|  | // Inferno utils/5l/asm.c | 
|  | // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c | 
|  | // | 
|  | //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved. | 
|  | //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) | 
|  | //	Portions Copyright © 1997-1999 Vita Nuova Limited | 
|  | //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) | 
|  | //	Portions Copyright © 2004,2006 Bruce Ellis | 
|  | //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) | 
|  | //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others | 
|  | //	Portions Copyright © 2009 The Go Authors. All rights reserved. | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | // of this software and associated documentation files (the "Software"), to deal | 
|  | // in the Software without restriction, including without limitation the rights | 
|  | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | // copies of the Software, and to permit persons to whom the Software is | 
|  | // furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE | 
|  | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | // THE SOFTWARE. | 
|  |  | 
|  | package ppc64 | 
|  |  | 
|  | import ( | 
|  | "cmd/internal/objabi" | 
|  | "cmd/internal/sys" | 
|  | "cmd/link/internal/ld" | 
|  | "cmd/link/internal/sym" | 
|  | "debug/elf" | 
|  | "encoding/binary" | 
|  | "fmt" | 
|  | "log" | 
|  | "strings" | 
|  | ) | 
|  |  | 
|  | func genplt(ctxt *ld.Link) { | 
|  | // The ppc64 ABI PLT has similar concepts to other | 
|  | // architectures, but is laid out quite differently. When we | 
|  | // see an R_PPC64_REL24 relocation to a dynamic symbol | 
|  | // (indicating that the call needs to go through the PLT), we | 
|  | // generate up to three stubs and reserve a PLT slot. | 
|  | // | 
|  | // 1) The call site will be bl x; nop (where the relocation | 
|  | //    applies to the bl).  We rewrite this to bl x_stub; ld | 
|  | //    r2,24(r1).  The ld is necessary because x_stub will save | 
|  | //    r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). | 
|  | // | 
|  | // 2) We reserve space for a pointer in the .plt section (once | 
|  | //    per referenced dynamic function).  .plt is a data | 
|  | //    section filled solely by the dynamic linker (more like | 
|  | //    .plt.got on other architectures).  Initially, the | 
|  | //    dynamic linker will fill each slot with a pointer to the | 
|  | //    corresponding x@plt entry point. | 
|  | // | 
|  | // 3) We generate the "call stub" x_stub (once per dynamic | 
|  | //    function/object file pair).  This saves the TOC in the | 
|  | //    TOC save slot, reads the function pointer from x's .plt | 
|  | //    slot and calls it like any other global entry point | 
|  | //    (including setting r12 to the function address). | 
|  | // | 
|  | // 4) We generate the "symbol resolver stub" x@plt (once per | 
|  | //    dynamic function).  This is solely a branch to the glink | 
|  | //    resolver stub. | 
|  | // | 
|  | // 5) We generate the glink resolver stub (only once).  This | 
|  | //    computes which symbol resolver stub we came through and | 
|  | //    invokes the dynamic resolver via a pointer provided by | 
|  | //    the dynamic linker. This will patch up the .plt slot to | 
|  | //    point directly at the function so future calls go | 
|  | //    straight from the call stub to the real function, and | 
|  | //    then call the function. | 
|  |  | 
|  | // NOTE: It's possible we could make ppc64 closer to other | 
|  | // architectures: ppc64's .plt is like .plt.got on other | 
|  | // platforms and ppc64's .glink is like .plt on other | 
|  | // platforms. | 
|  |  | 
|  | // Find all R_PPC64_REL24 relocations that reference dynamic | 
|  | // imports. Reserve PLT entries for these symbols and | 
|  | // generate call stubs. The call stubs need to live in .text, | 
|  | // which is why we need to do this pass this early. | 
|  | // | 
|  | // This assumes "case 1" from the ABI, where the caller needs | 
|  | // us to save and restore the TOC pointer. | 
|  | var stubs []*sym.Symbol | 
|  | for _, s := range ctxt.Textp { | 
|  | for i := range s.R { | 
|  | r := &s.R[i] | 
|  | if r.Type != objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) || r.Sym.Type != sym.SDYNIMPORT { | 
|  | continue | 
|  | } | 
|  |  | 
|  | // Reserve PLT entry and generate symbol | 
|  | // resolver | 
|  | addpltsym(ctxt, r.Sym) | 
|  |  | 
|  | // Generate call stub | 
|  | n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) | 
|  |  | 
|  | stub := ctxt.Syms.Lookup(n, 0) | 
|  | if s.Attr.Reachable() { | 
|  | stub.Attr |= sym.AttrReachable | 
|  | } | 
|  | if stub.Size == 0 { | 
|  | // Need outer to resolve .TOC. | 
|  | stub.Outer = s | 
|  | stubs = append(stubs, stub) | 
|  | gencallstub(ctxt, 1, stub, r.Sym) | 
|  | } | 
|  |  | 
|  | // Update the relocation to use the call stub | 
|  | r.Sym = stub | 
|  |  | 
|  | // Restore TOC after bl. The compiler put a | 
|  | // nop here for us to overwrite. | 
|  | const o1 = 0xe8410018 // ld r2,24(r1) | 
|  | ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) | 
|  | } | 
|  | } | 
|  | // Put call stubs at the beginning (instead of the end). | 
|  | // So when resolving the relocations to calls to the stubs, | 
|  | // the addresses are known and trampolines can be inserted | 
|  | // when necessary. | 
|  | ctxt.Textp = append(stubs, ctxt.Textp...) | 
|  | } | 
|  |  | 
|  | func genaddmoduledata(ctxt *ld.Link) { | 
|  | addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", sym.SymVerABI0) | 
|  | if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin { | 
|  | return | 
|  | } | 
|  | addmoduledata.Attr |= sym.AttrReachable | 
|  | initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) | 
|  | initfunc.Type = sym.STEXT | 
|  | initfunc.Attr |= sym.AttrLocal | 
|  | initfunc.Attr |= sym.AttrReachable | 
|  | o := func(op uint32) { | 
|  | initfunc.AddUint32(ctxt.Arch, op) | 
|  | } | 
|  | // addis r2, r12, .TOC.-func@ha | 
|  | rel := initfunc.AddRel() | 
|  | rel.Off = int32(initfunc.Size) | 
|  | rel.Siz = 8 | 
|  | rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) | 
|  | rel.Sym.Attr |= sym.AttrReachable | 
|  | rel.Type = objabi.R_ADDRPOWER_PCREL | 
|  | o(0x3c4c0000) | 
|  | // addi r2, r2, .TOC.-func@l | 
|  | o(0x38420000) | 
|  | // mflr r31 | 
|  | o(0x7c0802a6) | 
|  | // stdu r31, -32(r1) | 
|  | o(0xf801ffe1) | 
|  | // addis r3, r2, local.moduledata@got@ha | 
|  | rel = initfunc.AddRel() | 
|  | rel.Off = int32(initfunc.Size) | 
|  | rel.Siz = 8 | 
|  | if s := ctxt.Syms.ROLookup("local.moduledata", 0); s != nil { | 
|  | rel.Sym = s | 
|  | } else if s := ctxt.Syms.ROLookup("local.pluginmoduledata", 0); s != nil { | 
|  | rel.Sym = s | 
|  | } else { | 
|  | rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0) | 
|  | } | 
|  | rel.Sym.Attr |= sym.AttrReachable | 
|  | rel.Sym.Attr |= sym.AttrLocal | 
|  | rel.Type = objabi.R_ADDRPOWER_GOT | 
|  | o(0x3c620000) | 
|  | // ld r3, local.moduledata@got@l(r3) | 
|  | o(0xe8630000) | 
|  | // bl runtime.addmoduledata | 
|  | rel = initfunc.AddRel() | 
|  | rel.Off = int32(initfunc.Size) | 
|  | rel.Siz = 4 | 
|  | rel.Sym = addmoduledata | 
|  | rel.Type = objabi.R_CALLPOWER | 
|  | o(0x48000001) | 
|  | // nop | 
|  | o(0x60000000) | 
|  | // ld r31, 0(r1) | 
|  | o(0xe8010000) | 
|  | // mtlr r31 | 
|  | o(0x7c0803a6) | 
|  | // addi r1,r1,32 | 
|  | o(0x38210020) | 
|  | // blr | 
|  | o(0x4e800020) | 
|  |  | 
|  | if ctxt.BuildMode == ld.BuildModePlugin { | 
|  | ctxt.Textp = append(ctxt.Textp, addmoduledata) | 
|  | } | 
|  | initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) | 
|  | ctxt.Textp = append(ctxt.Textp, initfunc) | 
|  | initarray_entry.Attr |= sym.AttrReachable | 
|  | initarray_entry.Attr |= sym.AttrLocal | 
|  | initarray_entry.Type = sym.SINITARR | 
|  | initarray_entry.AddAddr(ctxt.Arch, initfunc) | 
|  | } | 
|  |  | 
|  | func gentext(ctxt *ld.Link) { | 
|  | if ctxt.DynlinkingGo() { | 
|  | genaddmoduledata(ctxt) | 
|  | } | 
|  |  | 
|  | if ctxt.LinkMode == ld.LinkInternal { | 
|  | genplt(ctxt) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Construct a call stub in stub that calls symbol targ via its PLT | 
|  | // entry. | 
|  | func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) { | 
|  | if abicase != 1 { | 
|  | // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC | 
|  | // relocations, we'll need to implement cases 2 and 3. | 
|  | log.Fatalf("gencallstub only implements case 1 calls") | 
|  | } | 
|  |  | 
|  | plt := ctxt.Syms.Lookup(".plt", 0) | 
|  |  | 
|  | stub.Type = sym.STEXT | 
|  |  | 
|  | // Save TOC pointer in TOC save slot | 
|  | stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) | 
|  |  | 
|  | // Load the function pointer from the PLT. | 
|  | r := stub.AddRel() | 
|  |  | 
|  | r.Off = int32(stub.Size) | 
|  | r.Sym = plt | 
|  | r.Add = int64(targ.Plt()) | 
|  | r.Siz = 2 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | r.Off += int32(r.Siz) | 
|  | } | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_HA | 
|  | stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha | 
|  | r = stub.AddRel() | 
|  | r.Off = int32(stub.Size) | 
|  | r.Sym = plt | 
|  | r.Add = int64(targ.Plt()) | 
|  | r.Siz = 2 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | r.Off += int32(r.Siz) | 
|  | } | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_LO | 
|  | stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) | 
|  |  | 
|  | // Jump to the loaded pointer | 
|  | stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 | 
|  | stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr | 
|  | } | 
|  |  | 
|  | func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { | 
|  | if ctxt.IsELF { | 
|  | return addelfdynrel(ctxt, s, r) | 
|  | } else if ctxt.HeadType == objabi.Haix { | 
|  | return ld.Xcoffadddynrel(ctxt, s, r) | 
|  | } | 
|  | return false | 
|  | } | 
|  | func addelfdynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { | 
|  | targ := r.Sym | 
|  | r.InitExt() | 
|  |  | 
|  | switch r.Type { | 
|  | default: | 
|  | if r.Type >= objabi.ElfRelocOffset { | 
|  | ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) | 
|  | return false | 
|  | } | 
|  |  | 
|  | // Handle relocations found in ELF object files. | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24): | 
|  | r.Type = objabi.R_CALLPOWER | 
|  |  | 
|  | // This is a local call, so the caller isn't setting | 
|  | // up r12 and r2 is the same for the caller and | 
|  | // callee. Hence, we need to go to the local entry | 
|  | // point.  (If we don't do this, the callee will try | 
|  | // to use r12 to compute r2.) | 
|  | r.Add += int64(r.Sym.Localentry()) * 4 | 
|  |  | 
|  | if targ.Type == sym.SDYNIMPORT { | 
|  | // Should have been handled in elfsetupplt | 
|  | ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") | 
|  | } | 
|  |  | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32): | 
|  | r.Type = objabi.R_PCREL | 
|  | r.Add += 4 | 
|  |  | 
|  | if targ.Type == sym.SDYNIMPORT { | 
|  | ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") | 
|  | } | 
|  |  | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64): | 
|  | r.Type = objabi.R_ADDR | 
|  | if targ.Type == sym.SDYNIMPORT { | 
|  | // These happen in .toc sections | 
|  | ld.Adddynsym(ctxt, targ) | 
|  |  | 
|  | rela := ctxt.Syms.Lookup(".rela", 0) | 
|  | rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off)) | 
|  | rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64))) | 
|  | rela.AddUint64(ctxt.Arch, uint64(r.Add)) | 
|  | r.Type = objabi.ElfRelocOffset // ignore during relocsym | 
|  | } | 
|  |  | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_LO | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): | 
|  | r.Type = objabi.R_POWER_TOC | 
|  | r.Variant = sym.RV_POWER_DS | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO): | 
|  | r.Type = objabi.R_PCREL | 
|  | r.Variant = sym.RV_POWER_LO | 
|  | r.Add += 2 // Compensate for relocation size of 2 | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI): | 
|  | r.Type = objabi.R_PCREL | 
|  | r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW | 
|  | r.Add += 2 | 
|  | return true | 
|  |  | 
|  | case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA): | 
|  | r.Type = objabi.R_PCREL | 
|  | r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW | 
|  | r.Add += 2 | 
|  | return true | 
|  | } | 
|  |  | 
|  | // Handle references to ELF symbols from our own object files. | 
|  | if targ.Type != sym.SDYNIMPORT { | 
|  | return true | 
|  | } | 
|  |  | 
|  | // TODO(austin): Translate our relocations to ELF | 
|  |  | 
|  | return false | 
|  | } | 
|  |  | 
|  | func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { | 
|  | rs := r.Xsym | 
|  |  | 
|  | emitReloc := func(v uint16, off uint64) { | 
|  | out.Write64(uint64(sectoff) + off) | 
|  | out.Write32(uint32(rs.Dynid)) | 
|  | out.Write16(v) | 
|  | } | 
|  |  | 
|  | var v uint16 | 
|  | switch r.Type { | 
|  | default: | 
|  | return false | 
|  | case objabi.R_ADDR: | 
|  | v = ld.XCOFF_R_POS | 
|  | if r.Siz == 4 { | 
|  | v |= 0x1F << 8 | 
|  | } else { | 
|  | v |= 0x3F << 8 | 
|  | } | 
|  | emitReloc(v, 0) | 
|  | case objabi.R_ADDRPOWER_TOCREL: | 
|  | case objabi.R_ADDRPOWER_TOCREL_DS: | 
|  | emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2) | 
|  | emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6) | 
|  | case objabi.R_POWER_TLS_LE: | 
|  | emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2) | 
|  | case objabi.R_CALLPOWER: | 
|  | if r.Siz != 4 { | 
|  | return false | 
|  | } | 
|  | emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0) | 
|  | case objabi.R_XCOFFREF: | 
|  | emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0) | 
|  |  | 
|  | } | 
|  | return true | 
|  |  | 
|  | } | 
|  |  | 
|  | func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool { | 
|  | // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines. | 
|  | if r.Type == objabi.R_ADDR || r.Type == objabi.R_POWER_TLS || r.Type == objabi.R_CALLPOWER { | 
|  | } else { | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | sectoff += 2 | 
|  | } | 
|  | } | 
|  | ctxt.Out.Write64(uint64(sectoff)) | 
|  |  | 
|  | elfsym := r.Xsym.ElfsymForReloc() | 
|  | switch r.Type { | 
|  | default: | 
|  | return false | 
|  | case objabi.R_ADDR: | 
|  | switch r.Siz { | 
|  | case 4: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) | 
|  | case 8: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) | 
|  | default: | 
|  | return false | 
|  | } | 
|  | case objabi.R_POWER_TLS: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) | 
|  | case objabi.R_POWER_TLS_LE: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32) | 
|  | case objabi.R_POWER_TLS_IE: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) | 
|  | case objabi.R_ADDRPOWER: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) | 
|  | case objabi.R_ADDRPOWER_DS: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) | 
|  | case objabi.R_ADDRPOWER_GOT: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) | 
|  | case objabi.R_ADDRPOWER_PCREL: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) | 
|  | r.Xadd += 4 | 
|  | case objabi.R_ADDRPOWER_TOCREL: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) | 
|  | case objabi.R_ADDRPOWER_TOCREL_DS: | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  | ctxt.Out.Write64(uint64(sectoff + 4)) | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) | 
|  | case objabi.R_CALLPOWER: | 
|  | if r.Siz != 4 { | 
|  | return false | 
|  | } | 
|  | ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) | 
|  |  | 
|  | } | 
|  | ctxt.Out.Write64(uint64(r.Xadd)) | 
|  |  | 
|  | return true | 
|  | } | 
|  |  | 
|  | func elfsetupplt(ctxt *ld.Link) { | 
|  | plt := ctxt.Syms.Lookup(".plt", 0) | 
|  | if plt.Size == 0 { | 
|  | // The dynamic linker stores the address of the | 
|  | // dynamic resolver and the DSO identifier in the two | 
|  | // doublewords at the beginning of the .plt section | 
|  | // before the PLT array. Reserve space for these. | 
|  | plt.Size = 16 | 
|  | } | 
|  | } | 
|  |  | 
|  | func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { | 
|  | return false | 
|  | } | 
|  |  | 
|  | // Return the value of .TOC. for symbol s | 
|  | func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 { | 
|  | var toc *sym.Symbol | 
|  |  | 
|  | if s.Outer != nil { | 
|  | toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) | 
|  | } else { | 
|  | toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) | 
|  | } | 
|  |  | 
|  | if toc == nil { | 
|  | ld.Errorf(s, "TOC-relative relocation in object without .TOC.") | 
|  | return 0 | 
|  | } | 
|  |  | 
|  | return toc.Value | 
|  | } | 
|  |  | 
|  | // archreloctoc relocates a TOC relative symbol. | 
|  | // If the symbol pointed by this TOC relative symbol is in .data or .bss, the | 
|  | // default load instruction can be changed to an addi instruction and the | 
|  | // symbol address can be used directly. | 
|  | // This code is for AIX only. | 
|  | func archreloctoc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { | 
|  | if ctxt.HeadType == objabi.Hlinux { | 
|  | ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) | 
|  | } | 
|  | var o1, o2 uint32 | 
|  |  | 
|  | o1 = uint32(val >> 32) | 
|  | o2 = uint32(val) | 
|  |  | 
|  | var t int64 | 
|  | useAddi := false | 
|  | const prefix = "TOC." | 
|  | var tarSym *sym.Symbol | 
|  | if strings.HasPrefix(r.Sym.Name, prefix) { | 
|  | tarSym = ctxt.Syms.ROLookup(strings.TrimPrefix(r.Sym.Name, prefix), 0) | 
|  | } else { | 
|  | ld.Errorf(s, "archreloctoc called for a symbol without TOC anchor") | 
|  | } | 
|  |  | 
|  | if ctxt.LinkMode == ld.LinkInternal && tarSym != nil && tarSym.Attr.Reachable() && (tarSym.Sect.Seg == &ld.Segdata) { | 
|  | t = ld.Symaddr(tarSym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value | 
|  | // change ld to addi in the second instruction | 
|  | o2 = (o2 & 0x03FF0000) | 0xE<<26 | 
|  | useAddi = true | 
|  | } else { | 
|  | t = ld.Symaddr(r.Sym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value | 
|  | } | 
|  |  | 
|  | if t != int64(int32(t)) { | 
|  | ld.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", s.Name, r.Sym, t) | 
|  | } | 
|  |  | 
|  | if t&0x8000 != 0 { | 
|  | t += 0x10000 | 
|  | } | 
|  |  | 
|  | o1 |= uint32((t >> 16) & 0xFFFF) | 
|  |  | 
|  | switch r.Type { | 
|  | case objabi.R_ADDRPOWER_TOCREL_DS: | 
|  | if useAddi { | 
|  | o2 |= uint32(t) & 0xFFFF | 
|  | } else { | 
|  | if t&3 != 0 { | 
|  | ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) | 
|  | } | 
|  | o2 |= uint32(t) & 0xFFFC | 
|  | } | 
|  | default: | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | return int64(o1)<<32 | int64(o2) | 
|  | } | 
|  |  | 
|  | // archrelocaddr relocates a symbol address. | 
|  | // This code is for AIX only. | 
|  | func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { | 
|  | if ctxt.HeadType == objabi.Haix { | 
|  | ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) | 
|  | } | 
|  | var o1, o2 uint32 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | o1 = uint32(val >> 32) | 
|  | o2 = uint32(val) | 
|  | } else { | 
|  | o1 = uint32(val) | 
|  | o2 = uint32(val >> 32) | 
|  | } | 
|  |  | 
|  | // We are spreading a 31-bit address across two instructions, putting the | 
|  | // high (adjusted) part in the low 16 bits of the first instruction and the | 
|  | // low part in the low 16 bits of the second instruction, or, in the DS case, | 
|  | // bits 15-2 (inclusive) of the address into bits 15-2 of the second | 
|  | // instruction (it is an error in this case if the low 2 bits of the address | 
|  | // are non-zero). | 
|  |  | 
|  | t := ld.Symaddr(r.Sym) + r.Add | 
|  | if t < 0 || t >= 1<<31 { | 
|  | ld.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", s.Name, ld.Symaddr(r.Sym)) | 
|  | } | 
|  | if t&0x8000 != 0 { | 
|  | t += 0x10000 | 
|  | } | 
|  |  | 
|  | switch r.Type { | 
|  | case objabi.R_ADDRPOWER: | 
|  | o1 |= (uint32(t) >> 16) & 0xffff | 
|  | o2 |= uint32(t) & 0xffff | 
|  | case objabi.R_ADDRPOWER_DS: | 
|  | o1 |= (uint32(t) >> 16) & 0xffff | 
|  | if t&3 != 0 { | 
|  | ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) | 
|  | } | 
|  | o2 |= uint32(t) & 0xfffc | 
|  | default: | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | return int64(o1)<<32 | int64(o2) | 
|  | } | 
|  | return int64(o2)<<32 | int64(o1) | 
|  | } | 
|  |  | 
|  | // resolve direct jump relocation r in s, and add trampoline if necessary | 
|  | func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) { | 
|  |  | 
|  | // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. | 
|  | // For internal linking, trampolines are always created for long calls. | 
|  | // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in | 
|  | // r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. | 
|  | if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) { | 
|  | // No trampolines needed since r2 contains the TOC | 
|  | return | 
|  | } | 
|  |  | 
|  | t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) | 
|  | switch r.Type { | 
|  | case objabi.R_CALLPOWER: | 
|  |  | 
|  | // If branch offset is too far then create a trampoline. | 
|  |  | 
|  | if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { | 
|  | var tramp *sym.Symbol | 
|  | for i := 0; ; i++ { | 
|  |  | 
|  | // Using r.Add as part of the name is significant in functions like duffzero where the call | 
|  | // target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as | 
|  | // distinct trampolines. | 
|  |  | 
|  | name := r.Sym.Name | 
|  | if r.Add == 0 { | 
|  | name = name + fmt.Sprintf("-tramp%d", i) | 
|  | } else { | 
|  | name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) | 
|  | } | 
|  |  | 
|  | // Look up the trampoline in case it already exists | 
|  |  | 
|  | tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) | 
|  | if tramp.Value == 0 { | 
|  | break | 
|  | } | 
|  |  | 
|  | t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) | 
|  |  | 
|  | // With internal linking, the trampoline can be used if it is not too far. | 
|  | // With external linking, the trampoline must be in this section for it to be reused. | 
|  | if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) { | 
|  | break | 
|  | } | 
|  | } | 
|  | if tramp.Type == 0 { | 
|  | if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE { | 
|  | // Should have returned for above cases | 
|  | ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n") | 
|  | } else { | 
|  | ctxt.AddTramp(tramp) | 
|  | gentramp(ctxt, tramp, r.Sym, r.Add) | 
|  | } | 
|  | } | 
|  | r.Sym = tramp | 
|  | r.Add = 0 // This was folded into the trampoline target address | 
|  | r.Done = false | 
|  | } | 
|  | default: | 
|  | ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) | 
|  | } | 
|  | } | 
|  |  | 
|  | func gentramp(ctxt *ld.Link, tramp, target *sym.Symbol, offset int64) { | 
|  | tramp.Size = 16 // 4 instructions | 
|  | tramp.P = make([]byte, tramp.Size) | 
|  | t := ld.Symaddr(target) + offset | 
|  | var o1, o2 uint32 | 
|  |  | 
|  | if ctxt.HeadType == objabi.Haix { | 
|  | // On AIX, the address is retrieved with a TOC symbol. | 
|  | // For internal linking, the "Linux" way might still be used. | 
|  | // However, all text symbols are accessed with a TOC symbol as | 
|  | // text relocations aren't supposed to be possible. | 
|  | // So, keep using the external linking way to be more AIX friendly. | 
|  | o1 = uint32(0x3fe20000) // lis r2, toctargetaddr hi | 
|  | o2 = uint32(0xebff0000) // ld r31, toctargetaddr lo | 
|  |  | 
|  | toctramp := ctxt.Syms.Lookup("TOC."+tramp.Name, 0) | 
|  | toctramp.Type = sym.SXCOFFTOC | 
|  | toctramp.Attr |= sym.AttrReachable | 
|  | toctramp.AddAddr(ctxt.Arch, target) | 
|  |  | 
|  | tr := tramp.AddRel() | 
|  | tr.Off = 0 | 
|  | tr.Type = objabi.R_ADDRPOWER_TOCREL_DS | 
|  | tr.Siz = 8 // generates 2 relocations:  HA + LO | 
|  | tr.Sym = toctramp | 
|  | tr.Add = offset | 
|  | } else { | 
|  | // Used for default build mode for an executable | 
|  | // Address of the call target is generated using | 
|  | // relocation and doesn't depend on r2 (TOC). | 
|  | o1 = uint32(0x3fe00000) // lis r31,targetaddr hi | 
|  | o2 = uint32(0x3bff0000) // addi r31,targetaddr lo | 
|  |  | 
|  | // With external linking, the target address must be | 
|  | // relocated using LO and HA | 
|  | if ctxt.LinkMode == ld.LinkExternal { | 
|  | tr := tramp.AddRel() | 
|  | tr.Off = 0 | 
|  | tr.Type = objabi.R_ADDRPOWER | 
|  | tr.Siz = 8 // generates 2 relocations:  HA + LO | 
|  | tr.Sym = target | 
|  | tr.Add = offset | 
|  |  | 
|  | } else { | 
|  | // adjustment needed if lo has sign bit set | 
|  | // when using addi to compute address | 
|  | val := uint32((t & 0xffff0000) >> 16) | 
|  | if t&0x8000 != 0 { | 
|  | val += 1 | 
|  | } | 
|  | o1 |= val                // hi part of addr | 
|  | o2 |= uint32(t & 0xffff) // lo part of addr | 
|  | } | 
|  | } | 
|  |  | 
|  | o3 := uint32(0x7fe903a6) // mtctr r31 | 
|  | o4 := uint32(0x4e800420) // bctr | 
|  | ctxt.Arch.ByteOrder.PutUint32(tramp.P, o1) | 
|  | ctxt.Arch.ByteOrder.PutUint32(tramp.P[4:], o2) | 
|  | ctxt.Arch.ByteOrder.PutUint32(tramp.P[8:], o3) | 
|  | ctxt.Arch.ByteOrder.PutUint32(tramp.P[12:], o4) | 
|  | } | 
|  |  | 
|  | func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) { | 
|  | if ctxt.LinkMode == ld.LinkExternal { | 
|  | // On AIX, relocations (except TLS ones) must be also done to the | 
|  | // value with the current addresses. | 
|  | switch r.Type { | 
|  | default: | 
|  | if ctxt.HeadType != objabi.Haix { | 
|  | return val, false | 
|  | } | 
|  | case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: | 
|  | r.Done = false | 
|  | // check Outer is nil, Type is TLSBSS? | 
|  | r.Xadd = r.Add | 
|  | r.Xsym = r.Sym | 
|  | return val, true | 
|  | case objabi.R_ADDRPOWER, | 
|  | objabi.R_ADDRPOWER_DS, | 
|  | objabi.R_ADDRPOWER_TOCREL, | 
|  | objabi.R_ADDRPOWER_TOCREL_DS, | 
|  | objabi.R_ADDRPOWER_GOT, | 
|  | objabi.R_ADDRPOWER_PCREL: | 
|  | r.Done = false | 
|  |  | 
|  | // set up addend for eventual relocation via outer symbol. | 
|  | rs := r.Sym | 
|  | r.Xadd = r.Add | 
|  | for rs.Outer != nil { | 
|  | r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) | 
|  | rs = rs.Outer | 
|  | } | 
|  |  | 
|  | if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { | 
|  | ld.Errorf(s, "missing section for %s", rs.Name) | 
|  | } | 
|  | r.Xsym = rs | 
|  |  | 
|  | if ctxt.HeadType != objabi.Haix { | 
|  | return val, true | 
|  | } | 
|  | case objabi.R_CALLPOWER: | 
|  | r.Done = false | 
|  | r.Xsym = r.Sym | 
|  | r.Xadd = r.Add | 
|  | if ctxt.HeadType != objabi.Haix { | 
|  | return val, true | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch r.Type { | 
|  | case objabi.R_CONST: | 
|  | return r.Add, true | 
|  | case objabi.R_GOTOFF: | 
|  | return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)), true | 
|  | case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS: | 
|  | return archreloctoc(ctxt, r, s, val), true | 
|  | case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: | 
|  | return archrelocaddr(ctxt, r, s, val), true | 
|  | case objabi.R_CALLPOWER: | 
|  | // Bits 6 through 29 = (S + A - P) >> 2 | 
|  |  | 
|  | t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) | 
|  |  | 
|  | if t&3 != 0 { | 
|  | ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) | 
|  | } | 
|  | // If branch offset is too far then create a trampoline. | 
|  |  | 
|  | if int64(int32(t<<6)>>6) != t { | 
|  | ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) | 
|  | } | 
|  | return val | int64(uint32(t)&^0xfc000003), true | 
|  | case objabi.R_POWER_TOC: // S + A - .TOC. | 
|  | return ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s), true | 
|  |  | 
|  | case objabi.R_POWER_TLS_LE: | 
|  | // The thread pointer points 0x7000 bytes after the start of the | 
|  | // thread local storage area as documented in section "3.7.2 TLS | 
|  | // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI | 
|  | // Specification". | 
|  | v := r.Sym.Value - 0x7000 | 
|  | if ctxt.HeadType == objabi.Haix { | 
|  | // On AIX, the thread pointer points 0x7800 bytes after | 
|  | // the TLS. | 
|  | v -= 0x800 | 
|  | } | 
|  | if int64(int16(v)) != v { | 
|  | ld.Errorf(s, "TLS offset out of range %d", v) | 
|  | } | 
|  | return (val &^ 0xffff) | (v & 0xffff), true | 
|  | } | 
|  |  | 
|  | return val, false | 
|  | } | 
|  |  | 
|  | func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 { | 
|  | switch r.Variant & sym.RV_TYPE_MASK { | 
|  | default: | 
|  | ld.Errorf(s, "unexpected relocation variant %d", r.Variant) | 
|  | fallthrough | 
|  |  | 
|  | case sym.RV_NONE: | 
|  | return t | 
|  |  | 
|  | case sym.RV_POWER_LO: | 
|  | if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { | 
|  | // Whether to check for signed or unsigned | 
|  | // overflow depends on the instruction | 
|  | var o1 uint32 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) | 
|  | } else { | 
|  | o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) | 
|  | } | 
|  | switch o1 >> 26 { | 
|  | case 24, // ori | 
|  | 26, // xori | 
|  | 28: // andi | 
|  | if t>>16 != 0 { | 
|  | goto overflow | 
|  | } | 
|  |  | 
|  | default: | 
|  | if int64(int16(t)) != t { | 
|  | goto overflow | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return int64(int16(t)) | 
|  |  | 
|  | case sym.RV_POWER_HA: | 
|  | t += 0x8000 | 
|  | fallthrough | 
|  |  | 
|  | // Fallthrough | 
|  | case sym.RV_POWER_HI: | 
|  | t >>= 16 | 
|  |  | 
|  | if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { | 
|  | // Whether to check for signed or unsigned | 
|  | // overflow depends on the instruction | 
|  | var o1 uint32 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) | 
|  | } else { | 
|  | o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) | 
|  | } | 
|  | switch o1 >> 26 { | 
|  | case 25, // oris | 
|  | 27, // xoris | 
|  | 29: // andis | 
|  | if t>>16 != 0 { | 
|  | goto overflow | 
|  | } | 
|  |  | 
|  | default: | 
|  | if int64(int16(t)) != t { | 
|  | goto overflow | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return int64(int16(t)) | 
|  |  | 
|  | case sym.RV_POWER_DS: | 
|  | var o1 uint32 | 
|  | if ctxt.Arch.ByteOrder == binary.BigEndian { | 
|  | o1 = uint32(binary.BigEndian.Uint16(s.P[r.Off:])) | 
|  | } else { | 
|  | o1 = uint32(binary.LittleEndian.Uint16(s.P[r.Off:])) | 
|  | } | 
|  | if t&3 != 0 { | 
|  | ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) | 
|  | } | 
|  | if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { | 
|  | goto overflow | 
|  | } | 
|  | return int64(o1)&0x3 | int64(int16(t)) | 
|  | } | 
|  |  | 
|  | overflow: | 
|  | ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) | 
|  | return t | 
|  | } | 
|  |  | 
|  | func addpltsym(ctxt *ld.Link, s *sym.Symbol) { | 
|  | if s.Plt() >= 0 { | 
|  | return | 
|  | } | 
|  |  | 
|  | ld.Adddynsym(ctxt, s) | 
|  |  | 
|  | if ctxt.IsELF { | 
|  | plt := ctxt.Syms.Lookup(".plt", 0) | 
|  | rela := ctxt.Syms.Lookup(".rela.plt", 0) | 
|  | if plt.Size == 0 { | 
|  | elfsetupplt(ctxt) | 
|  | } | 
|  |  | 
|  | // Create the glink resolver if necessary | 
|  | glink := ensureglinkresolver(ctxt) | 
|  |  | 
|  | // Write symbol resolver stub (just a branch to the | 
|  | // glink resolver stub) | 
|  | r := glink.AddRel() | 
|  |  | 
|  | r.Sym = glink | 
|  | r.Off = int32(glink.Size) | 
|  | r.Siz = 4 | 
|  | r.Type = objabi.R_CALLPOWER | 
|  | glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink | 
|  |  | 
|  | // In the ppc64 ABI, the dynamic linker is responsible | 
|  | // for writing the entire PLT.  We just need to | 
|  | // reserve 8 bytes for each PLT entry and generate a | 
|  | // JMP_SLOT dynamic relocation for it. | 
|  | // | 
|  | // TODO(austin): ABI v1 is different | 
|  | s.SetPlt(int32(plt.Size)) | 
|  |  | 
|  | plt.Size += 8 | 
|  |  | 
|  | rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt())) | 
|  | rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_PPC64_JMP_SLOT))) | 
|  | rela.AddUint64(ctxt.Arch, 0) | 
|  | } else { | 
|  | ld.Errorf(s, "addpltsym: unsupported binary format") | 
|  | } | 
|  | } | 
|  |  | 
|  | // Generate the glink resolver stub if necessary and return the .glink section | 
|  | func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol { | 
|  | glink := ctxt.Syms.Lookup(".glink", 0) | 
|  | if glink.Size != 0 { | 
|  | return glink | 
|  | } | 
|  |  | 
|  | // This is essentially the resolver from the ppc64 ELF ABI. | 
|  | // At entry, r12 holds the address of the symbol resolver stub | 
|  | // for the target routine and the argument registers hold the | 
|  | // arguments for the target routine. | 
|  | // | 
|  | // This stub is PIC, so first get the PC of label 1 into r11. | 
|  | // Other things will be relative to this. | 
|  | glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 | 
|  | glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f | 
|  | glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 | 
|  | glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0 | 
|  |  | 
|  | // Compute the .plt array index from the entry point address. | 
|  | // Because this is PIC, everything is relative to label 1b (in | 
|  | // r11): | 
|  | //   r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 | 
|  | glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48 | 
|  | glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 | 
|  | glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 | 
|  | glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 | 
|  |  | 
|  | // r11 = address of the first byte of the PLT | 
|  | r := glink.AddRel() | 
|  |  | 
|  | r.Off = int32(glink.Size) | 
|  | r.Sym = ctxt.Syms.Lookup(".plt", 0) | 
|  | r.Siz = 8 | 
|  | r.Type = objabi.R_ADDRPOWER | 
|  |  | 
|  | glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha | 
|  | glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l | 
|  |  | 
|  | // Load r12 = dynamic resolver address and r11 = DSO | 
|  | // identifier from the first two doublewords of the PLT. | 
|  | glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) | 
|  | glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) | 
|  |  | 
|  | // Jump to the dynamic resolver | 
|  | glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 | 
|  | glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr | 
|  |  | 
|  | // The symbol resolvers must immediately follow. | 
|  | //   res_0: | 
|  |  | 
|  | // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes | 
|  | // before the first symbol resolver stub. | 
|  | s := ctxt.Syms.Lookup(".dynamic", 0) | 
|  |  | 
|  | ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) | 
|  |  | 
|  | return glink | 
|  | } | 
|  |  | 
|  | func asmb(ctxt *ld.Link) { | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f asmb\n", ld.Cputime()) | 
|  | } | 
|  |  | 
|  | if ctxt.IsELF { | 
|  | ld.Asmbelfsetup() | 
|  | } | 
|  |  | 
|  | for _, sect := range ld.Segtext.Sections { | 
|  | ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) | 
|  | // Handle additional text sections with Codeblk | 
|  | if sect.Name == ".text" { | 
|  | ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) | 
|  | } else { | 
|  | ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) | 
|  | } | 
|  | } | 
|  |  | 
|  | if ld.Segrodata.Filelen > 0 { | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f rodatblk\n", ld.Cputime()) | 
|  | } | 
|  | ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff)) | 
|  | ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) | 
|  | } | 
|  | if ld.Segrelrodata.Filelen > 0 { | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime()) | 
|  | } | 
|  | ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff)) | 
|  | ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) | 
|  | } | 
|  |  | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f datblk\n", ld.Cputime()) | 
|  | } | 
|  |  | 
|  | ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff)) | 
|  | ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) | 
|  |  | 
|  | ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff)) | 
|  | ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) | 
|  | } | 
|  |  | 
|  | func asmb2(ctxt *ld.Link) { | 
|  | /* output symbol table */ | 
|  | ld.Symsize = 0 | 
|  |  | 
|  | ld.Lcsize = 0 | 
|  | symo := uint32(0) | 
|  | if !*ld.FlagS { | 
|  | // TODO: rationalize | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f sym\n", ld.Cputime()) | 
|  | } | 
|  | switch ctxt.HeadType { | 
|  | default: | 
|  | if ctxt.IsELF { | 
|  | symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) | 
|  | symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) | 
|  | } | 
|  |  | 
|  | case objabi.Hplan9: | 
|  | symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) | 
|  |  | 
|  | case objabi.Haix: | 
|  | // Nothing to do | 
|  | } | 
|  |  | 
|  | ctxt.Out.SeekSet(int64(symo)) | 
|  | switch ctxt.HeadType { | 
|  | default: | 
|  | if ctxt.IsELF { | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f elfsym\n", ld.Cputime()) | 
|  | } | 
|  | ld.Asmelfsym(ctxt) | 
|  | ctxt.Out.Flush() | 
|  | ctxt.Out.Write(ld.Elfstrdat) | 
|  |  | 
|  | if ctxt.LinkMode == ld.LinkExternal { | 
|  | ld.Elfemitreloc(ctxt) | 
|  | } | 
|  | } | 
|  |  | 
|  | case objabi.Hplan9: | 
|  | ld.Asmplan9sym(ctxt) | 
|  | ctxt.Out.Flush() | 
|  |  | 
|  | sym := ctxt.Syms.Lookup("pclntab", 0) | 
|  | if sym != nil { | 
|  | ld.Lcsize = int32(len(sym.P)) | 
|  | ctxt.Out.Write(sym.P) | 
|  | ctxt.Out.Flush() | 
|  | } | 
|  |  | 
|  | case objabi.Haix: | 
|  | // symtab must be added once sections have been created in ld.Asmbxcoff | 
|  | ctxt.Out.Flush() | 
|  | } | 
|  | } | 
|  |  | 
|  | if ctxt.Debugvlog != 0 { | 
|  | ctxt.Logf("%5.2f header\n", ld.Cputime()) | 
|  | } | 
|  | ctxt.Out.SeekSet(0) | 
|  | switch ctxt.HeadType { | 
|  | default: | 
|  | case objabi.Hplan9: /* plan 9 */ | 
|  | ctxt.Out.Write32(0x647)                      /* magic */ | 
|  | ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */ | 
|  | ctxt.Out.Write32(uint32(ld.Segdata.Filelen)) | 
|  | ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) | 
|  | ctxt.Out.Write32(uint32(ld.Symsize))          /* nsyms */ | 
|  | ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */ | 
|  | ctxt.Out.Write32(0) | 
|  | ctxt.Out.Write32(uint32(ld.Lcsize)) | 
|  |  | 
|  | case objabi.Hlinux, | 
|  | objabi.Hfreebsd, | 
|  | objabi.Hnetbsd, | 
|  | objabi.Hopenbsd: | 
|  | ld.Asmbelf(ctxt, int64(symo)) | 
|  |  | 
|  | case objabi.Haix: | 
|  | fileoff := uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) | 
|  | fileoff = uint32(ld.Rnd(int64(fileoff), int64(*ld.FlagRound))) | 
|  | ld.Asmbxcoff(ctxt, int64(fileoff)) | 
|  | } | 
|  |  | 
|  | ctxt.Out.Flush() | 
|  | if *ld.FlagC { | 
|  | fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) | 
|  | fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) | 
|  | fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) | 
|  | fmt.Printf("symsize=%d\n", ld.Symsize) | 
|  | fmt.Printf("lcsize=%d\n", ld.Lcsize) | 
|  | fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) | 
|  | } | 
|  | } |