|  | // Copyright 2016 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package flate | 
|  |  | 
|  | // This encoding algorithm, which prioritizes speed over output size, is | 
|  | // based on Snappy's LZ77-style encoder: github.com/golang/snappy | 
|  |  | 
|  | const ( | 
|  | tableBits  = 14             // Bits used in the table. | 
|  | tableSize  = 1 << tableBits // Size of the table. | 
|  | tableMask  = tableSize - 1  // Mask for table indices. Redundant, but can eliminate bounds checks. | 
|  | tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32. | 
|  | ) | 
|  |  | 
|  | func load32(b []byte, i int32) uint32 { | 
|  | b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. | 
|  | return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 | 
|  | } | 
|  |  | 
|  | func load64(b []byte, i int32) uint64 { | 
|  | b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. | 
|  | return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | | 
|  | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 | 
|  | } | 
|  |  | 
|  | func hash(u uint32) uint32 { | 
|  | return (u * 0x1e35a7bd) >> tableShift | 
|  | } | 
|  |  | 
|  | // These constants are defined by the Snappy implementation so that its | 
|  | // assembly implementation can fast-path some 16-bytes-at-a-time copies. They | 
|  | // aren't necessary in the pure Go implementation, as we don't use those same | 
|  | // optimizations, but using the same thresholds doesn't really hurt. | 
|  | const ( | 
|  | inputMargin            = 16 - 1 | 
|  | minNonLiteralBlockSize = 1 + 1 + inputMargin | 
|  | ) | 
|  |  | 
|  | type tableEntry struct { | 
|  | val    uint32 // Value at destination | 
|  | offset int32 | 
|  | } | 
|  |  | 
|  | // deflateFast maintains the table for matches, | 
|  | // and the previous byte block for cross block matching. | 
|  | type deflateFast struct { | 
|  | table [tableSize]tableEntry | 
|  | prev  []byte // Previous block, zero length if unknown. | 
|  | cur   int32  // Current match offset. | 
|  | } | 
|  |  | 
|  | func newDeflateFast() *deflateFast { | 
|  | return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)} | 
|  | } | 
|  |  | 
|  | // encode encodes a block given in src and appends tokens | 
|  | // to dst and returns the result. | 
|  | func (e *deflateFast) encode(dst []token, src []byte) []token { | 
|  | // Ensure that e.cur doesn't wrap. | 
|  | if e.cur > 1<<30 { | 
|  | e.resetAll() | 
|  | } | 
|  |  | 
|  | // This check isn't in the Snappy implementation, but there, the caller | 
|  | // instead of the callee handles this case. | 
|  | if len(src) < minNonLiteralBlockSize { | 
|  | e.cur += maxStoreBlockSize | 
|  | e.prev = e.prev[:0] | 
|  | return emitLiteral(dst, src) | 
|  | } | 
|  |  | 
|  | // sLimit is when to stop looking for offset/length copies. The inputMargin | 
|  | // lets us use a fast path for emitLiteral in the main loop, while we are | 
|  | // looking for copies. | 
|  | sLimit := int32(len(src) - inputMargin) | 
|  |  | 
|  | // nextEmit is where in src the next emitLiteral should start from. | 
|  | nextEmit := int32(0) | 
|  | s := int32(0) | 
|  | cv := load32(src, s) | 
|  | nextHash := hash(cv) | 
|  |  | 
|  | for { | 
|  | // Copied from the C++ snappy implementation: | 
|  | // | 
|  | // Heuristic match skipping: If 32 bytes are scanned with no matches | 
|  | // found, start looking only at every other byte. If 32 more bytes are | 
|  | // scanned (or skipped), look at every third byte, etc.. When a match | 
|  | // is found, immediately go back to looking at every byte. This is a | 
|  | // small loss (~5% performance, ~0.1% density) for compressible data | 
|  | // due to more bookkeeping, but for non-compressible data (such as | 
|  | // JPEG) it's a huge win since the compressor quickly "realizes" the | 
|  | // data is incompressible and doesn't bother looking for matches | 
|  | // everywhere. | 
|  | // | 
|  | // The "skip" variable keeps track of how many bytes there are since | 
|  | // the last match; dividing it by 32 (ie. right-shifting by five) gives | 
|  | // the number of bytes to move ahead for each iteration. | 
|  | skip := int32(32) | 
|  |  | 
|  | nextS := s | 
|  | var candidate tableEntry | 
|  | for { | 
|  | s = nextS | 
|  | bytesBetweenHashLookups := skip >> 5 | 
|  | nextS = s + bytesBetweenHashLookups | 
|  | skip += bytesBetweenHashLookups | 
|  | if nextS > sLimit { | 
|  | goto emitRemainder | 
|  | } | 
|  | candidate = e.table[nextHash&tableMask] | 
|  | now := load32(src, nextS) | 
|  | e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv} | 
|  | nextHash = hash(now) | 
|  |  | 
|  | offset := s - (candidate.offset - e.cur) | 
|  | if offset > maxMatchOffset || cv != candidate.val { | 
|  | // Out of range or not matched. | 
|  | cv = now | 
|  | continue | 
|  | } | 
|  | break | 
|  | } | 
|  |  | 
|  | // A 4-byte match has been found. We'll later see if more than 4 bytes | 
|  | // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | 
|  | // them as literal bytes. | 
|  | dst = emitLiteral(dst, src[nextEmit:s]) | 
|  |  | 
|  | // Call emitCopy, and then see if another emitCopy could be our next | 
|  | // move. Repeat until we find no match for the input immediately after | 
|  | // what was consumed by the last emitCopy call. | 
|  | // | 
|  | // If we exit this loop normally then we need to call emitLiteral next, | 
|  | // though we don't yet know how big the literal will be. We handle that | 
|  | // by proceeding to the next iteration of the main loop. We also can | 
|  | // exit this loop via goto if we get close to exhausting the input. | 
|  | for { | 
|  | // Invariant: we have a 4-byte match at s, and no need to emit any | 
|  | // literal bytes prior to s. | 
|  |  | 
|  | // Extend the 4-byte match as long as possible. | 
|  | // | 
|  | s += 4 | 
|  | t := candidate.offset - e.cur + 4 | 
|  | l := e.matchLen(s, t, src) | 
|  |  | 
|  | // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) | 
|  | dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))) | 
|  | s += l | 
|  | nextEmit = s | 
|  | if s >= sLimit { | 
|  | goto emitRemainder | 
|  | } | 
|  |  | 
|  | // We could immediately start working at s now, but to improve | 
|  | // compression we first update the hash table at s-1 and at s. If | 
|  | // another emitCopy is not our next move, also calculate nextHash | 
|  | // at s+1. At least on GOARCH=amd64, these three hash calculations | 
|  | // are faster as one load64 call (with some shifts) instead of | 
|  | // three load32 calls. | 
|  | x := load64(src, s-1) | 
|  | prevHash := hash(uint32(x)) | 
|  | e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)} | 
|  | x >>= 8 | 
|  | currHash := hash(uint32(x)) | 
|  | candidate = e.table[currHash&tableMask] | 
|  | e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)} | 
|  |  | 
|  | offset := s - (candidate.offset - e.cur) | 
|  | if offset > maxMatchOffset || uint32(x) != candidate.val { | 
|  | cv = uint32(x >> 8) | 
|  | nextHash = hash(cv) | 
|  | s++ | 
|  | break | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | emitRemainder: | 
|  | if int(nextEmit) < len(src) { | 
|  | dst = emitLiteral(dst, src[nextEmit:]) | 
|  | } | 
|  | e.cur += int32(len(src)) | 
|  | e.prev = e.prev[:len(src)] | 
|  | copy(e.prev, src) | 
|  | return dst | 
|  | } | 
|  |  | 
|  | func emitLiteral(dst []token, lit []byte) []token { | 
|  | for _, v := range lit { | 
|  | dst = append(dst, literalToken(uint32(v))) | 
|  | } | 
|  | return dst | 
|  | } | 
|  |  | 
|  | // matchLen returns the match length between src[s:] and src[t:]. | 
|  | // t can be negative to indicate the match is starting in e.prev. | 
|  | // We assume that src[s-4:s] and src[t-4:t] already match. | 
|  | func (e *deflateFast) matchLen(s, t int32, src []byte) int32 { | 
|  | s1 := int(s) + maxMatchLength - 4 | 
|  | if s1 > len(src) { | 
|  | s1 = len(src) | 
|  | } | 
|  |  | 
|  | // If we are inside the current block | 
|  | if t >= 0 { | 
|  | b := src[t:] | 
|  | a := src[s:s1] | 
|  | b = b[:len(a)] | 
|  | // Extend the match to be as long as possible. | 
|  | for i := range a { | 
|  | if a[i] != b[i] { | 
|  | return int32(i) | 
|  | } | 
|  | } | 
|  | return int32(len(a)) | 
|  | } | 
|  |  | 
|  | // We found a match in the previous block. | 
|  | tp := int32(len(e.prev)) + t | 
|  | if tp < 0 { | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | // Extend the match to be as long as possible. | 
|  | a := src[s:s1] | 
|  | b := e.prev[tp:] | 
|  | if len(b) > len(a) { | 
|  | b = b[:len(a)] | 
|  | } | 
|  | a = a[:len(b)] | 
|  | for i := range b { | 
|  | if a[i] != b[i] { | 
|  | return int32(i) | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we reached our limit, we matched everything we are | 
|  | // allowed to in the previous block and we return. | 
|  | n := int32(len(b)) | 
|  | if int(s+n) == s1 { | 
|  | return n | 
|  | } | 
|  |  | 
|  | // Continue looking for more matches in the current block. | 
|  | a = src[s+n : s1] | 
|  | b = src[:len(a)] | 
|  | for i := range a { | 
|  | if a[i] != b[i] { | 
|  | return int32(i) + n | 
|  | } | 
|  | } | 
|  | return int32(len(a)) + n | 
|  | } | 
|  |  | 
|  | // Reset resets the encoding history. | 
|  | // This ensures that no matches are made to the previous block. | 
|  | func (e *deflateFast) reset() { | 
|  | e.prev = e.prev[:0] | 
|  | // Bump the offset, so all matches will fail distance check. | 
|  | e.cur += maxMatchOffset | 
|  |  | 
|  | // Protect against e.cur wraparound. | 
|  | if e.cur > 1<<30 { | 
|  | e.resetAll() | 
|  | } | 
|  | } | 
|  |  | 
|  | // resetAll resets the deflateFast struct and is only called in rare | 
|  | // situations to prevent integer overflow. It manually resets each field | 
|  | // to avoid causing large stack growth. | 
|  | // | 
|  | // See https://golang.org/issue/18636. | 
|  | func (e *deflateFast) resetAll() { | 
|  | // This is equivalent to: | 
|  | //	*e = deflateFast{cur: maxStoreBlockSize, prev: e.prev[:0]} | 
|  | e.cur = maxStoreBlockSize | 
|  | e.prev = e.prev[:0] | 
|  | for i := range e.table { | 
|  | e.table[i] = tableEntry{} | 
|  | } | 
|  | } |