blob: bb4d2783834dad27a2aceefeb20683e648409a5a [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"log"
"cmd/internal/obj"
"cmd/internal/obj/x86" // TODO: remove
"cmd/internal/ssa"
)
func buildssa(fn *Node) *ssa.Func {
dumplist("buildssa", Curfn.Nbody)
var s state
// TODO(khr): build config just once at the start of the compiler binary
s.config = ssa.NewConfig(Thearch.Thestring)
s.f = s.config.NewFunc()
s.f.Name = fn.Nname.Sym.Name
// We construct SSA using an algorithm similar to
// Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// TODO: check this comment
// Allocate starting block
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
// Allocate exit block
s.exit = s.f.NewBlock(ssa.BlockExit)
// Allocate starting values
s.startmem = s.f.Entry.NewValue(ssa.OpArg, ssa.TypeMem, ".mem")
s.fp = s.f.Entry.NewValue(ssa.OpFP, s.config.Uintptr, nil) // TODO: use generic pointer type (unsafe.Pointer?) instead
s.sp = s.f.Entry.NewValue(ssa.OpSP, s.config.Uintptr, nil)
s.vars = map[string]*ssa.Value{}
s.labels = map[string]*ssa.Block{}
s.argOffsets = map[string]int64{}
// Convert the AST-based IR to the SSA-based IR
s.startBlock(s.f.Entry)
s.stmtList(fn.Nbody)
// fallthrough to exit
if b := s.endBlock(); b != nil {
addEdge(b, s.exit)
}
// Finish up exit block
s.startBlock(s.exit)
s.exit.Control = s.mem()
s.endBlock()
// Link up variable uses to variable definitions
s.linkForwardReferences()
// Main call to ssa package to compile function
ssa.Compile(s.f)
return s.f
}
type state struct {
// configuration (arch) information
config *ssa.Config
// function we're building
f *ssa.Func
// exit block that "return" jumps to (and panics jump to)
exit *ssa.Block
// the target block for each label in f
labels map[string]*ssa.Block
// current location where we're interpreting the AST
curBlock *ssa.Block
// variable assignments in the current block (map from variable name to ssa value)
vars map[string]*ssa.Value
// all defined variables at the end of each block. Indexed by block ID.
defvars []map[string]*ssa.Value
// offsets of argument slots
// unnamed and unused args are not listed.
argOffsets map[string]int64
// starting values. Memory, frame pointer, and stack pointer
startmem *ssa.Value
fp *ssa.Value
sp *ssa.Value
}
// startBlock sets the current block we're generating code in to b.
func (s *state) startBlock(b *ssa.Block) {
if s.curBlock != nil {
log.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
}
s.curBlock = b
s.vars = map[string]*ssa.Value{}
}
// endBlock marks the end of generating code for the current block.
// Returns the (former) current block. Returns nil if there is no current
// block, i.e. if no code flows to the current execution point.
func (s *state) endBlock() *ssa.Block {
b := s.curBlock
if b == nil {
return nil
}
for len(s.defvars) <= int(b.ID) {
s.defvars = append(s.defvars, nil)
}
s.defvars[b.ID] = s.vars
s.curBlock = nil
s.vars = nil
return b
}
// ssaStmtList converts the statement n to SSA and adds it to s.
func (s *state) stmtList(l *NodeList) {
for ; l != nil; l = l.Next {
s.stmt(l.N)
}
}
// ssaStmt converts the statement n to SSA and adds it to s.
func (s *state) stmt(n *Node) {
s.stmtList(n.Ninit)
switch n.Op {
case OBLOCK:
s.stmtList(n.List)
case ODCL:
// TODO: ??? Assign 0?
case OLABEL, OGOTO:
// get block at label, or make one
t := s.labels[n.Left.Sym.Name]
if t == nil {
t = s.f.NewBlock(ssa.BlockPlain)
s.labels[n.Left.Sym.Name] = t
}
// go to that label (we pretend "label:" is preceded by "goto label")
b := s.endBlock()
addEdge(b, t)
if n.Op == OLABEL {
// next we work on the label's target block
s.startBlock(t)
}
case OAS:
// TODO(khr): colas?
val := s.expr(n.Right)
if n.Left.Op == ONAME && !n.Left.Addrtaken && n.Left.Class&PHEAP == 0 && n.Left.Class != PEXTERN && n.Left.Class != PPARAMOUT {
// ssa-able variable.
s.vars[n.Left.Sym.Name] = val
return
}
// not ssa-able. Treat as a store.
addr := s.addr(n.Left)
s.vars[".mem"] = s.curBlock.NewValue3(ssa.OpStore, ssa.TypeMem, nil, addr, val, s.mem())
// TODO: try to make more variables registerizeable.
case OIF:
cond := s.expr(n.Ntest)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cond
// TODO(khr): likely direction
bThen := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
var bElse *ssa.Block
if n.Nelse == nil {
addEdge(b, bThen)
addEdge(b, bEnd)
} else {
bElse = s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bThen)
addEdge(b, bElse)
}
s.startBlock(bThen)
s.stmtList(n.Nbody)
b = s.endBlock()
if b != nil {
addEdge(b, bEnd)
}
if n.Nelse != nil {
s.startBlock(bElse)
s.stmtList(n.Nelse)
b = s.endBlock()
if b != nil {
addEdge(b, bEnd)
}
}
s.startBlock(bEnd)
case ORETURN:
s.stmtList(n.List)
b := s.endBlock()
addEdge(b, s.exit)
case OFOR:
bCond := s.f.NewBlock(ssa.BlockPlain)
bBody := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
// first, jump to condition test
b := s.endBlock()
addEdge(b, bCond)
// generate code to test condition
// TODO(khr): Ntest == nil exception
s.startBlock(bCond)
cond := s.expr(n.Ntest)
b = s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cond
// TODO(khr): likely direction
addEdge(b, bBody)
addEdge(b, bEnd)
// generate body
s.startBlock(bBody)
s.stmtList(n.Nbody)
s.stmt(n.Nincr)
b = s.endBlock()
addEdge(b, bCond)
s.startBlock(bEnd)
case OVARKILL:
// TODO(khr): ??? anything to do here? Only for addrtaken variables?
// Maybe just link it in the store chain?
default:
log.Fatalf("unhandled stmt %s", opnames[n.Op])
}
}
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
func (s *state) expr(n *Node) *ssa.Value {
if n == nil {
// TODO(khr): is this nil???
return s.f.Entry.NewValue(ssa.OpConst, n.Type, nil)
}
switch n.Op {
case ONAME:
// TODO: remember offsets for PPARAM names
if n.Class == PEXTERN {
// global variable
addr := s.f.Entry.NewValue(ssa.OpGlobal, Ptrto(n.Type), n.Sym)
return s.curBlock.NewValue2(ssa.OpLoad, n.Type, nil, addr, s.mem())
}
s.argOffsets[n.Sym.Name] = n.Xoffset
return s.variable(n.Sym.Name, n.Type)
case OLITERAL:
switch n.Val.Ctype {
case CTINT:
return s.f.ConstInt(n.Type, Mpgetfix(n.Val.U.Xval))
default:
log.Fatalf("unhandled OLITERAL %v", n.Val.Ctype)
return nil
}
// binary ops
case OLT:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.curBlock.NewValue2(ssa.OpLess, ssa.TypeBool, nil, a, b)
case OADD:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.curBlock.NewValue2(ssa.OpAdd, a.Type, nil, a, b)
case OSUB:
// TODO:(khr) fold code for all binary ops together somehow
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.curBlock.NewValue2(ssa.OpSub, a.Type, nil, a, b)
case OLSH:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.curBlock.NewValue2(ssa.OpLsh, a.Type, nil, a, b)
case ORSH:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.curBlock.NewValue2(ssa.OpRsh, a.Type, nil, a, b)
case OADDR:
return s.addr(n.Left)
case OIND:
p := s.expr(n.Left)
s.nilCheck(p)
return s.curBlock.NewValue2(ssa.OpLoad, n.Type, nil, p, s.mem())
case ODOTPTR:
p := s.expr(n.Left)
s.nilCheck(p)
p = s.curBlock.NewValue2(ssa.OpAdd, p.Type, nil, p, s.f.ConstInt(s.config.Uintptr, n.Xoffset))
return s.curBlock.NewValue2(ssa.OpLoad, n.Type, nil, p, s.mem())
case OINDEX:
if n.Left.Type.Bound >= 0 { // array
a := s.expr(n.Left)
i := s.expr(n.Right)
s.boundsCheck(i, s.f.ConstInt(s.config.Uintptr, n.Left.Type.Bound))
return s.curBlock.NewValue2(ssa.OpArrayIndex, n.Left.Type.Type, nil, a, i)
} else { // slice
p := s.addr(n)
return s.curBlock.NewValue2(ssa.OpLoad, n.Left.Type.Type, nil, p, s.mem())
}
case OCALLFUNC:
// run all argument assignments
// TODO(khr): do we need to evaluate function first?
// Or is it already side-effect-free and does not require a call?
s.stmtList(n.List)
if n.Left.Op != ONAME {
// TODO(khr): closure calls?
log.Fatalf("can't handle CALLFUNC with non-ONAME fn %s", opnames[n.Left.Op])
}
bNext := s.f.NewBlock(ssa.BlockPlain)
call := s.curBlock.NewValue1(ssa.OpStaticCall, ssa.TypeMem, n.Left.Sym, s.mem())
b := s.endBlock()
b.Kind = ssa.BlockCall
b.Control = call
addEdge(b, bNext)
addEdge(b, s.exit)
// read result from stack at the start of the fallthrough block
s.startBlock(bNext)
var titer Iter
fp := Structfirst(&titer, Getoutarg(n.Left.Type))
a := s.f.Entry.NewValue1(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp)
return s.curBlock.NewValue2(ssa.OpLoad, fp.Type, nil, a, call)
default:
log.Fatalf("unhandled expr %s", opnames[n.Op])
return nil
}
}
// expr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
func (s *state) addr(n *Node) *ssa.Value {
switch n.Op {
case ONAME:
if n.Class == PEXTERN {
// global variable
return s.f.Entry.NewValue(ssa.OpGlobal, Ptrto(n.Type), n.Sym)
}
if n.Class == PPARAMOUT {
// store to parameter slot
return s.f.Entry.NewValue1(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.fp)
}
// TODO: address of locals
log.Fatalf("variable address of %v not implemented", n)
return nil
case OINDREG:
// indirect off a register (TODO: always SP?)
// used for storing/loading arguments/returns to/from callees
return s.f.Entry.NewValue1(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
case OINDEX:
if n.Left.Type.Bound >= 0 { // array
a := s.addr(n.Left)
i := s.expr(n.Right)
len := s.f.ConstInt(s.config.Uintptr, n.Left.Type.Bound)
s.boundsCheck(i, len)
return s.curBlock.NewValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), nil, a, i)
} else { // slice
a := s.expr(n.Left)
i := s.expr(n.Right)
len := s.curBlock.NewValue1(ssa.OpSliceLen, s.config.Uintptr, nil, a)
s.boundsCheck(i, len)
p := s.curBlock.NewValue1(ssa.OpSlicePtr, Ptrto(n.Left.Type.Type), nil, a)
return s.curBlock.NewValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), nil, p, i)
}
default:
log.Fatalf("addr: bad op %v", n.Op)
return nil
}
}
// nilCheck generates nil pointer checking code.
// Starts a new block on return.
func (s *state) nilCheck(ptr *ssa.Value) {
c := s.curBlock.NewValue1(ssa.OpIsNonNil, ssa.TypeBool, nil, ptr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = c
bNext := s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bNext)
addEdge(b, s.exit)
s.startBlock(bNext)
// TODO(khr): Don't go directly to exit. Go to a stub that calls panicmem first.
// TODO: implicit nil checks somehow?
}
// boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
// Starts a new block on return.
func (s *state) boundsCheck(idx, len *ssa.Value) {
// TODO: convert index to full width?
// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
// bounds check
cmp := s.curBlock.NewValue2(ssa.OpIsInBounds, ssa.TypeBool, nil, idx, len)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cmp
bNext := s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bNext)
addEdge(b, s.exit)
// TODO: don't go directly to s.exit. Go to a stub that calls panicindex first.
s.startBlock(bNext)
}
// variable returns the value of a variable at the current location.
func (s *state) variable(name string, t ssa.Type) *ssa.Value {
if s.curBlock == nil {
log.Fatalf("nil curblock!")
}
v := s.vars[name]
if v == nil {
// TODO: get type? Take Sym as arg?
v = s.curBlock.NewValue(ssa.OpFwdRef, t, name)
s.vars[name] = v
}
return v
}
func (s *state) mem() *ssa.Value {
return s.variable(".mem", ssa.TypeMem)
}
func (s *state) linkForwardReferences() {
// Build ssa graph. Each variable on its first use in a basic block
// leaves a FwdRef in that block representing the incoming value
// of that variable. This function links that ref up with possible definitions,
// inserting Phi values as needed. This is essentially the algorithm
// described by Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
name := v.Aux.(string)
v.Op = ssa.OpCopy
v.Aux = nil
v.SetArgs1(s.lookupVarIncoming(b, v.Type, name))
}
}
}
// lookupVarIncoming finds the variable's value at the start of block b.
func (s *state) lookupVarIncoming(b *ssa.Block, t ssa.Type, name string) *ssa.Value {
// TODO(khr): have lookupVarIncoming overwrite the fwdRef or copy it
// will be used in, instead of having the result used in a copy value.
if b == s.f.Entry {
if name == ".mem" {
return s.startmem
}
// variable is live at the entry block. Load it.
addr := s.f.Entry.NewValue1(ssa.OpOffPtr, Ptrto(t.(*Type)), s.argOffsets[name], s.fp)
return b.NewValue2(ssa.OpLoad, t, nil, addr, s.startmem)
}
var vals []*ssa.Value
for _, p := range b.Preds {
vals = append(vals, s.lookupVarOutgoing(p, t, name))
}
v0 := vals[0]
for i := 1; i < len(vals); i++ {
if vals[i] != v0 {
// need a phi value
v := b.NewValue(ssa.OpPhi, t, nil)
v.AddArgs(vals...)
return v
}
}
return v0
}
// lookupVarOutgoing finds the variable's value at the end of block b.
func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name string) *ssa.Value {
m := s.defvars[b.ID]
if v, ok := m[name]; ok {
return v
}
// The variable is not defined by b and we haven't
// looked it up yet. Generate v, a copy value which
// will be the outgoing value of the variable. Then
// look up w, the incoming value of the variable.
// Make v = copy(w). We need the extra copy to
// prevent infinite recursion when looking up the
// incoming value of the variable.
v := b.NewValue(ssa.OpCopy, t, nil)
m[name] = v
v.AddArg(s.lookupVarIncoming(b, t, name))
return v
}
// TODO: the above mutually recursive functions can lead to very deep stacks. Fix that.
// addEdge adds an edge from b to c.
func addEdge(b, c *ssa.Block) {
b.Succs = append(b.Succs, c)
c.Preds = append(c.Preds, b)
}
// an unresolved branch
type branch struct {
p *obj.Prog // branch instruction
b *ssa.Block // target
}
// genssa appends entries to ptxt for each instruction in f.
// gcargs and gclocals are filled in with pointer maps for the frame.
func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
// TODO: line numbers
if f.FrameSize > 1<<31 {
Yyerror("stack frame too large (>2GB)")
return
}
ptxt.To.Type = obj.TYPE_TEXTSIZE
ptxt.To.Val = int32(Rnd(Curfn.Type.Argwid, int64(Widthptr))) // arg size
ptxt.To.Offset = f.FrameSize - 8 // TODO: arch-dependent
// Remember where each block starts.
bstart := make([]*obj.Prog, f.NumBlocks())
// Remember all the branch instructions we've seen
// and where they would like to go
var branches []branch
// Emit basic blocks
for i, b := range f.Blocks {
bstart[b.ID] = Pc
// Emit values in block
for _, v := range b.Values {
genValue(v)
}
// Emit control flow instructions for block
var next *ssa.Block
if i < len(f.Blocks)-1 {
next = f.Blocks[i+1]
}
branches = genBlock(b, next, branches)
}
// Resolve branches
for _, br := range branches {
br.p.To.Val = bstart[br.b.ID]
}
Pc.As = obj.ARET // overwrite AEND
// TODO: liveness
// TODO: gcargs
// TODO: gclocals
// TODO: dump frame if -f
// Emit garbage collection symbols. TODO: put something in them
liveness(Curfn, ptxt, gcargs, gclocals)
}
func genValue(v *ssa.Value) {
switch v.Op {
case ssa.OpADDQ:
// TODO: use addq instead of leaq if target is in the right register.
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Scale = 1
p.From.Index = regnum(v.Args[1])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpADDQconst:
// TODO: use addq instead of leaq if target is in the right register.
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpMULQconst:
// TODO: this isn't right. doasm fails on it. I don't think obj
// has ever been taught to compile imul $c, r1, r2.
p := Prog(x86.AIMULQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.Aux.(int64)
p.From3.Type = obj.TYPE_REG
p.From3.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpSUBQconst:
// This code compensates for the fact that the register allocator
// doesn't understand 2-address instructions yet. TODO: fix that.
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASUBQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpSHLQconst:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASHLQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpLEAQ:
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Scale = 1
p.From.Index = regnum(v.Args[1])
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpCMPQ:
p := Prog(x86.ACMPQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[1])
case ssa.OpCMPQconst:
p := Prog(x86.ACMPQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_CONST
p.To.Offset = v.Aux.(int64)
case ssa.OpTESTB:
p := Prog(x86.ATESTB)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[1])
case ssa.OpMOVQconst:
x := regnum(v)
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.OpMOVQload:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpMOVBload:
p := Prog(x86.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.Aux.(int64)
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpMOVQloadidx8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.Aux.(int64)
p.From.Scale = 8
p.From.Index = regnum(v.Args[1])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpMOVQstore:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[1])
p.To.Type = obj.TYPE_MEM
p.To.Reg = regnum(v.Args[0])
p.To.Offset = v.Aux.(int64)
case ssa.OpCopy:
x := regnum(v.Args[0])
y := regnum(v)
if x != y {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
}
case ssa.OpLoadReg8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = x86.REG_SP
p.From.Offset = localOffset(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpStoreReg8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP
p.To.Offset = localOffset(v)
case ssa.OpPhi:
// just check to make sure regalloc did it right
f := v.Block.Func
loc := f.RegAlloc[v.ID]
for _, a := range v.Args {
if f.RegAlloc[a.ID] != loc { // TODO: .Equal() instead?
log.Fatalf("phi arg at different location than phi %v %v %v %v", v, loc, a, f.RegAlloc[a.ID])
}
}
case ssa.OpConst:
if v.Block.Func.RegAlloc[v.ID] != nil {
log.Fatalf("const value %v shouldn't have a location", v)
}
case ssa.OpArg:
// memory arg needs no code
// TODO: only mem arg goes here.
case ssa.OpLEAQglobal:
g := v.Aux.(ssa.GlobalOffset)
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
p.From.Sym = Linksym(g.Global.(*Sym))
p.From.Offset = g.Offset
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpStaticCall:
p := Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = Linksym(v.Aux.(*Sym))
case ssa.OpFP, ssa.OpSP:
// nothing to do
default:
log.Fatalf("value %s not implemented", v.LongString())
}
}
func genBlock(b, next *ssa.Block, branches []branch) []branch {
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0] != next {
p := Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
}
case ssa.BlockExit:
Prog(obj.ARET)
case ssa.BlockCall:
if b.Succs[0] != next {
p := Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
}
case ssa.BlockEQ:
if b.Succs[0] == next {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockNE:
if b.Succs[0] == next {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockLT:
if b.Succs[0] == next {
p := Prog(x86.AJGE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJLT)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJLT)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockULT:
if b.Succs[0] == next {
p := Prog(x86.AJCC)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJCS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJCS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockUGT:
if b.Succs[0] == next {
p := Prog(x86.AJLS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJHI)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJHI)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
default:
log.Fatalf("branch %s not implemented", b.LongString())
}
return branches
}
// ssaRegToReg maps ssa register numbers to obj register numbers.
var ssaRegToReg = [...]int16{
x86.REG_AX,
x86.REG_CX,
x86.REG_DX,
x86.REG_BX,
x86.REG_SP,
x86.REG_BP,
x86.REG_SI,
x86.REG_DI,
x86.REG_R8,
x86.REG_R9,
x86.REG_R10,
x86.REG_R11,
x86.REG_R12,
x86.REG_R13,
x86.REG_R14,
x86.REG_R15,
// TODO: more
// TODO: arch-dependent
}
// regnum returns the register (in cmd/internal/obj numbering) to
// which v has been allocated. Panics if v is not assigned to a
// register.
func regnum(v *ssa.Value) int16 {
return ssaRegToReg[v.Block.Func.RegAlloc[v.ID].(*ssa.Register).Num]
}
// localOffset returns the offset below the frame pointer where
// a stack-allocated local has been allocated. Panics if v
// is not assigned to a local slot.
func localOffset(v *ssa.Value) int64 {
return v.Block.Func.RegAlloc[v.ID].(*ssa.LocalSlot).Idx
}