| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package time provides functionality for measuring and displaying time. |
| // |
| // The calendrical calculations always assume a Gregorian calendar, with |
| // no leap seconds. |
| // |
| // Monotonic Clocks |
| // |
| // Operating systems provide both a “wall clock,” which is subject to |
| // changes for clock synchronization, and a “monotonic clock,” which is |
| // not. The general rule is that the wall clock is for telling time and |
| // the monotonic clock is for measuring time. Rather than split the API, |
| // in this package the Time returned by time.Now contains both a wall |
| // clock reading and a monotonic clock reading; later time-telling |
| // operations use the wall clock reading, but later time-measuring |
| // operations, specifically comparisons and subtractions, use the |
| // monotonic clock reading. |
| // |
| // For example, this code always computes a positive elapsed time of |
| // approximately 20 milliseconds, even if the wall clock is changed during |
| // the operation being timed: |
| // |
| // start := time.Now() |
| // ... operation that takes 20 milliseconds ... |
| // t := time.Now() |
| // elapsed := t.Sub(start) |
| // |
| // Other idioms, such as time.Since(start), time.Until(deadline), and |
| // time.Now().Before(deadline), are similarly robust against wall clock |
| // resets. |
| // |
| // The rest of this section gives the precise details of how operations |
| // use monotonic clocks, but understanding those details is not required |
| // to use this package. |
| // |
| // The Time returned by time.Now contains a monotonic clock reading. |
| // If Time t has a monotonic clock reading, t.Add adds the same duration to |
| // both the wall clock and monotonic clock readings to compute the result. |
| // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time |
| // computations, they always strip any monotonic clock reading from their results. |
| // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation |
| // of the wall time, they also strip any monotonic clock reading from their results. |
| // The canonical way to strip a monotonic clock reading is to use t = t.Round(0). |
| // |
| // If Times t and u both contain monotonic clock readings, the operations |
| // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out |
| // using the monotonic clock readings alone, ignoring the wall clock |
| // readings. If either t or u contains no monotonic clock reading, these |
| // operations fall back to using the wall clock readings. |
| // |
| // On some systems the monotonic clock will stop if the computer goes to sleep. |
| // On such a system, t.Sub(u) may not accurately reflect the actual |
| // time that passed between t and u. |
| // |
| // Because the monotonic clock reading has no meaning outside |
| // the current process, the serialized forms generated by t.GobEncode, |
| // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic |
| // clock reading, and t.Format provides no format for it. Similarly, the |
| // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix, |
| // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary. |
| // t.UnmarshalJSON, and t.UnmarshalText always create times with |
| // no monotonic clock reading. |
| // |
| // Note that the Go == operator compares not just the time instant but |
| // also the Location and the monotonic clock reading. See the |
| // documentation for the Time type for a discussion of equality |
| // testing for Time values. |
| // |
| // For debugging, the result of t.String does include the monotonic |
| // clock reading if present. If t != u because of different monotonic clock readings, |
| // that difference will be visible when printing t.String() and u.String(). |
| // |
| package time |
| |
| import ( |
| "errors" |
| _ "unsafe" // for go:linkname |
| ) |
| |
| // A Time represents an instant in time with nanosecond precision. |
| // |
| // Programs using times should typically store and pass them as values, |
| // not pointers. That is, time variables and struct fields should be of |
| // type time.Time, not *time.Time. |
| // |
| // A Time value can be used by multiple goroutines simultaneously except |
| // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and |
| // UnmarshalText are not concurrency-safe. |
| // |
| // Time instants can be compared using the Before, After, and Equal methods. |
| // The Sub method subtracts two instants, producing a Duration. |
| // The Add method adds a Time and a Duration, producing a Time. |
| // |
| // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. |
| // As this time is unlikely to come up in practice, the IsZero method gives |
| // a simple way of detecting a time that has not been initialized explicitly. |
| // |
| // Each Time has associated with it a Location, consulted when computing the |
| // presentation form of the time, such as in the Format, Hour, and Year methods. |
| // The methods Local, UTC, and In return a Time with a specific location. |
| // Changing the location in this way changes only the presentation; it does not |
| // change the instant in time being denoted and therefore does not affect the |
| // computations described in earlier paragraphs. |
| // |
| // Representations of a Time value saved by the GobEncode, MarshalBinary, |
| // MarshalJSON, and MarshalText methods store the Time.Location's offset, but not |
| // the location name. They therefore lose information about Daylight Saving Time. |
| // |
| // In addition to the required “wall clock” reading, a Time may contain an optional |
| // reading of the current process's monotonic clock, to provide additional precision |
| // for comparison or subtraction. |
| // See the “Monotonic Clocks” section in the package documentation for details. |
| // |
| // Note that the Go == operator compares not just the time instant but also the |
| // Location and the monotonic clock reading. Therefore, Time values should not |
| // be used as map or database keys without first guaranteeing that the |
| // identical Location has been set for all values, which can be achieved |
| // through use of the UTC or Local method, and that the monotonic clock reading |
| // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u) |
| // to t == u, since t.Equal uses the most accurate comparison available and |
| // correctly handles the case when only one of its arguments has a monotonic |
| // clock reading. |
| // |
| type Time struct { |
| // wall and ext encode the wall time seconds, wall time nanoseconds, |
| // and optional monotonic clock reading in nanoseconds. |
| // |
| // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic), |
| // a 33-bit seconds field, and a 30-bit wall time nanoseconds field. |
| // The nanoseconds field is in the range [0, 999999999]. |
| // If the hasMonotonic bit is 0, then the 33-bit field must be zero |
| // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext. |
| // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit |
| // unsigned wall seconds since Jan 1 year 1885, and ext holds a |
| // signed 64-bit monotonic clock reading, nanoseconds since process start. |
| wall uint64 |
| ext int64 |
| |
| // loc specifies the Location that should be used to |
| // determine the minute, hour, month, day, and year |
| // that correspond to this Time. |
| // The nil location means UTC. |
| // All UTC times are represented with loc==nil, never loc==&utcLoc. |
| loc *Location |
| } |
| |
| const ( |
| hasMonotonic = 1 << 63 |
| maxWall = wallToInternal + (1<<33 - 1) // year 2157 |
| minWall = wallToInternal // year 1885 |
| nsecMask = 1<<30 - 1 |
| nsecShift = 30 |
| ) |
| |
| // These helpers for manipulating the wall and monotonic clock readings |
| // take pointer receivers, even when they don't modify the time, |
| // to make them cheaper to call. |
| |
| // nsec returns the time's nanoseconds. |
| func (t *Time) nsec() int32 { |
| return int32(t.wall & nsecMask) |
| } |
| |
| // sec returns the time's seconds since Jan 1 year 1. |
| func (t *Time) sec() int64 { |
| if t.wall&hasMonotonic != 0 { |
| return wallToInternal + int64(t.wall<<1>>(nsecShift+1)) |
| } |
| return t.ext |
| } |
| |
| // unixSec returns the time's seconds since Jan 1 1970 (Unix time). |
| func (t *Time) unixSec() int64 { return t.sec() + internalToUnix } |
| |
| // addSec adds d seconds to the time. |
| func (t *Time) addSec(d int64) { |
| if t.wall&hasMonotonic != 0 { |
| sec := int64(t.wall << 1 >> (nsecShift + 1)) |
| dsec := sec + d |
| if 0 <= dsec && dsec <= 1<<33-1 { |
| t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic |
| return |
| } |
| // Wall second now out of range for packed field. |
| // Move to ext. |
| t.stripMono() |
| } |
| |
| // Check if the sum of t.ext and d overflows and handle it properly. |
| sum := t.ext + d |
| if (sum > t.ext) == (d > 0) { |
| t.ext = sum |
| } else if d > 0 { |
| t.ext = 1<<63 - 1 |
| } else { |
| t.ext = -(1<<63 - 1) |
| } |
| } |
| |
| // setLoc sets the location associated with the time. |
| func (t *Time) setLoc(loc *Location) { |
| if loc == &utcLoc { |
| loc = nil |
| } |
| t.stripMono() |
| t.loc = loc |
| } |
| |
| // stripMono strips the monotonic clock reading in t. |
| func (t *Time) stripMono() { |
| if t.wall&hasMonotonic != 0 { |
| t.ext = t.sec() |
| t.wall &= nsecMask |
| } |
| } |
| |
| // setMono sets the monotonic clock reading in t. |
| // If t cannot hold a monotonic clock reading, |
| // because its wall time is too large, |
| // setMono is a no-op. |
| func (t *Time) setMono(m int64) { |
| if t.wall&hasMonotonic == 0 { |
| sec := t.ext |
| if sec < minWall || maxWall < sec { |
| return |
| } |
| t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift |
| } |
| t.ext = m |
| } |
| |
| // mono returns t's monotonic clock reading. |
| // It returns 0 for a missing reading. |
| // This function is used only for testing, |
| // so it's OK that technically 0 is a valid |
| // monotonic clock reading as well. |
| func (t *Time) mono() int64 { |
| if t.wall&hasMonotonic == 0 { |
| return 0 |
| } |
| return t.ext |
| } |
| |
| // After reports whether the time instant t is after u. |
| func (t Time) After(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext > u.ext |
| } |
| ts := t.sec() |
| us := u.sec() |
| return ts > us || ts == us && t.nsec() > u.nsec() |
| } |
| |
| // Before reports whether the time instant t is before u. |
| func (t Time) Before(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext < u.ext |
| } |
| ts := t.sec() |
| us := u.sec() |
| return ts < us || ts == us && t.nsec() < u.nsec() |
| } |
| |
| // Equal reports whether t and u represent the same time instant. |
| // Two times can be equal even if they are in different locations. |
| // For example, 6:00 +0200 and 4:00 UTC are Equal. |
| // See the documentation on the Time type for the pitfalls of using == with |
| // Time values; most code should use Equal instead. |
| func (t Time) Equal(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext == u.ext |
| } |
| return t.sec() == u.sec() && t.nsec() == u.nsec() |
| } |
| |
| // A Month specifies a month of the year (January = 1, ...). |
| type Month int |
| |
| const ( |
| January Month = 1 + iota |
| February |
| March |
| April |
| May |
| June |
| July |
| August |
| September |
| October |
| November |
| December |
| ) |
| |
| // String returns the English name of the month ("January", "February", ...). |
| func (m Month) String() string { |
| if January <= m && m <= December { |
| return longMonthNames[m-1] |
| } |
| buf := make([]byte, 20) |
| n := fmtInt(buf, uint64(m)) |
| return "%!Month(" + string(buf[n:]) + ")" |
| } |
| |
| // A Weekday specifies a day of the week (Sunday = 0, ...). |
| type Weekday int |
| |
| const ( |
| Sunday Weekday = iota |
| Monday |
| Tuesday |
| Wednesday |
| Thursday |
| Friday |
| Saturday |
| ) |
| |
| // String returns the English name of the day ("Sunday", "Monday", ...). |
| func (d Weekday) String() string { |
| if Sunday <= d && d <= Saturday { |
| return longDayNames[d] |
| } |
| buf := make([]byte, 20) |
| n := fmtInt(buf, uint64(d)) |
| return "%!Weekday(" + string(buf[n:]) + ")" |
| } |
| |
| // Computations on time. |
| // |
| // The zero value for a Time is defined to be |
| // January 1, year 1, 00:00:00.000000000 UTC |
| // which (1) looks like a zero, or as close as you can get in a date |
| // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to |
| // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a |
| // non-negative year even in time zones west of UTC, unlike 1-1-0 |
| // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. |
| // |
| // The zero Time value does not force a specific epoch for the time |
| // representation. For example, to use the Unix epoch internally, we |
| // could define that to distinguish a zero value from Jan 1 1970, that |
| // time would be represented by sec=-1, nsec=1e9. However, it does |
| // suggest a representation, namely using 1-1-1 00:00:00 UTC as the |
| // epoch, and that's what we do. |
| // |
| // The Add and Sub computations are oblivious to the choice of epoch. |
| // |
| // The presentation computations - year, month, minute, and so on - all |
| // rely heavily on division and modulus by positive constants. For |
| // calendrical calculations we want these divisions to round down, even |
| // for negative values, so that the remainder is always positive, but |
| // Go's division (like most hardware division instructions) rounds to |
| // zero. We can still do those computations and then adjust the result |
| // for a negative numerator, but it's annoying to write the adjustment |
| // over and over. Instead, we can change to a different epoch so long |
| // ago that all the times we care about will be positive, and then round |
| // to zero and round down coincide. These presentation routines already |
| // have to add the zone offset, so adding the translation to the |
| // alternate epoch is cheap. For example, having a non-negative time t |
| // means that we can write |
| // |
| // sec = t % 60 |
| // |
| // instead of |
| // |
| // sec = t % 60 |
| // if sec < 0 { |
| // sec += 60 |
| // } |
| // |
| // everywhere. |
| // |
| // The calendar runs on an exact 400 year cycle: a 400-year calendar |
| // printed for 1970-2369 will apply as well to 2370-2769. Even the days |
| // of the week match up. It simplifies the computations to choose the |
| // cycle boundaries so that the exceptional years are always delayed as |
| // long as possible. That means choosing a year equal to 1 mod 400, so |
| // that the first leap year is the 4th year, the first missed leap year |
| // is the 100th year, and the missed missed leap year is the 400th year. |
| // So we'd prefer instead to print a calendar for 2001-2400 and reuse it |
| // for 2401-2800. |
| // |
| // Finally, it's convenient if the delta between the Unix epoch and |
| // long-ago epoch is representable by an int64 constant. |
| // |
| // These three considerations—choose an epoch as early as possible, that |
| // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds |
| // earlier than 1970—bring us to the year -292277022399. We refer to |
| // this year as the absolute zero year, and to times measured as a uint64 |
| // seconds since this year as absolute times. |
| // |
| // Times measured as an int64 seconds since the year 1—the representation |
| // used for Time's sec field—are called internal times. |
| // |
| // Times measured as an int64 seconds since the year 1970 are called Unix |
| // times. |
| // |
| // It is tempting to just use the year 1 as the absolute epoch, defining |
| // that the routines are only valid for years >= 1. However, the |
| // routines would then be invalid when displaying the epoch in time zones |
| // west of UTC, since it is year 0. It doesn't seem tenable to say that |
| // printing the zero time correctly isn't supported in half the time |
| // zones. By comparison, it's reasonable to mishandle some times in |
| // the year -292277022399. |
| // |
| // All this is opaque to clients of the API and can be changed if a |
| // better implementation presents itself. |
| |
| const ( |
| // The unsigned zero year for internal calculations. |
| // Must be 1 mod 400, and times before it will not compute correctly, |
| // but otherwise can be changed at will. |
| absoluteZeroYear = -292277022399 |
| |
| // The year of the zero Time. |
| // Assumed by the unixToInternal computation below. |
| internalYear = 1 |
| |
| // Offsets to convert between internal and absolute or Unix times. |
| absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay |
| internalToAbsolute = -absoluteToInternal |
| |
| unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay |
| internalToUnix int64 = -unixToInternal |
| |
| wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay |
| ) |
| |
| // IsZero reports whether t represents the zero time instant, |
| // January 1, year 1, 00:00:00 UTC. |
| func (t Time) IsZero() bool { |
| return t.sec() == 0 && t.nsec() == 0 |
| } |
| |
| // abs returns the time t as an absolute time, adjusted by the zone offset. |
| // It is called when computing a presentation property like Month or Hour. |
| func (t Time) abs() uint64 { |
| l := t.loc |
| // Avoid function calls when possible. |
| if l == nil || l == &localLoc { |
| l = l.get() |
| } |
| sec := t.unixSec() |
| if l != &utcLoc { |
| if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { |
| sec += int64(l.cacheZone.offset) |
| } else { |
| _, offset, _, _, _ := l.lookup(sec) |
| sec += int64(offset) |
| } |
| } |
| return uint64(sec + (unixToInternal + internalToAbsolute)) |
| } |
| |
| // locabs is a combination of the Zone and abs methods, |
| // extracting both return values from a single zone lookup. |
| func (t Time) locabs() (name string, offset int, abs uint64) { |
| l := t.loc |
| if l == nil || l == &localLoc { |
| l = l.get() |
| } |
| // Avoid function call if we hit the local time cache. |
| sec := t.unixSec() |
| if l != &utcLoc { |
| if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { |
| name = l.cacheZone.name |
| offset = l.cacheZone.offset |
| } else { |
| name, offset, _, _, _ = l.lookup(sec) |
| } |
| sec += int64(offset) |
| } else { |
| name = "UTC" |
| } |
| abs = uint64(sec + (unixToInternal + internalToAbsolute)) |
| return |
| } |
| |
| // Date returns the year, month, and day in which t occurs. |
| func (t Time) Date() (year int, month Month, day int) { |
| year, month, day, _ = t.date(true) |
| return |
| } |
| |
| // Year returns the year in which t occurs. |
| func (t Time) Year() int { |
| year, _, _, _ := t.date(false) |
| return year |
| } |
| |
| // Month returns the month of the year specified by t. |
| func (t Time) Month() Month { |
| _, month, _, _ := t.date(true) |
| return month |
| } |
| |
| // Day returns the day of the month specified by t. |
| func (t Time) Day() int { |
| _, _, day, _ := t.date(true) |
| return day |
| } |
| |
| // Weekday returns the day of the week specified by t. |
| func (t Time) Weekday() Weekday { |
| return absWeekday(t.abs()) |
| } |
| |
| // absWeekday is like Weekday but operates on an absolute time. |
| func absWeekday(abs uint64) Weekday { |
| // January 1 of the absolute year, like January 1 of 2001, was a Monday. |
| sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek |
| return Weekday(int(sec) / secondsPerDay) |
| } |
| |
| // ISOWeek returns the ISO 8601 year and week number in which t occurs. |
| // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to |
| // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 |
| // of year n+1. |
| func (t Time) ISOWeek() (year, week int) { |
| // According to the rule that the first calendar week of a calendar year is |
| // the week including the first Thursday of that year, and that the last one is |
| // the week immediately preceding the first calendar week of the next calendar year. |
| // See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details. |
| |
| // weeks start with Monday |
| // Monday Tuesday Wednesday Thursday Friday Saturday Sunday |
| // 1 2 3 4 5 6 7 |
| // +3 +2 +1 0 -1 -2 -3 |
| // the offset to Thursday |
| abs := t.abs() |
| d := Thursday - absWeekday(abs) |
| // handle Sunday |
| if d == 4 { |
| d = -3 |
| } |
| // find the Thursday of the calendar week |
| abs += uint64(d) * secondsPerDay |
| year, _, _, yday := absDate(abs, false) |
| return year, yday/7 + 1 |
| } |
| |
| // Clock returns the hour, minute, and second within the day specified by t. |
| func (t Time) Clock() (hour, min, sec int) { |
| return absClock(t.abs()) |
| } |
| |
| // absClock is like clock but operates on an absolute time. |
| func absClock(abs uint64) (hour, min, sec int) { |
| sec = int(abs % secondsPerDay) |
| hour = sec / secondsPerHour |
| sec -= hour * secondsPerHour |
| min = sec / secondsPerMinute |
| sec -= min * secondsPerMinute |
| return |
| } |
| |
| // Hour returns the hour within the day specified by t, in the range [0, 23]. |
| func (t Time) Hour() int { |
| return int(t.abs()%secondsPerDay) / secondsPerHour |
| } |
| |
| // Minute returns the minute offset within the hour specified by t, in the range [0, 59]. |
| func (t Time) Minute() int { |
| return int(t.abs()%secondsPerHour) / secondsPerMinute |
| } |
| |
| // Second returns the second offset within the minute specified by t, in the range [0, 59]. |
| func (t Time) Second() int { |
| return int(t.abs() % secondsPerMinute) |
| } |
| |
| // Nanosecond returns the nanosecond offset within the second specified by t, |
| // in the range [0, 999999999]. |
| func (t Time) Nanosecond() int { |
| return int(t.nsec()) |
| } |
| |
| // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, |
| // and [1,366] in leap years. |
| func (t Time) YearDay() int { |
| _, _, _, yday := t.date(false) |
| return yday + 1 |
| } |
| |
| // A Duration represents the elapsed time between two instants |
| // as an int64 nanosecond count. The representation limits the |
| // largest representable duration to approximately 290 years. |
| type Duration int64 |
| |
| const ( |
| minDuration Duration = -1 << 63 |
| maxDuration Duration = 1<<63 - 1 |
| ) |
| |
| // Common durations. There is no definition for units of Day or larger |
| // to avoid confusion across daylight savings time zone transitions. |
| // |
| // To count the number of units in a Duration, divide: |
| // second := time.Second |
| // fmt.Print(int64(second/time.Millisecond)) // prints 1000 |
| // |
| // To convert an integer number of units to a Duration, multiply: |
| // seconds := 10 |
| // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s |
| // |
| const ( |
| Nanosecond Duration = 1 |
| Microsecond = 1000 * Nanosecond |
| Millisecond = 1000 * Microsecond |
| Second = 1000 * Millisecond |
| Minute = 60 * Second |
| Hour = 60 * Minute |
| ) |
| |
| // String returns a string representing the duration in the form "72h3m0.5s". |
| // Leading zero units are omitted. As a special case, durations less than one |
| // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure |
| // that the leading digit is non-zero. The zero duration formats as 0s. |
| func (d Duration) String() string { |
| // Largest time is 2540400h10m10.000000000s |
| var buf [32]byte |
| w := len(buf) |
| |
| u := uint64(d) |
| neg := d < 0 |
| if neg { |
| u = -u |
| } |
| |
| if u < uint64(Second) { |
| // Special case: if duration is smaller than a second, |
| // use smaller units, like 1.2ms |
| var prec int |
| w-- |
| buf[w] = 's' |
| w-- |
| switch { |
| case u == 0: |
| return "0s" |
| case u < uint64(Microsecond): |
| // print nanoseconds |
| prec = 0 |
| buf[w] = 'n' |
| case u < uint64(Millisecond): |
| // print microseconds |
| prec = 3 |
| // U+00B5 'µ' micro sign == 0xC2 0xB5 |
| w-- // Need room for two bytes. |
| copy(buf[w:], "µ") |
| default: |
| // print milliseconds |
| prec = 6 |
| buf[w] = 'm' |
| } |
| w, u = fmtFrac(buf[:w], u, prec) |
| w = fmtInt(buf[:w], u) |
| } else { |
| w-- |
| buf[w] = 's' |
| |
| w, u = fmtFrac(buf[:w], u, 9) |
| |
| // u is now integer seconds |
| w = fmtInt(buf[:w], u%60) |
| u /= 60 |
| |
| // u is now integer minutes |
| if u > 0 { |
| w-- |
| buf[w] = 'm' |
| w = fmtInt(buf[:w], u%60) |
| u /= 60 |
| |
| // u is now integer hours |
| // Stop at hours because days can be different lengths. |
| if u > 0 { |
| w-- |
| buf[w] = 'h' |
| w = fmtInt(buf[:w], u) |
| } |
| } |
| } |
| |
| if neg { |
| w-- |
| buf[w] = '-' |
| } |
| |
| return string(buf[w:]) |
| } |
| |
| // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the |
| // tail of buf, omitting trailing zeros. It omits the decimal |
| // point too when the fraction is 0. It returns the index where the |
| // output bytes begin and the value v/10**prec. |
| func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { |
| // Omit trailing zeros up to and including decimal point. |
| w := len(buf) |
| print := false |
| for i := 0; i < prec; i++ { |
| digit := v % 10 |
| print = print || digit != 0 |
| if print { |
| w-- |
| buf[w] = byte(digit) + '0' |
| } |
| v /= 10 |
| } |
| if print { |
| w-- |
| buf[w] = '.' |
| } |
| return w, v |
| } |
| |
| // fmtInt formats v into the tail of buf. |
| // It returns the index where the output begins. |
| func fmtInt(buf []byte, v uint64) int { |
| w := len(buf) |
| if v == 0 { |
| w-- |
| buf[w] = '0' |
| } else { |
| for v > 0 { |
| w-- |
| buf[w] = byte(v%10) + '0' |
| v /= 10 |
| } |
| } |
| return w |
| } |
| |
| // Nanoseconds returns the duration as an integer nanosecond count. |
| func (d Duration) Nanoseconds() int64 { return int64(d) } |
| |
| // Microseconds returns the duration as an integer microsecond count. |
| func (d Duration) Microseconds() int64 { return int64(d) / 1e3 } |
| |
| // Milliseconds returns the duration as an integer millisecond count. |
| func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 } |
| |
| // These methods return float64 because the dominant |
| // use case is for printing a floating point number like 1.5s, and |
| // a truncation to integer would make them not useful in those cases. |
| // Splitting the integer and fraction ourselves guarantees that |
| // converting the returned float64 to an integer rounds the same |
| // way that a pure integer conversion would have, even in cases |
| // where, say, float64(d.Nanoseconds())/1e9 would have rounded |
| // differently. |
| |
| // Seconds returns the duration as a floating point number of seconds. |
| func (d Duration) Seconds() float64 { |
| sec := d / Second |
| nsec := d % Second |
| return float64(sec) + float64(nsec)/1e9 |
| } |
| |
| // Minutes returns the duration as a floating point number of minutes. |
| func (d Duration) Minutes() float64 { |
| min := d / Minute |
| nsec := d % Minute |
| return float64(min) + float64(nsec)/(60*1e9) |
| } |
| |
| // Hours returns the duration as a floating point number of hours. |
| func (d Duration) Hours() float64 { |
| hour := d / Hour |
| nsec := d % Hour |
| return float64(hour) + float64(nsec)/(60*60*1e9) |
| } |
| |
| // Truncate returns the result of rounding d toward zero to a multiple of m. |
| // If m <= 0, Truncate returns d unchanged. |
| func (d Duration) Truncate(m Duration) Duration { |
| if m <= 0 { |
| return d |
| } |
| return d - d%m |
| } |
| |
| // lessThanHalf reports whether x+x < y but avoids overflow, |
| // assuming x and y are both positive (Duration is signed). |
| func lessThanHalf(x, y Duration) bool { |
| return uint64(x)+uint64(x) < uint64(y) |
| } |
| |
| // Round returns the result of rounding d to the nearest multiple of m. |
| // The rounding behavior for halfway values is to round away from zero. |
| // If the result exceeds the maximum (or minimum) |
| // value that can be stored in a Duration, |
| // Round returns the maximum (or minimum) duration. |
| // If m <= 0, Round returns d unchanged. |
| func (d Duration) Round(m Duration) Duration { |
| if m <= 0 { |
| return d |
| } |
| r := d % m |
| if d < 0 { |
| r = -r |
| if lessThanHalf(r, m) { |
| return d + r |
| } |
| if d1 := d - m + r; d1 < d { |
| return d1 |
| } |
| return minDuration // overflow |
| } |
| if lessThanHalf(r, m) { |
| return d - r |
| } |
| if d1 := d + m - r; d1 > d { |
| return d1 |
| } |
| return maxDuration // overflow |
| } |
| |
| // Add returns the time t+d. |
| func (t Time) Add(d Duration) Time { |
| dsec := int64(d / 1e9) |
| nsec := t.nsec() + int32(d%1e9) |
| if nsec >= 1e9 { |
| dsec++ |
| nsec -= 1e9 |
| } else if nsec < 0 { |
| dsec-- |
| nsec += 1e9 |
| } |
| t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec |
| t.addSec(dsec) |
| if t.wall&hasMonotonic != 0 { |
| te := t.ext + int64(d) |
| if d < 0 && te > t.ext || d > 0 && te < t.ext { |
| // Monotonic clock reading now out of range; degrade to wall-only. |
| t.stripMono() |
| } else { |
| t.ext = te |
| } |
| } |
| return t |
| } |
| |
| // Sub returns the duration t-u. If the result exceeds the maximum (or minimum) |
| // value that can be stored in a Duration, the maximum (or minimum) duration |
| // will be returned. |
| // To compute t-d for a duration d, use t.Add(-d). |
| func (t Time) Sub(u Time) Duration { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| te := t.ext |
| ue := u.ext |
| d := Duration(te - ue) |
| if d < 0 && te > ue { |
| return maxDuration // t - u is positive out of range |
| } |
| if d > 0 && te < ue { |
| return minDuration // t - u is negative out of range |
| } |
| return d |
| } |
| d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec()) |
| // Check for overflow or underflow. |
| switch { |
| case u.Add(d).Equal(t): |
| return d // d is correct |
| case t.Before(u): |
| return minDuration // t - u is negative out of range |
| default: |
| return maxDuration // t - u is positive out of range |
| } |
| } |
| |
| // Since returns the time elapsed since t. |
| // It is shorthand for time.Now().Sub(t). |
| func Since(t Time) Duration { |
| var now Time |
| if t.wall&hasMonotonic != 0 { |
| // Common case optimization: if t has monotonic time, then Sub will use only it. |
| now = Time{hasMonotonic, runtimeNano() - startNano, nil} |
| } else { |
| now = Now() |
| } |
| return now.Sub(t) |
| } |
| |
| // Until returns the duration until t. |
| // It is shorthand for t.Sub(time.Now()). |
| func Until(t Time) Duration { |
| var now Time |
| if t.wall&hasMonotonic != 0 { |
| // Common case optimization: if t has monotonic time, then Sub will use only it. |
| now = Time{hasMonotonic, runtimeNano() - startNano, nil} |
| } else { |
| now = Now() |
| } |
| return t.Sub(now) |
| } |
| |
| // AddDate returns the time corresponding to adding the |
| // given number of years, months, and days to t. |
| // For example, AddDate(-1, 2, 3) applied to January 1, 2011 |
| // returns March 4, 2010. |
| // |
| // AddDate normalizes its result in the same way that Date does, |
| // so, for example, adding one month to October 31 yields |
| // December 1, the normalized form for November 31. |
| func (t Time) AddDate(years int, months int, days int) Time { |
| year, month, day := t.Date() |
| hour, min, sec := t.Clock() |
| return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location()) |
| } |
| |
| const ( |
| secondsPerMinute = 60 |
| secondsPerHour = 60 * secondsPerMinute |
| secondsPerDay = 24 * secondsPerHour |
| secondsPerWeek = 7 * secondsPerDay |
| daysPer400Years = 365*400 + 97 |
| daysPer100Years = 365*100 + 24 |
| daysPer4Years = 365*4 + 1 |
| ) |
| |
| // date computes the year, day of year, and when full=true, |
| // the month and day in which t occurs. |
| func (t Time) date(full bool) (year int, month Month, day int, yday int) { |
| return absDate(t.abs(), full) |
| } |
| |
| // absDate is like date but operates on an absolute time. |
| func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) { |
| // Split into time and day. |
| d := abs / secondsPerDay |
| |
| // Account for 400 year cycles. |
| n := d / daysPer400Years |
| y := 400 * n |
| d -= daysPer400Years * n |
| |
| // Cut off 100-year cycles. |
| // The last cycle has one extra leap year, so on the last day |
| // of that year, day / daysPer100Years will be 4 instead of 3. |
| // Cut it back down to 3 by subtracting n>>2. |
| n = d / daysPer100Years |
| n -= n >> 2 |
| y += 100 * n |
| d -= daysPer100Years * n |
| |
| // Cut off 4-year cycles. |
| // The last cycle has a missing leap year, which does not |
| // affect the computation. |
| n = d / daysPer4Years |
| y += 4 * n |
| d -= daysPer4Years * n |
| |
| // Cut off years within a 4-year cycle. |
| // The last year is a leap year, so on the last day of that year, |
| // day / 365 will be 4 instead of 3. Cut it back down to 3 |
| // by subtracting n>>2. |
| n = d / 365 |
| n -= n >> 2 |
| y += n |
| d -= 365 * n |
| |
| year = int(int64(y) + absoluteZeroYear) |
| yday = int(d) |
| |
| if !full { |
| return |
| } |
| |
| day = yday |
| if isLeap(year) { |
| // Leap year |
| switch { |
| case day > 31+29-1: |
| // After leap day; pretend it wasn't there. |
| day-- |
| case day == 31+29-1: |
| // Leap day. |
| month = February |
| day = 29 |
| return |
| } |
| } |
| |
| // Estimate month on assumption that every month has 31 days. |
| // The estimate may be too low by at most one month, so adjust. |
| month = Month(day / 31) |
| end := int(daysBefore[month+1]) |
| var begin int |
| if day >= end { |
| month++ |
| begin = end |
| } else { |
| begin = int(daysBefore[month]) |
| } |
| |
| month++ // because January is 1 |
| day = day - begin + 1 |
| return |
| } |
| |
| // daysBefore[m] counts the number of days in a non-leap year |
| // before month m begins. There is an entry for m=12, counting |
| // the number of days before January of next year (365). |
| var daysBefore = [...]int32{ |
| 0, |
| 31, |
| 31 + 28, |
| 31 + 28 + 31, |
| 31 + 28 + 31 + 30, |
| 31 + 28 + 31 + 30 + 31, |
| 31 + 28 + 31 + 30 + 31 + 30, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, |
| 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, |
| } |
| |
| func daysIn(m Month, year int) int { |
| if m == February && isLeap(year) { |
| return 29 |
| } |
| return int(daysBefore[m] - daysBefore[m-1]) |
| } |
| |
| // daysSinceEpoch takes a year and returns the number of days from |
| // the absolute epoch to the start of that year. |
| // This is basically (year - zeroYear) * 365, but accounting for leap days. |
| func daysSinceEpoch(year int) uint64 { |
| y := uint64(int64(year) - absoluteZeroYear) |
| |
| // Add in days from 400-year cycles. |
| n := y / 400 |
| y -= 400 * n |
| d := daysPer400Years * n |
| |
| // Add in 100-year cycles. |
| n = y / 100 |
| y -= 100 * n |
| d += daysPer100Years * n |
| |
| // Add in 4-year cycles. |
| n = y / 4 |
| y -= 4 * n |
| d += daysPer4Years * n |
| |
| // Add in non-leap years. |
| n = y |
| d += 365 * n |
| |
| return d |
| } |
| |
| // Provided by package runtime. |
| func now() (sec int64, nsec int32, mono int64) |
| |
| // runtimeNano returns the current value of the runtime clock in nanoseconds. |
| //go:linkname runtimeNano runtime.nanotime |
| func runtimeNano() int64 |
| |
| // Monotonic times are reported as offsets from startNano. |
| // We initialize startNano to runtimeNano() - 1 so that on systems where |
| // monotonic time resolution is fairly low (e.g. Windows 2008 |
| // which appears to have a default resolution of 15ms), |
| // we avoid ever reporting a monotonic time of 0. |
| // (Callers may want to use 0 as "time not set".) |
| var startNano int64 = runtimeNano() - 1 |
| |
| // Now returns the current local time. |
| func Now() Time { |
| sec, nsec, mono := now() |
| mono -= startNano |
| sec += unixToInternal - minWall |
| if uint64(sec)>>33 != 0 { |
| return Time{uint64(nsec), sec + minWall, Local} |
| } |
| return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local} |
| } |
| |
| func unixTime(sec int64, nsec int32) Time { |
| return Time{uint64(nsec), sec + unixToInternal, Local} |
| } |
| |
| // UTC returns t with the location set to UTC. |
| func (t Time) UTC() Time { |
| t.setLoc(&utcLoc) |
| return t |
| } |
| |
| // Local returns t with the location set to local time. |
| func (t Time) Local() Time { |
| t.setLoc(Local) |
| return t |
| } |
| |
| // In returns a copy of t representing the same time instant, but |
| // with the copy's location information set to loc for display |
| // purposes. |
| // |
| // In panics if loc is nil. |
| func (t Time) In(loc *Location) Time { |
| if loc == nil { |
| panic("time: missing Location in call to Time.In") |
| } |
| t.setLoc(loc) |
| return t |
| } |
| |
| // Location returns the time zone information associated with t. |
| func (t Time) Location() *Location { |
| l := t.loc |
| if l == nil { |
| l = UTC |
| } |
| return l |
| } |
| |
| // Zone computes the time zone in effect at time t, returning the abbreviated |
| // name of the zone (such as "CET") and its offset in seconds east of UTC. |
| func (t Time) Zone() (name string, offset int) { |
| name, offset, _, _, _ = t.loc.lookup(t.unixSec()) |
| return |
| } |
| |
| // Unix returns t as a Unix time, the number of seconds elapsed |
| // since January 1, 1970 UTC. The result does not depend on the |
| // location associated with t. |
| // Unix-like operating systems often record time as a 32-bit |
| // count of seconds, but since the method here returns a 64-bit |
| // value it is valid for billions of years into the past or future. |
| func (t Time) Unix() int64 { |
| return t.unixSec() |
| } |
| |
| // UnixMilli returns t as a Unix time, the number of milliseconds elapsed since |
| // January 1, 1970 UTC. The result is undefined if the Unix time in |
| // milliseconds cannot be represented by an int64 (a date more than 292 million |
| // years before or after 1970). The result does not depend on the |
| // location associated with t. |
| func (t Time) UnixMilli() int64 { |
| return t.unixSec()*1e3 + int64(t.nsec())/1e6 |
| } |
| |
| // UnixMicro returns t as a Unix time, the number of microseconds elapsed since |
| // January 1, 1970 UTC. The result is undefined if the Unix time in |
| // microseconds cannot be represented by an int64 (a date before year -290307 or |
| // after year 294246). The result does not depend on the location associated |
| // with t. |
| func (t Time) UnixMicro() int64 { |
| return t.unixSec()*1e6 + int64(t.nsec())/1e3 |
| } |
| |
| // UnixNano returns t as a Unix time, the number of nanoseconds elapsed |
| // since January 1, 1970 UTC. The result is undefined if the Unix time |
| // in nanoseconds cannot be represented by an int64 (a date before the year |
| // 1678 or after 2262). Note that this means the result of calling UnixNano |
| // on the zero Time is undefined. The result does not depend on the |
| // location associated with t. |
| func (t Time) UnixNano() int64 { |
| return (t.unixSec())*1e9 + int64(t.nsec()) |
| } |
| |
| const ( |
| timeBinaryVersionV1 byte = iota + 1 // For general situation |
| timeBinaryVersionV2 // For LMT only |
| ) |
| |
| // MarshalBinary implements the encoding.BinaryMarshaler interface. |
| func (t Time) MarshalBinary() ([]byte, error) { |
| var offsetMin int16 // minutes east of UTC. -1 is UTC. |
| var offsetSec int8 |
| version := timeBinaryVersionV1 |
| |
| if t.Location() == UTC { |
| offsetMin = -1 |
| } else { |
| _, offset := t.Zone() |
| if offset%60 != 0 { |
| version = timeBinaryVersionV2 |
| offsetSec = int8(offset % 60) |
| } |
| |
| offset /= 60 |
| if offset < -32768 || offset == -1 || offset > 32767 { |
| return nil, errors.New("Time.MarshalBinary: unexpected zone offset") |
| } |
| offsetMin = int16(offset) |
| } |
| |
| sec := t.sec() |
| nsec := t.nsec() |
| enc := []byte{ |
| version, // byte 0 : version |
| byte(sec >> 56), // bytes 1-8: seconds |
| byte(sec >> 48), |
| byte(sec >> 40), |
| byte(sec >> 32), |
| byte(sec >> 24), |
| byte(sec >> 16), |
| byte(sec >> 8), |
| byte(sec), |
| byte(nsec >> 24), // bytes 9-12: nanoseconds |
| byte(nsec >> 16), |
| byte(nsec >> 8), |
| byte(nsec), |
| byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes |
| byte(offsetMin), |
| } |
| if version == timeBinaryVersionV2 { |
| enc = append(enc, byte(offsetSec)) |
| } |
| |
| return enc, nil |
| } |
| |
| // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. |
| func (t *Time) UnmarshalBinary(data []byte) error { |
| buf := data |
| if len(buf) == 0 { |
| return errors.New("Time.UnmarshalBinary: no data") |
| } |
| |
| version := buf[0] |
| if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 { |
| return errors.New("Time.UnmarshalBinary: unsupported version") |
| } |
| |
| wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2 |
| if version == timeBinaryVersionV2 { |
| wantLen++ |
| } |
| if len(buf) != wantLen { |
| return errors.New("Time.UnmarshalBinary: invalid length") |
| } |
| |
| buf = buf[1:] |
| sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | |
| int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 |
| |
| buf = buf[8:] |
| nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24 |
| |
| buf = buf[4:] |
| offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 |
| if version == timeBinaryVersionV2 { |
| offset += int(buf[2]) |
| } |
| |
| *t = Time{} |
| t.wall = uint64(nsec) |
| t.ext = sec |
| |
| if offset == -1*60 { |
| t.setLoc(&utcLoc) |
| } else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff { |
| t.setLoc(Local) |
| } else { |
| t.setLoc(FixedZone("", offset)) |
| } |
| |
| return nil |
| } |
| |
| // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. |
| // The same semantics will be provided by the generic MarshalBinary, MarshalText, |
| // UnmarshalBinary, UnmarshalText. |
| |
| // GobEncode implements the gob.GobEncoder interface. |
| func (t Time) GobEncode() ([]byte, error) { |
| return t.MarshalBinary() |
| } |
| |
| // GobDecode implements the gob.GobDecoder interface. |
| func (t *Time) GobDecode(data []byte) error { |
| return t.UnmarshalBinary(data) |
| } |
| |
| // MarshalJSON implements the json.Marshaler interface. |
| // The time is a quoted string in RFC 3339 format, with sub-second precision added if present. |
| func (t Time) MarshalJSON() ([]byte, error) { |
| if y := t.Year(); y < 0 || y >= 10000 { |
| // RFC 3339 is clear that years are 4 digits exactly. |
| // See golang.org/issue/4556#c15 for more discussion. |
| return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]") |
| } |
| |
| b := make([]byte, 0, len(RFC3339Nano)+2) |
| b = append(b, '"') |
| b = t.AppendFormat(b, RFC3339Nano) |
| b = append(b, '"') |
| return b, nil |
| } |
| |
| // UnmarshalJSON implements the json.Unmarshaler interface. |
| // The time is expected to be a quoted string in RFC 3339 format. |
| func (t *Time) UnmarshalJSON(data []byte) error { |
| // Ignore null, like in the main JSON package. |
| if string(data) == "null" { |
| return nil |
| } |
| // Fractional seconds are handled implicitly by Parse. |
| var err error |
| *t, err = Parse(`"`+RFC3339+`"`, string(data)) |
| return err |
| } |
| |
| // MarshalText implements the encoding.TextMarshaler interface. |
| // The time is formatted in RFC 3339 format, with sub-second precision added if present. |
| func (t Time) MarshalText() ([]byte, error) { |
| if y := t.Year(); y < 0 || y >= 10000 { |
| return nil, errors.New("Time.MarshalText: year outside of range [0,9999]") |
| } |
| |
| b := make([]byte, 0, len(RFC3339Nano)) |
| return t.AppendFormat(b, RFC3339Nano), nil |
| } |
| |
| // UnmarshalText implements the encoding.TextUnmarshaler interface. |
| // The time is expected to be in RFC 3339 format. |
| func (t *Time) UnmarshalText(data []byte) error { |
| // Fractional seconds are handled implicitly by Parse. |
| var err error |
| *t, err = Parse(RFC3339, string(data)) |
| return err |
| } |
| |
| // Unix returns the local Time corresponding to the given Unix time, |
| // sec seconds and nsec nanoseconds since January 1, 1970 UTC. |
| // It is valid to pass nsec outside the range [0, 999999999]. |
| // Not all sec values have a corresponding time value. One such |
| // value is 1<<63-1 (the largest int64 value). |
| func Unix(sec int64, nsec int64) Time { |
| if nsec < 0 || nsec >= 1e9 { |
| n := nsec / 1e9 |
| sec += n |
| nsec -= n * 1e9 |
| if nsec < 0 { |
| nsec += 1e9 |
| sec-- |
| } |
| } |
| return unixTime(sec, int32(nsec)) |
| } |
| |
| // UnixMilli returns the local Time corresponding to the given Unix time, |
| // msec milliseconds since January 1, 1970 UTC. |
| func UnixMilli(msec int64) Time { |
| return Unix(msec/1e3, (msec%1e3)*1e6) |
| } |
| |
| // UnixMicro returns the local Time corresponding to the given Unix time, |
| // usec microseconds since January 1, 1970 UTC. |
| func UnixMicro(usec int64) Time { |
| return Unix(usec/1e6, (usec%1e6)*1e3) |
| } |
| |
| // IsDST reports whether the time in the configured location is in Daylight Savings Time. |
| func (t Time) IsDST() bool { |
| _, _, _, _, isDST := t.loc.lookup(t.Unix()) |
| return isDST |
| } |
| |
| func isLeap(year int) bool { |
| return year%4 == 0 && (year%100 != 0 || year%400 == 0) |
| } |
| |
| // norm returns nhi, nlo such that |
| // hi * base + lo == nhi * base + nlo |
| // 0 <= nlo < base |
| func norm(hi, lo, base int) (nhi, nlo int) { |
| if lo < 0 { |
| n := (-lo-1)/base + 1 |
| hi -= n |
| lo += n * base |
| } |
| if lo >= base { |
| n := lo / base |
| hi += n |
| lo -= n * base |
| } |
| return hi, lo |
| } |
| |
| // Date returns the Time corresponding to |
| // yyyy-mm-dd hh:mm:ss + nsec nanoseconds |
| // in the appropriate zone for that time in the given location. |
| // |
| // The month, day, hour, min, sec, and nsec values may be outside |
| // their usual ranges and will be normalized during the conversion. |
| // For example, October 32 converts to November 1. |
| // |
| // A daylight savings time transition skips or repeats times. |
| // For example, in the United States, March 13, 2011 2:15am never occurred, |
| // while November 6, 2011 1:15am occurred twice. In such cases, the |
| // choice of time zone, and therefore the time, is not well-defined. |
| // Date returns a time that is correct in one of the two zones involved |
| // in the transition, but it does not guarantee which. |
| // |
| // Date panics if loc is nil. |
| func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { |
| if loc == nil { |
| panic("time: missing Location in call to Date") |
| } |
| |
| // Normalize month, overflowing into year. |
| m := int(month) - 1 |
| year, m = norm(year, m, 12) |
| month = Month(m) + 1 |
| |
| // Normalize nsec, sec, min, hour, overflowing into day. |
| sec, nsec = norm(sec, nsec, 1e9) |
| min, sec = norm(min, sec, 60) |
| hour, min = norm(hour, min, 60) |
| day, hour = norm(day, hour, 24) |
| |
| // Compute days since the absolute epoch. |
| d := daysSinceEpoch(year) |
| |
| // Add in days before this month. |
| d += uint64(daysBefore[month-1]) |
| if isLeap(year) && month >= March { |
| d++ // February 29 |
| } |
| |
| // Add in days before today. |
| d += uint64(day - 1) |
| |
| // Add in time elapsed today. |
| abs := d * secondsPerDay |
| abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec) |
| |
| unix := int64(abs) + (absoluteToInternal + internalToUnix) |
| |
| // Look for zone offset for t, so we can adjust to UTC. |
| // The lookup function expects UTC, so we pass t in the |
| // hope that it will not be too close to a zone transition, |
| // and then adjust if it is. |
| _, offset, start, end, _ := loc.lookup(unix) |
| if offset != 0 { |
| switch utc := unix - int64(offset); { |
| case utc < start: |
| _, offset, _, _, _ = loc.lookup(start - 1) |
| case utc >= end: |
| _, offset, _, _, _ = loc.lookup(end) |
| } |
| unix -= int64(offset) |
| } |
| |
| t := unixTime(unix, int32(nsec)) |
| t.setLoc(loc) |
| return t |
| } |
| |
| // Truncate returns the result of rounding t down to a multiple of d (since the zero time). |
| // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged. |
| // |
| // Truncate operates on the time as an absolute duration since the |
| // zero time; it does not operate on the presentation form of the |
| // time. Thus, Truncate(Hour) may return a time with a non-zero |
| // minute, depending on the time's Location. |
| func (t Time) Truncate(d Duration) Time { |
| t.stripMono() |
| if d <= 0 { |
| return t |
| } |
| _, r := div(t, d) |
| return t.Add(-r) |
| } |
| |
| // Round returns the result of rounding t to the nearest multiple of d (since the zero time). |
| // The rounding behavior for halfway values is to round up. |
| // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged. |
| // |
| // Round operates on the time as an absolute duration since the |
| // zero time; it does not operate on the presentation form of the |
| // time. Thus, Round(Hour) may return a time with a non-zero |
| // minute, depending on the time's Location. |
| func (t Time) Round(d Duration) Time { |
| t.stripMono() |
| if d <= 0 { |
| return t |
| } |
| _, r := div(t, d) |
| if lessThanHalf(r, d) { |
| return t.Add(-r) |
| } |
| return t.Add(d - r) |
| } |
| |
| // div divides t by d and returns the quotient parity and remainder. |
| // We don't use the quotient parity anymore (round half up instead of round to even) |
| // but it's still here in case we change our minds. |
| func div(t Time, d Duration) (qmod2 int, r Duration) { |
| neg := false |
| nsec := t.nsec() |
| sec := t.sec() |
| if sec < 0 { |
| // Operate on absolute value. |
| neg = true |
| sec = -sec |
| nsec = -nsec |
| if nsec < 0 { |
| nsec += 1e9 |
| sec-- // sec >= 1 before the -- so safe |
| } |
| } |
| |
| switch { |
| // Special case: 2d divides 1 second. |
| case d < Second && Second%(d+d) == 0: |
| qmod2 = int(nsec/int32(d)) & 1 |
| r = Duration(nsec % int32(d)) |
| |
| // Special case: d is a multiple of 1 second. |
| case d%Second == 0: |
| d1 := int64(d / Second) |
| qmod2 = int(sec/d1) & 1 |
| r = Duration(sec%d1)*Second + Duration(nsec) |
| |
| // General case. |
| // This could be faster if more cleverness were applied, |
| // but it's really only here to avoid special case restrictions in the API. |
| // No one will care about these cases. |
| default: |
| // Compute nanoseconds as 128-bit number. |
| sec := uint64(sec) |
| tmp := (sec >> 32) * 1e9 |
| u1 := tmp >> 32 |
| u0 := tmp << 32 |
| tmp = (sec & 0xFFFFFFFF) * 1e9 |
| u0x, u0 := u0, u0+tmp |
| if u0 < u0x { |
| u1++ |
| } |
| u0x, u0 = u0, u0+uint64(nsec) |
| if u0 < u0x { |
| u1++ |
| } |
| |
| // Compute remainder by subtracting r<<k for decreasing k. |
| // Quotient parity is whether we subtract on last round. |
| d1 := uint64(d) |
| for d1>>63 != 1 { |
| d1 <<= 1 |
| } |
| d0 := uint64(0) |
| for { |
| qmod2 = 0 |
| if u1 > d1 || u1 == d1 && u0 >= d0 { |
| // subtract |
| qmod2 = 1 |
| u0x, u0 = u0, u0-d0 |
| if u0 > u0x { |
| u1-- |
| } |
| u1 -= d1 |
| } |
| if d1 == 0 && d0 == uint64(d) { |
| break |
| } |
| d0 >>= 1 |
| d0 |= (d1 & 1) << 63 |
| d1 >>= 1 |
| } |
| r = Duration(u0) |
| } |
| |
| if neg && r != 0 { |
| // If input was negative and not an exact multiple of d, we computed q, r such that |
| // q*d + r = -t |
| // But the right answers are given by -(q-1), d-r: |
| // q*d + r = -t |
| // -q*d - r = t |
| // -(q-1)*d + (d - r) = t |
| qmod2 ^= 1 |
| r = d - r |
| } |
| return |
| } |