, 255}}, |
| {"ycbcrNilSrc", vgradCr(), nil, Src, color.RGBA{11, 38, 0, 255}}, |
| // Uniform mask (100%, 75%, nil) and variable Gray source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space. |
| {"gray", vgradGray(), fillAlpha(255), Over, color.RGBA{136, 136, 136, 255}}, |
| {"graySrc", vgradGray(), fillAlpha(255), Src, color.RGBA{136, 136, 136, 255}}, |
| {"grayAlpha", vgradGray(), fillAlpha(192), Over, color.RGBA{136, 102, 102, 255}}, |
| {"grayAlphaSrc", vgradGray(), fillAlpha(192), Src, color.RGBA{102, 102, 102, 192}}, |
| {"grayNil", vgradGray(), nil, Over, color.RGBA{136, 136, 136, 255}}, |
| {"grayNilSrc", vgradGray(), nil, Src, color.RGBA{136, 136, 136, 255}}, |
| // Same again, but with a slowerRGBA source. |
| {"graySlower", convertToSlowerRGBA(vgradGray()), fillAlpha(255), |
| Over, color.RGBA{136, 136, 136, 255}}, |
| {"graySrcSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(255), |
| Src, color.RGBA{136, 136, 136, 255}}, |
| {"grayAlphaSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(192), |
| Over, color.RGBA{136, 102, 102, 255}}, |
| {"grayAlphaSrcSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(192), |
| Src, color.RGBA{102, 102, 102, 192}}, |
| {"grayNilSlower", convertToSlowerRGBA(vgradGray()), nil, |
| Over, color.RGBA{136, 136, 136, 255}}, |
| {"grayNilSrcSlower", convertToSlowerRGBA(vgradGray()), nil, |
| Src, color.RGBA{136, 136, 136, 255}}, |
| // Same again, but with a slowestRGBA source. |
| {"graySlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(255), |
| Over, color.RGBA{136, 136, 136, 255}}, |
| {"graySrcSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(255), |
| Src, color.RGBA{136, 136, 136, 255}}, |
| {"grayAlphaSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(192), |
| Over, color.RGBA{136, 102, 102, 255}}, |
| {"grayAlphaSrcSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(192), |
| Src, color.RGBA{102, 102, 102, 192}}, |
| {"grayNilSlowest", convertToSlowestRGBA(vgradGray()), nil, |
| Over, color.RGBA{136, 136, 136, 255}}, |
| {"grayNilSrcSlowest", convertToSlowestRGBA(vgradGray()), nil, |
| Src, color.RGBA{136, 136, 136, 255}}, |
| // Uniform mask (100%, 75%, nil) and variable CMYK source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 136, 0, 63} in CMYK-space, which is {192, 89, 192} in RGB-space. |
| {"cmyk", vgradMagenta(), fillAlpha(255), Over, color.RGBA{192, 89, 192, 255}}, |
| {"cmykSrc", vgradMagenta(), fillAlpha(255), Src, color.RGBA{192, 89, 192, 255}}, |
| {"cmykAlpha", vgradMagenta(), fillAlpha(192), Over, color.RGBA{178, 67, 145, 255}}, |
| {"cmykAlphaSrc", vgradMagenta(), fillAlpha(192), Src, color.RGBA{145, 67, 145, 192}}, |
| {"cmykNil", vgradMagenta(), nil, Over, color.RGBA{192, 89, 192, 255}}, |
| {"cmykNilSrc", vgradMagenta(), nil, Src, color.RGBA{192, 89, 192, 255}}, |
| // Variable mask and variable source. |
| // At (x, y) == (8, 8): |
| // The destination pixel is {136, 0, 0, 255}. |
| // The source pixel is {0, 0, 255, 255}. |
| // The mask pixel's alpha is 102, or 40%. |
| {"generic", fillBlue(255), vgradAlpha(192), Over, color.RGBA{81, 0, 102, 255}}, |
| {"genericSrc", fillBlue(255), vgradAlpha(192), Src, color.RGBA{0, 0, 102, 102}}, |
| // Same again, but with a slowerRGBA mask. |
| {"genericSlower", fillBlue(255), convertToSlowerRGBA(vgradAlpha(192)), |
| Over, color.RGBA{81, 0, 102, 255}}, |
| {"genericSrcSlower", fillBlue(255), convertToSlowerRGBA(vgradAlpha(192)), |
| Src, color.RGBA{0, 0, 102, 102}}, |
| // Same again, but with a slowestRGBA mask. |
| {"genericSlowest", fillBlue(255), convertToSlowestRGBA(vgradAlpha(192)), |
| Over, color.RGBA{81, 0, 102, 255}}, |
| {"genericSrcSlowest", fillBlue(255), convertToSlowestRGBA(vgradAlpha(192)), |
| Src, color.RGBA{0, 0, 102, 102}}, |
| // The source pixel is {0, 48, 0, 90}. |
| {"rgbaVariableMaskOver", vgradGreen(255), vgradAlpha(192), Over, color.RGBA{81, 54, 0, 255}}, |
| // The source pixel is {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space. |
| {"grayVariableMaskOver", vgradGray(), vgradAlpha(192), Over, color.RGBA{136, 54, 54, 255}}, |
| } |
| |
| func makeGolden(dst image.Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) image.Image { |
| // Since golden is a newly allocated image, we don't have to check if the |
| // input source and mask images and the output golden image overlap. |
| b := dst.Bounds() |
| sb := src.Bounds() |
| mb := image.Rect(-1e9, -1e9, 1e9, 1e9) |
| if mask != nil { |
| mb = mask.Bounds() |
| } |
| golden := image.NewRGBA(image.Rect(0, 0, b.Max.X, b.Max.Y)) |
| for y := r.Min.Y; y < r.Max.Y; y++ { |
| sy := y + sp.Y - r.Min.Y |
| my := y + mp.Y - r.Min.Y |
| for x := r.Min.X; x < r.Max.X; x++ { |
| if !(image.Pt(x, y).In(b)) { |
| continue |
| } |
| sx := x + sp.X - r.Min.X |
| if !(image.Pt(sx, sy).In(sb)) { |
| continue |
| } |
| mx := x + mp.X - r.Min.X |
| if !(image.Pt(mx, my).In(mb)) { |
| continue |
| } |
| |
| const M = 1<<16 - 1 |
| var dr, dg, db, da uint32 |
| if op == Over { |
| dr, dg, db, da = dst.At(x, y).RGBA() |
| } |
| sr, sg, sb, sa := src.At(sx, sy).RGBA() |
| ma := uint32(M) |
| if mask != nil { |
| _, _, _, ma = mask.At(mx, my).RGBA() |
| } |
| a := M - (sa * ma / M) |
| golden.Set(x, y, color.RGBA64{ |
| uint16((dr*a + sr*ma) / M), |
| uint16((dg*a + sg*ma) / M), |
| uint16((db*a + sb*ma) / M), |
| uint16((da*a + sa*ma) / M), |
| }) |
| } |
| } |
| return golden.SubImage(b) |
| } |
| |
| func TestDraw(t *testing.T) { |
| rr := []image.Rectangle{ |
| image.Rect(0, 0, 0, 0), |
| image.Rect(0, 0, 16, 16), |
| image.Rect(3, 5, 12, 10), |
| image.Rect(0, 0, 9, 9), |
| image.Rect(8, 8, 16, 16), |
| image.Rect(8, 0, 9, 16), |
| image.Rect(0, 8, 16, 9), |
| image.Rect(8, 8, 9, 9), |
| image.Rect(8, 8, 8, 8), |
| } |
| for _, r := range rr { |
| loop: |
| for _, test := range drawTests { |
| for i := 0; i < 3; i++ { |
| dst := hgradRed(255).(*image.RGBA).SubImage(r).(Image) |
| // For i != 0, substitute a different-typed dst that will take |
| // us off the fastest code paths. We should still get the same |
| // result, in terms of final pixel RGBA values. |
| switch i { |
| case 1: |
| dst = convertToSlowerRGBA(dst) |
| case 2: |
| dst = convertToSlowestRGBA(dst) |
| } |
| |
| // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. |
| golden := makeGolden(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) |
| b := dst.Bounds() |
| if !b.Eq(golden.Bounds()) { |
| t.Errorf("draw %v %s on %T: bounds %v versus %v", |
| r, test.desc, dst, dst.Bounds(), golden.Bounds()) |
| continue |
| } |
| // Draw the same combination onto the actual dst using the optimized DrawMask implementation. |
| DrawMask(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) |
| if image.Pt(8, 8).In(r) { |
| // Check that the resultant pixel at (8, 8) matches what we expect |
| // (the expected value can be verified by hand). |
| if !eq(dst.At(8, 8), test.expected) { |
| t.Errorf("draw %v %s on %T: at (8, 8) %v versus %v", |
| r, test.desc, dst, dst.At(8, 8), test.expected) |
| continue |
| } |
| } |
| // Check that the resultant dst image matches the golden output. |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| if !eq(dst.At(x, y), golden.At(x, y)) { |
| t.Errorf("draw %v %s on %T: at (%d, %d), %v versus golden %v", |
| r, test.desc, dst, x, y, dst.At(x, y), golden.At(x, y)) |
| continue loop |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| func TestDrawOverlap(t *testing.T) { |
| for _, op := range []Op{Over, Src} { |
| for yoff := -2; yoff <= 2; yoff++ { |
| loop: |
| for xoff := -2; xoff <= 2; xoff++ { |
| m := gradYellow(127).(*image.RGBA) |
| dst := m.SubImage(image.Rect(5, 5, 10, 10)).(*image.RGBA) |
| src := m.SubImage(image.Rect(5+xoff, 5+yoff, 10+xoff, 10+yoff)).(*image.RGBA) |
| b := dst.Bounds() |
| // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. |
| golden := makeGolden(dst, b, src, src.Bounds().Min, nil, image.ZP, op) |
| if !b.Eq(golden.Bounds()) { |
| t.Errorf("drawOverlap xoff=%d,yoff=%d: bounds %v versus %v", xoff, yoff, dst.Bounds(), golden.Bounds()) |
| continue |
| } |
| // Draw the same combination onto the actual dst using the optimized DrawMask implementation. |
| DrawMask(dst, b, src, src.Bounds().Min, nil, image.ZP, op) |
| // Check that the resultant dst image matches the golden output. |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| if !eq(dst.At(x, y), golden.At(x, y)) { |
| t.Errorf("drawOverlap xoff=%d,yoff=%d: at (%d, %d), %v versus golden %v", xoff, yoff, x, y, dst.At(x, y), golden.At(x, y)) |
| continue loop |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // TestNonZeroSrcPt checks drawing with a non-zero src point parameter. |
| func TestNonZeroSrcPt(t *testing.T) { |
| a := image.NewRGBA(image.Rect(0, 0, 1, 1)) |
| b := image.NewRGBA(image.Rect(0, 0, 2, 2)) |
| b.Set(0, 0, color.RGBA{0, 0, 0, 5}) |
| b.Set(1, 0, color.RGBA{0, 0, 5, 5}) |
| b.Set(0, 1, color.RGBA{0, 5, 0, 5}) |
| b.Set(1, 1, color.RGBA{5, 0, 0, 5}) |
| Draw(a, image.Rect(0, 0, 1, 1), b, image.Pt(1, 1), Over) |
| if !eq(color.RGBA{5, 0, 0, 5}, a.At(0, 0)) { |
| t.Errorf("non-zero src pt: want %v got %v", color.RGBA{5, 0, 0, 5}, a.At(0, 0)) |
| } |
| } |
| |
| func TestFill(t *testing.T) { |
| rr := []image.Rectangle{ |
| image.Rect(0, 0, 0, 0), |
| image.Rect(0, 0, 40, 30), |
| image.Rect(10, 0, 40, 30), |
| image.Rect(0, 20, 40, 30), |
| image.Rect(10, 20, 40, 30), |
| image.Rect(10, 20, 15, 25), |
| image.Rect(10, 0, 35, 30), |
| image.Rect(0, 15, 40, 16), |
| image.Rect(24, 24, 25, 25), |
| image.Rect(23, 23, 26, 26), |
| image.Rect(22, 22, 27, 27), |
| image.Rect(21, 21, 28, 28), |
| image.Rect(20, 20, 29, 29), |
| } |
| for _, r := range rr { |
| m := image.NewRGBA(image.Rect(0, 0, 40, 30)).SubImage(r).(*image.RGBA) |
| b := m.Bounds() |
| c := color.RGBA{11, 0, 0, 255} |
| src := &image.Uniform{C: c} |
| check := func(desc string) { |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| if !eq(c, m.At(x, y)) { |
| t.Errorf("%s fill: at (%d, %d), sub-image bounds=%v: want %v got %v", desc, x, y, r, c, m.At(x, y)) |
| return |
| } |
| } |
| } |
| } |
| // Draw 1 pixel at a time. |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| DrawMask(m, image.Rect(x, y, x+1, y+1), src, image.ZP, nil, image.ZP, Src) |
| } |
| } |
| check("pixel") |
| // Draw 1 row at a time. |
| c = color.RGBA{0, 22, 0, 255} |
| src = &image.Uniform{C: c} |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| DrawMask(m, image.Rect(b.Min.X, y, b.Max.X, y+1), src, image.ZP, nil, image.ZP, Src) |
| } |
| check("row") |
| // Draw 1 column at a time. |
| c = color.RGBA{0, 0, 33, 255} |
| src = &image.Uniform{C: c} |
| for x := b.Min.X; x < b.Max.X; x++ { |
| DrawMask(m, image.Rect(x, b.Min.Y, x+1, b.Max.Y), src, image.ZP, nil, image.ZP, Src) |
| } |
| check("column") |
| // Draw the whole image at once. |
| c = color.RGBA{44, 55, 66, 77} |
| src = &image.Uniform{C: c} |
| DrawMask(m, b, src, image.ZP, nil, image.ZP, Src) |
| check("whole") |
| } |
| } |
| |
| // TestFloydSteinbergCheckerboard tests that the result of Floyd-Steinberg |
| // error diffusion of a uniform 50% gray source image with a black-and-white |
| // palette is a checkerboard pattern. |
| func TestFloydSteinbergCheckerboard(t *testing.T) { |
| b := image.Rect(0, 0, 640, 480) |
| // We can't represent 50% exactly, but 0x7fff / 0xffff is close enough. |
| src := &image.Uniform{color.Gray16{0x7fff}} |
| dst := image.NewPaletted(b, color.Palette{color.Black, color.White}) |
| FloydSteinberg.Draw(dst, b, src, image.Point{}) |
| nErr := 0 |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| got := dst.Pix[dst.PixOffset(x, y)] |
| want := uint8(x+y) % 2 |
| if got != want { |
| t.Errorf("at (%d, %d): got %d, want %d", x, y, got, want) |
| if nErr++; nErr == 10 { |
| t.Fatal("there may be more errors") |
| } |
| } |
| } |
| } |
| } |
| |
| // embeddedPaletted is an Image that behaves like an *image.Paletted but whose |
| // type is not *image.Paletted. |
| type embeddedPaletted struct { |
| *image.Paletted |
| } |
| |
| // TestPaletted tests that the drawPaletted function behaves the same |
| // regardless of whether dst is an *image.Paletted. |
| func TestPaletted(t *testing.T) { |
| f, err := os.Open("../testdata/video-001.png") |
| if err != nil { |
| t.Fatalf("open: %v", err) |
| } |
| defer f.Close() |
| video001, err := png.Decode(f) |
| if err != nil { |
| t.Fatalf("decode: %v", err) |
| } |
| b := video001.Bounds() |
| |
| cgaPalette := color.Palette{ |
| color.RGBA{0x00, 0x00, 0x00, 0xff}, |
| color.RGBA{0x55, 0xff, 0xff, 0xff}, |
| color.RGBA{0xff, 0x55, 0xff, 0xff}, |
| color.RGBA{0xff, 0xff, 0xff, 0xff}, |
| } |
| drawers := map[string]Drawer{ |
| "src": Src, |
| "floyd-steinberg": FloydSteinberg, |
| } |
| sources := map[string]image.Image{ |
| "uniform": &image.Uniform{color.RGBA{0xff, 0x7f, 0xff, 0xff}}, |
| "video001": video001, |
| } |
| |
| for dName, d := range drawers { |
| loop: |
| for sName, src := range sources { |
| dst0 := image.NewPaletted(b, cgaPalette) |
| dst1 := image.NewPaletted(b, cgaPalette) |
| d.Draw(dst0, b, src, image.Point{}) |
| d.Draw(embeddedPaletted{dst1}, b, src, image.Point{}) |
| for y := b.Min.Y; y < b.Max.Y; y++ { |
| for x := b.Min.X; x < b.Max.X; x++ { |
| if !eq(dst0.At(x, y), dst1.At(x, y)) { |
| t.Errorf("%s / %s: at (%d, %d), %v versus %v", |
| dName, sName, x, y, dst0.At(x, y), dst1.At(x, y)) |
| continue loop |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| func TestSqDiff(t *testing.T) { |
| // This test is similar to the one from the image/color package, but |
| // sqDiff in this package accepts int32 instead of uint32, so test it |
| // for appropriate input. |
| |
| // canonical sqDiff implementation |
| orig := func(x, y int32) uint32 { |
| var d uint32 |
| if x > y { |
| d = uint32(x - y) |
| } else { |
| d = uint32(y - x) |
| } |
| return (d * d) >> 2 |
| } |
| testCases := []int32{ |
| 0, |
| 1, |
| 2, |
| 0x0fffd, |
| 0x0fffe, |
| 0x0ffff, |
| 0x10000, |
| 0x10001, |
| 0x10002, |
| 0x7ffffffd, |
| 0x7ffffffe, |
| 0x7fffffff, |
| -0x7ffffffd, |
| -0x7ffffffe, |
| -0x80000000, |
| } |
| for _, x := range testCases { |
| for _, y := range testCases { |
| if got, want := sqDiff(x, y), orig(x, y); got != want { |
| t.Fatalf("sqDiff(%#x, %#x): got %d, want %d", x, y, got, want) |
| } |
| } |
| } |
| if err := quick.CheckEqual(orig, sqDiff, &quick.Config{MaxCountScale: 10}); err != nil { |
| t.Fatal(err) |
| } |
| } |