|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package math | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c | 
|  | // and came with this notice. The go code is a simplified | 
|  | // version of the original C. | 
|  | // | 
|  | // ==================================================== | 
|  | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | // | 
|  | // Developed at SunPro, a Sun Microsystems, Inc. business. | 
|  | // Permission to use, copy, modify, and distribute this | 
|  | // software is freely granted, provided that this notice | 
|  | // is preserved. | 
|  | // ==================================================== | 
|  | // | 
|  | // | 
|  | // __ieee754_acosh(x) | 
|  | // Method : | 
|  | //	Based on | 
|  | //	        acosh(x) = log [ x + sqrt(x*x-1) ] | 
|  | //	we have | 
|  | //	        acosh(x) := log(x)+ln2,	if x is large; else | 
|  | //	        acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else | 
|  | //	        acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. | 
|  | // | 
|  | // Special cases: | 
|  | //	acosh(x) is NaN with signal if x<1. | 
|  | //	acosh(NaN) is NaN without signal. | 
|  | // | 
|  |  | 
|  | // Acosh returns the inverse hyperbolic cosine of x. | 
|  | // | 
|  | // Special cases are: | 
|  | //	Acosh(+Inf) = +Inf | 
|  | //	Acosh(x) = NaN if x < 1 | 
|  | //	Acosh(NaN) = NaN | 
|  | func Acosh(x float64) float64 | 
|  |  | 
|  | func acosh(x float64) float64 { | 
|  | const ( | 
|  | Ln2   = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF | 
|  | Large = 1 << 28                    // 2**28 | 
|  | ) | 
|  | // first case is special case | 
|  | switch { | 
|  | case x < 1 || IsNaN(x): | 
|  | return NaN() | 
|  | case x == 1: | 
|  | return 0 | 
|  | case x >= Large: | 
|  | return Log(x) + Ln2 // x > 2**28 | 
|  | case x > 2: | 
|  | return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2 | 
|  | } | 
|  | t := x - 1 | 
|  | return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1 | 
|  | } |