| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements multi-precision rational numbers. |
| |
| package big |
| |
| import "strings" |
| |
| // A Rat represents a quotient a/b of arbitrary precision. The zero value for |
| // a Rat, 0/0, is not a legal Rat. |
| type Rat struct { |
| a Int |
| b nat |
| } |
| |
| |
| // NewRat creates a new Rat with numerator a and denominator b. |
| func NewRat(a, b int64) *Rat { |
| return new(Rat).SetFrac64(a, b) |
| } |
| |
| |
| // SetFrac sets z to a/b and returns z. |
| func (z *Rat) SetFrac(a, b *Int) *Rat { |
| z.a.Set(a) |
| z.a.neg = a.neg != b.neg |
| z.b = z.b.set(b.abs) |
| return z.norm() |
| } |
| |
| |
| // SetFrac64 sets z to a/b and returns z. |
| func (z *Rat) SetFrac64(a, b int64) *Rat { |
| z.a.SetInt64(a) |
| if b < 0 { |
| b = -b |
| z.a.neg = !z.a.neg |
| } |
| z.b = z.b.setUint64(uint64(b)) |
| return z.norm() |
| } |
| |
| |
| // SetInt sets z to x (by making a copy of x) and returns z. |
| func (z *Rat) SetInt(x *Int) *Rat { |
| z.a.Set(x) |
| z.b = z.b.setWord(1) |
| return z |
| } |
| |
| |
| // SetInt64 sets z to x and returns z. |
| func (z *Rat) SetInt64(x int64) *Rat { |
| z.a.SetInt64(x) |
| z.b = z.b.setWord(1) |
| return z |
| } |
| |
| |
| // Sign returns: |
| // |
| // -1 if x < 0 |
| // 0 if x == 0 |
| // +1 if x > 0 |
| // |
| func (x *Rat) Sign() int { |
| return x.a.Sign() |
| } |
| |
| |
| // IsInt returns true if the denominator of x is 1. |
| func (x *Rat) IsInt() bool { |
| return len(x.b) == 1 && x.b[0] == 1 |
| } |
| |
| |
| // Num returns the numerator of z; it may be <= 0. |
| // The result is a reference to z's numerator; it |
| // may change if a new value is assigned to z. |
| func (z *Rat) Num() *Int { |
| return &z.a |
| } |
| |
| |
| // Demom returns the denominator of z; it is always > 0. |
| // The result is a reference to z's denominator; it |
| // may change if a new value is assigned to z. |
| func (z *Rat) Denom() *Int { |
| return &Int{false, z.b} |
| } |
| |
| |
| func gcd(x, y nat) nat { |
| // Euclidean algorithm. |
| var a, b nat |
| a = a.set(x) |
| b = b.set(y) |
| for len(b) != 0 { |
| var q, r nat |
| _, r = q.div(r, a, b) |
| a = b |
| b = r |
| } |
| return a |
| } |
| |
| |
| func (z *Rat) norm() *Rat { |
| f := gcd(z.a.abs, z.b) |
| if len(z.a.abs) == 0 { |
| // z == 0 |
| z.a.neg = false // normalize sign |
| z.b = z.b.setWord(1) |
| return z |
| } |
| if f.cmp(natOne) != 0 { |
| z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f) |
| z.b, _ = z.b.div(nil, z.b, f) |
| } |
| return z |
| } |
| |
| |
| func mulNat(x *Int, y nat) *Int { |
| var z Int |
| z.abs = z.abs.mul(x.abs, y) |
| z.neg = len(z.abs) > 0 && x.neg |
| return &z |
| } |
| |
| |
| // Cmp compares x and y and returns: |
| // |
| // -1 if x < y |
| // 0 if x == y |
| // +1 if x > y |
| // |
| func (x *Rat) Cmp(y *Rat) (r int) { |
| return mulNat(&x.a, y.b).Cmp(mulNat(&y.a, x.b)) |
| } |
| |
| |
| // Abs sets z to |x| (the absolute value of x) and returns z. |
| func (z *Rat) Abs(x *Rat) *Rat { |
| z.a.Abs(&x.a) |
| z.b = z.b.set(x.b) |
| return z |
| } |
| |
| |
| // Add sets z to the sum x+y and returns z. |
| func (z *Rat) Add(x, y *Rat) *Rat { |
| a1 := mulNat(&x.a, y.b) |
| a2 := mulNat(&y.a, x.b) |
| z.a.Add(a1, a2) |
| z.b = z.b.mul(x.b, y.b) |
| return z.norm() |
| } |
| |
| |
| // Sub sets z to the difference x-y and returns z. |
| func (z *Rat) Sub(x, y *Rat) *Rat { |
| a1 := mulNat(&x.a, y.b) |
| a2 := mulNat(&y.a, x.b) |
| z.a.Sub(a1, a2) |
| z.b = z.b.mul(x.b, y.b) |
| return z.norm() |
| } |
| |
| |
| // Mul sets z to the product x*y and returns z. |
| func (z *Rat) Mul(x, y *Rat) *Rat { |
| z.a.Mul(&x.a, &y.a) |
| z.b = z.b.mul(x.b, y.b) |
| return z.norm() |
| } |
| |
| |
| // Quo sets z to the quotient x/y and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. |
| func (z *Rat) Quo(x, y *Rat) *Rat { |
| if len(y.a.abs) == 0 { |
| panic("division by zero") |
| } |
| a := mulNat(&x.a, y.b) |
| b := mulNat(&y.a, x.b) |
| z.a.abs = a.abs |
| z.b = b.abs |
| z.a.neg = a.neg != b.neg |
| return z.norm() |
| } |
| |
| |
| // Neg sets z to -x (by making a copy of x if necessary) and returns z. |
| func (z *Rat) Neg(x *Rat) *Rat { |
| z.a.Neg(&x.a) |
| z.b = z.b.set(x.b) |
| return z |
| } |
| |
| |
| // Set sets z to x (by making a copy of x if necessary) and returns z. |
| func (z *Rat) Set(x *Rat) *Rat { |
| z.a.Set(&x.a) |
| z.b = z.b.set(x.b) |
| return z |
| } |
| |
| |
| // SetString sets z to the value of s and returns z and a boolean indicating |
| // success. s can be given as a fraction "a/b" or as a floating-point number |
| // optionally followed by an exponent. If the operation failed, the value of z |
| // is undefined. |
| func (z *Rat) SetString(s string) (*Rat, bool) { |
| if len(s) == 0 { |
| return z, false |
| } |
| |
| // check for a quotient |
| sep := strings.Index(s, "/") |
| if sep >= 0 { |
| if _, ok := z.a.SetString(s[0:sep], 10); !ok { |
| return z, false |
| } |
| s = s[sep+1:] |
| var n int |
| if z.b, _, n = z.b.scan(s, 10); n != len(s) { |
| return z, false |
| } |
| return z.norm(), true |
| } |
| |
| // check for a decimal point |
| sep = strings.Index(s, ".") |
| // check for an exponent |
| e := strings.IndexAny(s, "eE") |
| var exp Int |
| if e >= 0 { |
| if e < sep { |
| // The E must come after the decimal point. |
| return z, false |
| } |
| if _, ok := exp.SetString(s[e+1:], 10); !ok { |
| return z, false |
| } |
| s = s[0:e] |
| } |
| if sep >= 0 { |
| s = s[0:sep] + s[sep+1:] |
| exp.Sub(&exp, NewInt(int64(len(s)-sep))) |
| } |
| |
| if _, ok := z.a.SetString(s, 10); !ok { |
| return z, false |
| } |
| powTen := nat{}.expNN(natTen, exp.abs, nil) |
| if exp.neg { |
| z.b = powTen |
| z.norm() |
| } else { |
| z.a.abs = z.a.abs.mul(z.a.abs, powTen) |
| z.b = z.b.setWord(1) |
| } |
| |
| return z, true |
| } |
| |
| |
| // String returns a string representation of z in the form "a/b" (even if b == 1). |
| func (z *Rat) String() string { |
| return z.a.String() + "/" + z.b.string(10) |
| } |
| |
| |
| // RatString returns a string representation of z in the form "a/b" if b != 1, |
| // and in the form "a" if b == 1. |
| func (z *Rat) RatString() string { |
| if z.IsInt() { |
| return z.a.String() |
| } |
| return z.String() |
| } |
| |
| |
| // FloatString returns a string representation of z in decimal form with prec |
| // digits of precision after the decimal point and the last digit rounded. |
| func (z *Rat) FloatString(prec int) string { |
| if z.IsInt() { |
| return z.a.String() |
| } |
| |
| q, r := nat{}.div(nat{}, z.a.abs, z.b) |
| |
| p := natOne |
| if prec > 0 { |
| p = nat{}.expNN(natTen, nat{}.setUint64(uint64(prec)), nil) |
| } |
| |
| r = r.mul(r, p) |
| r, r2 := r.div(nat{}, r, z.b) |
| |
| // see if we need to round up |
| r2 = r2.add(r2, r2) |
| if z.b.cmp(r2) <= 0 { |
| r = r.add(r, natOne) |
| if r.cmp(p) >= 0 { |
| q = nat{}.add(q, natOne) |
| r = nat{}.sub(r, p) |
| } |
| } |
| |
| s := q.string(10) |
| if z.a.neg { |
| s = "-" + s |
| } |
| |
| if prec > 0 { |
| rs := r.string(10) |
| leadingZeros := prec - len(rs) |
| s += "." + strings.Repeat("0", leadingZeros) + rs |
| } |
| |
| return s |
| } |