| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // “Abstract” syntax representation. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/ssa" |
| "cmd/compile/internal/syntax" |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| "cmd/internal/src" |
| ) |
| |
| // A Node is a single node in the syntax tree. |
| // Actually the syntax tree is a syntax DAG, because there is only one |
| // node with Op=ONAME for a given instance of a variable x. |
| // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. |
| type Node struct { |
| // Tree structure. |
| // Generic recursive walks should follow these fields. |
| Left *Node |
| Right *Node |
| Ninit Nodes |
| Nbody Nodes |
| List Nodes |
| Rlist Nodes |
| |
| // most nodes |
| Type *types.Type |
| Orig *Node // original form, for printing, and tracking copies of ONAMEs |
| |
| // func |
| Func *Func |
| |
| // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL |
| Name *Name |
| |
| Sym *types.Sym // various |
| E interface{} // Opt or Val, see methods below |
| |
| // Various. Usually an offset into a struct. For example: |
| // - ONAME nodes that refer to local variables use it to identify their stack frame position. |
| // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. |
| // - OSTRUCTKEY uses it to store the named field's offset. |
| // - Named OLITERALs use it to store their ambient iota value. |
| // - OINLMARK stores an index into the inlTree data structure. |
| // Possibly still more uses. If you find any, document them. |
| Xoffset int64 |
| |
| Pos src.XPos |
| |
| flags bitset32 |
| |
| Esc uint16 // EscXXX |
| |
| Op Op |
| aux uint8 |
| } |
| |
| func (n *Node) ResetAux() { |
| n.aux = 0 |
| } |
| |
| func (n *Node) SubOp() Op { |
| switch n.Op { |
| case OASOP, ONAME: |
| default: |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| return Op(n.aux) |
| } |
| |
| func (n *Node) SetSubOp(op Op) { |
| switch n.Op { |
| case OASOP, ONAME: |
| default: |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| n.aux = uint8(op) |
| } |
| |
| func (n *Node) IndexMapLValue() bool { |
| if n.Op != OINDEXMAP { |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| return n.aux != 0 |
| } |
| |
| func (n *Node) SetIndexMapLValue(b bool) { |
| if n.Op != OINDEXMAP { |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| if b { |
| n.aux = 1 |
| } else { |
| n.aux = 0 |
| } |
| } |
| |
| func (n *Node) TChanDir() types.ChanDir { |
| if n.Op != OTCHAN { |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| return types.ChanDir(n.aux) |
| } |
| |
| func (n *Node) SetTChanDir(dir types.ChanDir) { |
| if n.Op != OTCHAN { |
| Fatalf("unexpected op: %v", n.Op) |
| } |
| n.aux = uint8(dir) |
| } |
| |
| func (n *Node) IsSynthetic() bool { |
| name := n.Sym.Name |
| return name[0] == '.' || name[0] == '~' |
| } |
| |
| // IsAutoTmp indicates if n was created by the compiler as a temporary, |
| // based on the setting of the .AutoTemp flag in n's Name. |
| func (n *Node) IsAutoTmp() bool { |
| if n == nil || n.Op != ONAME { |
| return false |
| } |
| return n.Name.AutoTemp() |
| } |
| |
| const ( |
| nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed |
| _, _ // second nodeClass bit |
| _, _ // third nodeClass bit |
| nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits |
| _, _ // second nodeWalkdef bit |
| nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits |
| _, _ // second nodeTypecheck bit |
| nodeInitorder, _ // tracks state during init1; two bits |
| _, _ // second nodeInitorder bit |
| _, nodeHasBreak |
| _, nodeIsClosureVar |
| _, nodeIsOutputParamHeapAddr |
| _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only |
| _, nodeAssigned // is the variable ever assigned to |
| _, nodeAddrtaken // address taken, even if not moved to heap |
| _, nodeImplicit |
| _, nodeIsDDD // is the argument variadic |
| _, nodeDiag // already printed error about this |
| _, nodeColas // OAS resulting from := |
| _, nodeNonNil // guaranteed to be non-nil |
| _, nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) |
| _, nodeBounded // bounds check unnecessary |
| _, nodeAddable // addressable |
| _, nodeHasCall // expression contains a function call |
| _, nodeLikely // if statement condition likely |
| _, nodeHasVal // node.E contains a Val |
| _, nodeHasOpt // node.E contains an Opt |
| _, nodeEmbedded // ODCLFIELD embedded type |
| _, nodeInlFormal // OPAUTO created by inliner, derived from callee formal |
| _, nodeInlLocal // OPAUTO created by inliner, derived from callee local |
| ) |
| |
| func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) } |
| func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) } |
| func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) } |
| func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) } |
| |
| func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } |
| func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 } |
| func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } |
| func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 } |
| func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 } |
| func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 } |
| func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } |
| func (n *Node) IsDDD() bool { return n.flags&nodeIsDDD != 0 } |
| func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } |
| func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } |
| func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } |
| func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 } |
| func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } |
| func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 } |
| func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } |
| func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 } |
| func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 } |
| func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 } |
| func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 } |
| func (n *Node) InlFormal() bool { return n.flags&nodeInlFormal != 0 } |
| func (n *Node) InlLocal() bool { return n.flags&nodeInlLocal != 0 } |
| |
| func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) } |
| func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) } |
| func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) } |
| func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) } |
| |
| func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } |
| func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) } |
| func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } |
| func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) } |
| func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) } |
| func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) } |
| func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } |
| func (n *Node) SetIsDDD(b bool) { n.flags.set(nodeIsDDD, b) } |
| func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } |
| func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } |
| func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } |
| func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) } |
| func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } |
| func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) } |
| func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } |
| func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) } |
| func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) } |
| func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) } |
| func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) } |
| func (n *Node) SetInlFormal(b bool) { n.flags.set(nodeInlFormal, b) } |
| func (n *Node) SetInlLocal(b bool) { n.flags.set(nodeInlLocal, b) } |
| |
| // Val returns the Val for the node. |
| func (n *Node) Val() Val { |
| if !n.HasVal() { |
| return Val{} |
| } |
| return Val{n.E} |
| } |
| |
| // SetVal sets the Val for the node, which must not have been used with SetOpt. |
| func (n *Node) SetVal(v Val) { |
| if n.HasOpt() { |
| Debug['h'] = 1 |
| Dump("have Opt", n) |
| Fatalf("have Opt") |
| } |
| n.SetHasVal(true) |
| n.E = v.U |
| } |
| |
| // Opt returns the optimizer data for the node. |
| func (n *Node) Opt() interface{} { |
| if !n.HasOpt() { |
| return nil |
| } |
| return n.E |
| } |
| |
| // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. |
| // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. |
| func (n *Node) SetOpt(x interface{}) { |
| if x == nil && n.HasVal() { |
| return |
| } |
| if n.HasVal() { |
| Debug['h'] = 1 |
| Dump("have Val", n) |
| Fatalf("have Val") |
| } |
| n.SetHasOpt(true) |
| n.E = x |
| } |
| |
| func (n *Node) Iota() int64 { |
| return n.Xoffset |
| } |
| |
| func (n *Node) SetIota(x int64) { |
| n.Xoffset = x |
| } |
| |
| // mayBeShared reports whether n may occur in multiple places in the AST. |
| // Extra care must be taken when mutating such a node. |
| func (n *Node) mayBeShared() bool { |
| switch n.Op { |
| case ONAME, OLITERAL, OTYPE: |
| return true |
| } |
| return false |
| } |
| |
| // isMethodExpression reports whether n represents a method expression T.M. |
| func (n *Node) isMethodExpression() bool { |
| return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME |
| } |
| |
| // funcname returns the name of the function n. |
| func (n *Node) funcname() string { |
| if n == nil || n.Func == nil || n.Func.Nname == nil { |
| return "<nil>" |
| } |
| return n.Func.Nname.Sym.Name |
| } |
| |
| // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). |
| type Name struct { |
| Pack *Node // real package for import . names |
| Pkg *types.Pkg // pkg for OPACK nodes |
| Defn *Node // initializing assignment |
| Curfn *Node // function for local variables |
| Param *Param // additional fields for ONAME, OTYPE |
| Decldepth int32 // declaration loop depth, increased for every loop or label |
| Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. |
| flags bitset8 |
| } |
| |
| const ( |
| nameCaptured = 1 << iota // is the variable captured by a closure |
| nameReadonly |
| nameByval // is the variable captured by value or by reference |
| nameNeedzero // if it contains pointers, needs to be zeroed on function entry |
| nameKeepalive // mark value live across unknown assembly call |
| nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) |
| nameUsed // for variable declared and not used error |
| ) |
| |
| func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } |
| func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } |
| func (n *Name) Byval() bool { return n.flags&nameByval != 0 } |
| func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } |
| func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } |
| func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } |
| func (n *Name) Used() bool { return n.flags&nameUsed != 0 } |
| |
| func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } |
| func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } |
| func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } |
| func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } |
| func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } |
| func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } |
| func (n *Name) SetUsed(b bool) { n.flags.set(nameUsed, b) } |
| |
| type Param struct { |
| Ntype *Node |
| Heapaddr *Node // temp holding heap address of param |
| |
| // ONAME PAUTOHEAP |
| Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) |
| |
| // ONAME closure linkage |
| // Consider: |
| // |
| // func f() { |
| // x := 1 // x1 |
| // func() { |
| // use(x) // x2 |
| // func() { |
| // use(x) // x3 |
| // --- parser is here --- |
| // }() |
| // }() |
| // } |
| // |
| // There is an original declaration of x and then a chain of mentions of x |
| // leading into the current function. Each time x is mentioned in a new closure, |
| // we create a variable representing x for use in that specific closure, |
| // since the way you get to x is different in each closure. |
| // |
| // Let's number the specific variables as shown in the code: |
| // x1 is the original x, x2 is when mentioned in the closure, |
| // and x3 is when mentioned in the closure in the closure. |
| // |
| // We keep these linked (assume N > 1): |
| // |
| // - x1.Defn = original declaration statement for x (like most variables) |
| // - x1.Innermost = current innermost closure x (in this case x3), or nil for none |
| // - x1.IsClosureVar() = false |
| // |
| // - xN.Defn = x1, N > 1 |
| // - xN.IsClosureVar() = true, N > 1 |
| // - x2.Outer = nil |
| // - xN.Outer = x(N-1), N > 2 |
| // |
| // |
| // When we look up x in the symbol table, we always get x1. |
| // Then we can use x1.Innermost (if not nil) to get the x |
| // for the innermost known closure function, |
| // but the first reference in a closure will find either no x1.Innermost |
| // or an x1.Innermost with .Funcdepth < Funcdepth. |
| // In that case, a new xN must be created, linked in with: |
| // |
| // xN.Defn = x1 |
| // xN.Outer = x1.Innermost |
| // x1.Innermost = xN |
| // |
| // When we finish the function, we'll process its closure variables |
| // and find xN and pop it off the list using: |
| // |
| // x1 := xN.Defn |
| // x1.Innermost = xN.Outer |
| // |
| // We leave xN.Innermost set so that we can still get to the original |
| // variable quickly. Not shown here, but once we're |
| // done parsing a function and no longer need xN.Outer for the |
| // lexical x reference links as described above, closurebody |
| // recomputes xN.Outer as the semantic x reference link tree, |
| // even filling in x in intermediate closures that might not |
| // have mentioned it along the way to inner closures that did. |
| // See closurebody for details. |
| // |
| // During the eventual compilation, then, for closure variables we have: |
| // |
| // xN.Defn = original variable |
| // xN.Outer = variable captured in next outward scope |
| // to make closure where xN appears |
| // |
| // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn |
| // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. |
| Innermost *Node |
| Outer *Node |
| |
| // OTYPE |
| // |
| // TODO: Should Func pragmas also be stored on the Name? |
| Pragma syntax.Pragma |
| Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) |
| } |
| |
| // Functions |
| // |
| // A simple function declaration is represented as an ODCLFUNC node f |
| // and an ONAME node n. They're linked to one another through |
| // f.Func.Nname == n and n.Name.Defn == f. When functions are |
| // referenced by name in an expression, the function's ONAME node is |
| // used directly. |
| // |
| // Function names have n.Class() == PFUNC. This distinguishes them |
| // from variables of function type. |
| // |
| // Confusingly, n.Func and f.Func both exist, but commonly point to |
| // different Funcs. (Exception: an OCALLPART's Func does point to its |
| // ODCLFUNC's Func.) |
| // |
| // A method declaration is represented like functions, except n.Sym |
| // will be the qualified method name (e.g., "T.m") and |
| // f.Func.Shortname is the bare method name (e.g., "m"). |
| // |
| // Method expressions are represented as ONAME/PFUNC nodes like |
| // function names, but their Left and Right fields still point to the |
| // type and method, respectively. They can be distinguished from |
| // normal functions with isMethodExpression. Also, unlike function |
| // name nodes, method expression nodes exist for each method |
| // expression. The declaration ONAME can be accessed with |
| // x.Type.Nname(), where x is the method expression ONAME node. |
| // |
| // Method values are represented by ODOTMETH/ODOTINTER when called |
| // immediately, and OCALLPART otherwise. They are like method |
| // expressions, except that for ODOTMETH/ODOTINTER the method name is |
| // stored in Sym instead of Right. |
| // |
| // Closures are represented by OCLOSURE node c. They link back and |
| // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure |
| // == f and f.Func.Closure == c. |
| // |
| // Function bodies are stored in f.Nbody, and inline function bodies |
| // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma. |
| // |
| // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They |
| // also use Dcl instead of Inldcl. |
| |
| // Func holds Node fields used only with function-like nodes. |
| type Func struct { |
| Shortname *types.Sym |
| Enter Nodes // for example, allocate and initialize memory for escaping parameters |
| Exit Nodes |
| Cvars Nodes // closure params |
| Dcl []*Node // autodcl for this func/closure |
| |
| // Parents records the parent scope of each scope within a |
| // function. The root scope (0) has no parent, so the i'th |
| // scope's parent is stored at Parents[i-1]. |
| Parents []ScopeID |
| |
| // Marks records scope boundary changes. |
| Marks []Mark |
| |
| // Closgen tracks how many closures have been generated within |
| // this function. Used by closurename for creating unique |
| // function names. |
| Closgen int |
| |
| FieldTrack map[*types.Sym]struct{} |
| DebugInfo *ssa.FuncDebug |
| Ntype *Node // signature |
| Top int // top context (ctxCallee, etc) |
| Closure *Node // OCLOSURE <-> ODCLFUNC |
| Nname *Node |
| lsym *obj.LSym |
| |
| Inl *Inline |
| |
| Label int32 // largest auto-generated label in this function |
| |
| Endlineno src.XPos |
| WBPos src.XPos // position of first write barrier; see SetWBPos |
| |
| Pragma syntax.Pragma // go:xxx function annotations |
| |
| flags bitset16 |
| |
| // nwbrCalls records the LSyms of functions called by this |
| // function for go:nowritebarrierrec analysis. Only filled in |
| // if nowritebarrierrecCheck != nil. |
| nwbrCalls *[]nowritebarrierrecCallSym |
| } |
| |
| // An Inline holds fields used for function bodies that can be inlined. |
| type Inline struct { |
| Cost int32 // heuristic cost of inlining this function |
| |
| // Copies of Func.Dcl and Nbody for use during inlining. |
| Dcl []*Node |
| Body []*Node |
| } |
| |
| // A Mark represents a scope boundary. |
| type Mark struct { |
| // Pos is the position of the token that marks the scope |
| // change. |
| Pos src.XPos |
| |
| // Scope identifies the innermost scope to the right of Pos. |
| Scope ScopeID |
| } |
| |
| // A ScopeID represents a lexical scope within a function. |
| type ScopeID int32 |
| |
| const ( |
| funcDupok = 1 << iota // duplicate definitions ok |
| funcWrapper // is method wrapper |
| funcNeedctxt // function uses context register (has closure variables) |
| funcReflectMethod // function calls reflect.Type.Method or MethodByName |
| funcIsHiddenClosure |
| funcHasDefer // contains a defer statement |
| funcNilCheckDisabled // disable nil checks when compiling this function |
| funcInlinabilityChecked // inliner has already determined whether the function is inlinable |
| funcExportInline // include inline body in export data |
| funcInstrumentBody // add race/msan instrumentation during SSA construction |
| ) |
| |
| func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } |
| func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } |
| func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } |
| func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } |
| func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } |
| func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } |
| func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 } |
| func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 } |
| func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 } |
| func (f *Func) InstrumentBody() bool { return f.flags&funcInstrumentBody != 0 } |
| |
| func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } |
| func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } |
| func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } |
| func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } |
| func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } |
| func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } |
| func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) } |
| func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) } |
| func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) } |
| func (f *Func) SetInstrumentBody(b bool) { f.flags.set(funcInstrumentBody, b) } |
| |
| func (f *Func) setWBPos(pos src.XPos) { |
| if Debug_wb != 0 { |
| Warnl(pos, "write barrier") |
| } |
| if !f.WBPos.IsKnown() { |
| f.WBPos = pos |
| } |
| } |
| |
| //go:generate stringer -type=Op -trimprefix=O |
| |
| type Op uint8 |
| |
| // Node ops. |
| const ( |
| OXXX Op = iota |
| |
| // names |
| ONAME // var or func name |
| ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } |
| OTYPE // type name |
| OPACK // import |
| OLITERAL // literal |
| |
| // expressions |
| OADD // Left + Right |
| OSUB // Left - Right |
| OOR // Left | Right |
| OXOR // Left ^ Right |
| OADDSTR // +{List} (string addition, list elements are strings) |
| OADDR // &Left |
| OANDAND // Left && Right |
| OAPPEND // append(List); after walk, Left may contain elem type descriptor |
| OBYTES2STR // Type(Left) (Type is string, Left is a []byte) |
| OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) |
| ORUNES2STR // Type(Left) (Type is string, Left is a []rune) |
| OSTR2BYTES // Type(Left) (Type is []byte, Left is a string) |
| OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral) |
| OSTR2RUNES // Type(Left) (Type is []rune, Left is a string) |
| OAS // Left = Right or (if Colas=true) Left := Right |
| OAS2 // List = Rlist (x, y, z = a, b, c) |
| OAS2FUNC // List = Rlist (x, y = f()) |
| OAS2RECV // List = Rlist (x, ok = <-c) |
| OAS2MAPR // List = Rlist (x, ok = m["foo"]) |
| OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) |
| OASOP // Left Etype= Right (x += y) |
| OCALL // Left(List) (function call, method call or type conversion) |
| |
| // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure. |
| // Prior to walk, they are: Left(List), where List is all regular arguments. |
| // If present, Right is an ODDDARG that holds the |
| // generated slice used in a call to a variadic function. |
| // After walk, List is a series of assignments to temporaries, |
| // and Rlist is an updated set of arguments, including any ODDDARG slice. |
| // TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797. |
| OCALLFUNC // Left(List/Rlist) (function call f(args)) |
| OCALLMETH // Left(List/Rlist) (direct method call x.Method(args)) |
| OCALLINTER // Left(List/Rlist) (interface method call x.Method(args)) |
| OCALLPART // Left.Right (method expression x.Method, not called) |
| OCAP // cap(Left) |
| OCLOSE // close(Left) |
| OCLOSURE // func Type { Body } (func literal) |
| OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) |
| OMAPLIT // Type{List} (composite literal, Type is map) |
| OSTRUCTLIT // Type{List} (composite literal, Type is struct) |
| OARRAYLIT // Type{List} (composite literal, Type is array) |
| OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length. |
| OPTRLIT // &Left (left is composite literal) |
| OCONV // Type(Left) (type conversion) |
| OCONVIFACE // Type(Left) (type conversion, to interface) |
| OCONVNOP // Type(Left) (type conversion, no effect) |
| OCOPY // copy(Left, Right) |
| ODCL // var Left (declares Left of type Left.Type) |
| |
| // Used during parsing but don't last. |
| ODCLFUNC // func f() or func (r) f() |
| ODCLFIELD // struct field, interface field, or func/method argument/return value. |
| ODCLCONST // const pi = 3.14 |
| ODCLTYPE // type Int int or type Int = int |
| |
| ODELETE // delete(Left, Right) |
| ODOT // Left.Sym (Left is of struct type) |
| ODOTPTR // Left.Sym (Left is of pointer to struct type) |
| ODOTMETH // Left.Sym (Left is non-interface, Right is method name) |
| ODOTINTER // Left.Sym (Left is interface, Right is method name) |
| OXDOT // Left.Sym (before rewrite to one of the preceding) |
| ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor |
| ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor |
| OEQ // Left == Right |
| ONE // Left != Right |
| OLT // Left < Right |
| OLE // Left <= Right |
| OGE // Left >= Right |
| OGT // Left > Right |
| ODEREF // *Left |
| OINDEX // Left[Right] (index of array or slice) |
| OINDEXMAP // Left[Right] (index of map) |
| OKEY // Left:Right (key:value in struct/array/map literal) |
| OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) |
| OLEN // len(Left) |
| OMAKE // make(List) (before type checking converts to one of the following) |
| OMAKECHAN // make(Type, Left) (type is chan) |
| OMAKEMAP // make(Type, Left) (type is map) |
| OMAKESLICE // make(Type, Left, Right) (type is slice) |
| OMUL // Left * Right |
| ODIV // Left / Right |
| OMOD // Left % Right |
| OLSH // Left << Right |
| ORSH // Left >> Right |
| OAND // Left & Right |
| OANDNOT // Left &^ Right |
| ONEW // new(Left) |
| ONOT // !Left |
| OBITNOT // ^Left |
| OPLUS // +Left |
| ONEG // -Left |
| OOROR // Left || Right |
| OPANIC // panic(Left) |
| OPRINT // print(List) |
| OPRINTN // println(List) |
| OPAREN // (Left) |
| OSEND // Left <- Right |
| OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) |
| OSLICEARR // Left[List[0] : List[1]] (Left is array) |
| OSLICESTR // Left[List[0] : List[1]] (Left is string) |
| OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) |
| OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) |
| OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity) |
| ORECOVER // recover() |
| ORECV // <-Left |
| ORUNESTR // Type(Left) (Type is string, Left is rune) |
| OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) |
| OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) |
| OIOTA // iota |
| OREAL // real(Left) |
| OIMAG // imag(Left) |
| OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call |
| OALIGNOF // unsafe.Alignof(Left) |
| OOFFSETOF // unsafe.Offsetof(Left) |
| OSIZEOF // unsafe.Sizeof(Left) |
| |
| // statements |
| OBLOCK // { List } (block of code) |
| OBREAK // break [Sym] |
| OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) |
| OXCASE // case List: Nbody (select case before processing; List==nil means default) |
| OCONTINUE // continue [Sym] |
| ODEFER // defer Left (Left must be call) |
| OEMPTY // no-op (empty statement) |
| OFALL // fallthrough |
| OFOR // for Ninit; Left; Right { Nbody } |
| // OFORUNTIL is like OFOR, but the test (Left) is applied after the body: |
| // Ninit |
| // top: { Nbody } // Execute the body at least once |
| // cont: Right |
| // if Left { // And then test the loop condition |
| // List // Before looping to top, execute List |
| // goto top |
| // } |
| // OFORUNTIL is created by walk. There's no way to write this in Go code. |
| OFORUNTIL |
| OGOTO // goto Sym |
| OIF // if Ninit; Left { Nbody } else { Rlist } |
| OLABEL // Sym: |
| OGO // go Left (Left must be call) |
| ORANGE // for List = range Right { Nbody } |
| ORETURN // return List |
| OSELECT // select { List } (List is list of OXCASE or OCASE) |
| OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) |
| OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH) |
| |
| // types |
| OTCHAN // chan int |
| OTMAP // map[string]int |
| OTSTRUCT // struct{} |
| OTINTER // interface{} |
| OTFUNC // func() |
| OTARRAY // []int, [8]int, [N]int or [...]int |
| |
| // misc |
| ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. |
| ODDDARG // func f(args ...int), introduced by escape analysis. |
| OINLCALL // intermediary representation of an inlined call. |
| OEFACE // itable and data words of an empty-interface value. |
| OITAB // itable word of an interface value. |
| OIDATA // data word of an interface value in Left |
| OSPTR // base pointer of a slice or string. |
| OCLOSUREVAR // variable reference at beginning of closure function |
| OCFUNC // reference to c function pointer (not go func value) |
| OCHECKNIL // emit code to ensure pointer/interface not nil |
| OVARDEF // variable is about to be fully initialized |
| OVARKILL // variable is dead |
| OVARLIVE // variable is alive |
| OINDREGSP // offset plus indirect of REGSP, such as 8(SP). |
| OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree. |
| |
| // arch-specific opcodes |
| ORETJMP // return to other function |
| OGETG // runtime.getg() (read g pointer) |
| |
| OEND |
| ) |
| |
| // Nodes is a pointer to a slice of *Node. |
| // For fields that are not used in most nodes, this is used instead of |
| // a slice to save space. |
| type Nodes struct{ slice *[]*Node } |
| |
| // asNodes returns a slice of *Node as a Nodes value. |
| func asNodes(s []*Node) Nodes { |
| return Nodes{&s} |
| } |
| |
| // Slice returns the entries in Nodes as a slice. |
| // Changes to the slice entries (as in s[i] = n) will be reflected in |
| // the Nodes. |
| func (n Nodes) Slice() []*Node { |
| if n.slice == nil { |
| return nil |
| } |
| return *n.slice |
| } |
| |
| // Len returns the number of entries in Nodes. |
| func (n Nodes) Len() int { |
| if n.slice == nil { |
| return 0 |
| } |
| return len(*n.slice) |
| } |
| |
| // Index returns the i'th element of Nodes. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) Index(i int) *Node { |
| return (*n.slice)[i] |
| } |
| |
| // First returns the first element of Nodes (same as n.Index(0)). |
| // It panics if n has no elements. |
| func (n Nodes) First() *Node { |
| return (*n.slice)[0] |
| } |
| |
| // Second returns the second element of Nodes (same as n.Index(1)). |
| // It panics if n has fewer than two elements. |
| func (n Nodes) Second() *Node { |
| return (*n.slice)[1] |
| } |
| |
| // Set sets n to a slice. |
| // This takes ownership of the slice. |
| func (n *Nodes) Set(s []*Node) { |
| if len(s) == 0 { |
| n.slice = nil |
| } else { |
| // Copy s and take address of t rather than s to avoid |
| // allocation in the case where len(s) == 0 (which is |
| // over 3x more common, dynamically, for make.bash). |
| t := s |
| n.slice = &t |
| } |
| } |
| |
| // Set1 sets n to a slice containing a single node. |
| func (n *Nodes) Set1(n1 *Node) { |
| n.slice = &[]*Node{n1} |
| } |
| |
| // Set2 sets n to a slice containing two nodes. |
| func (n *Nodes) Set2(n1, n2 *Node) { |
| n.slice = &[]*Node{n1, n2} |
| } |
| |
| // Set3 sets n to a slice containing three nodes. |
| func (n *Nodes) Set3(n1, n2, n3 *Node) { |
| n.slice = &[]*Node{n1, n2, n3} |
| } |
| |
| // MoveNodes sets n to the contents of n2, then clears n2. |
| func (n *Nodes) MoveNodes(n2 *Nodes) { |
| n.slice = n2.slice |
| n2.slice = nil |
| } |
| |
| // SetIndex sets the i'th element of Nodes to node. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) SetIndex(i int, node *Node) { |
| (*n.slice)[i] = node |
| } |
| |
| // SetFirst sets the first element of Nodes to node. |
| // It panics if n does not have at least one elements. |
| func (n Nodes) SetFirst(node *Node) { |
| (*n.slice)[0] = node |
| } |
| |
| // SetSecond sets the second element of Nodes to node. |
| // It panics if n does not have at least two elements. |
| func (n Nodes) SetSecond(node *Node) { |
| (*n.slice)[1] = node |
| } |
| |
| // Addr returns the address of the i'th element of Nodes. |
| // It panics if n does not have at least i+1 elements. |
| func (n Nodes) Addr(i int) **Node { |
| return &(*n.slice)[i] |
| } |
| |
| // Append appends entries to Nodes. |
| func (n *Nodes) Append(a ...*Node) { |
| if len(a) == 0 { |
| return |
| } |
| if n.slice == nil { |
| s := make([]*Node, len(a)) |
| copy(s, a) |
| n.slice = &s |
| return |
| } |
| *n.slice = append(*n.slice, a...) |
| } |
| |
| // Prepend prepends entries to Nodes. |
| // If a slice is passed in, this will take ownership of it. |
| func (n *Nodes) Prepend(a ...*Node) { |
| if len(a) == 0 { |
| return |
| } |
| if n.slice == nil { |
| n.slice = &a |
| } else { |
| *n.slice = append(a, *n.slice...) |
| } |
| } |
| |
| // AppendNodes appends the contents of *n2 to n, then clears n2. |
| func (n *Nodes) AppendNodes(n2 *Nodes) { |
| switch { |
| case n2.slice == nil: |
| case n.slice == nil: |
| n.slice = n2.slice |
| default: |
| *n.slice = append(*n.slice, *n2.slice...) |
| } |
| n2.slice = nil |
| } |
| |
| // inspect invokes f on each node in an AST in depth-first order. |
| // If f(n) returns false, inspect skips visiting n's children. |
| func inspect(n *Node, f func(*Node) bool) { |
| if n == nil || !f(n) { |
| return |
| } |
| inspectList(n.Ninit, f) |
| inspect(n.Left, f) |
| inspect(n.Right, f) |
| inspectList(n.List, f) |
| inspectList(n.Nbody, f) |
| inspectList(n.Rlist, f) |
| } |
| |
| func inspectList(l Nodes, f func(*Node) bool) { |
| for _, n := range l.Slice() { |
| inspect(n, f) |
| } |
| } |
| |
| // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is |
| // a ready-to-use empty queue. |
| type nodeQueue struct { |
| ring []*Node |
| head, tail int |
| } |
| |
| // empty reports whether q contains no Nodes. |
| func (q *nodeQueue) empty() bool { |
| return q.head == q.tail |
| } |
| |
| // pushRight appends n to the right of the queue. |
| func (q *nodeQueue) pushRight(n *Node) { |
| if len(q.ring) == 0 { |
| q.ring = make([]*Node, 16) |
| } else if q.head+len(q.ring) == q.tail { |
| // Grow the ring. |
| nring := make([]*Node, len(q.ring)*2) |
| // Copy the old elements. |
| part := q.ring[q.head%len(q.ring):] |
| if q.tail-q.head <= len(part) { |
| part = part[:q.tail-q.head] |
| copy(nring, part) |
| } else { |
| pos := copy(nring, part) |
| copy(nring[pos:], q.ring[:q.tail%len(q.ring)]) |
| } |
| q.ring, q.head, q.tail = nring, 0, q.tail-q.head |
| } |
| |
| q.ring[q.tail%len(q.ring)] = n |
| q.tail++ |
| } |
| |
| // popLeft pops a node from the left of the queue. It panics if q is |
| // empty. |
| func (q *nodeQueue) popLeft() *Node { |
| if q.empty() { |
| panic("dequeue empty") |
| } |
| n := q.ring[q.head%len(q.ring)] |
| q.head++ |
| return n |
| } |