| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package flate |
| |
| import ( |
| "math" |
| "sort" |
| ) |
| |
| type huffmanEncoder struct { |
| codeBits []uint8 |
| code []uint16 |
| } |
| |
| type literalNode struct { |
| literal uint16 |
| freq int32 |
| } |
| |
| type chain struct { |
| // The sum of the leaves in this tree |
| freq int32 |
| |
| // The number of literals to the left of this item at this level |
| leafCount int32 |
| |
| // The right child of this chain in the previous level. |
| up *chain |
| } |
| |
| type levelInfo struct { |
| // Our level. for better printing |
| level int32 |
| |
| // The most recent chain generated for this level |
| lastChain *chain |
| |
| // The frequency of the next character to add to this level |
| nextCharFreq int32 |
| |
| // The frequency of the next pair (from level below) to add to this level. |
| // Only valid if the "needed" value of the next lower level is 0. |
| nextPairFreq int32 |
| |
| // The number of chains remaining to generate for this level before moving |
| // up to the next level |
| needed int32 |
| |
| // The levelInfo for level+1 |
| up *levelInfo |
| |
| // The levelInfo for level-1 |
| down *levelInfo |
| } |
| |
| func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } |
| |
| func newHuffmanEncoder(size int) *huffmanEncoder { |
| return &huffmanEncoder{make([]uint8, size), make([]uint16, size)} |
| } |
| |
| // Generates a HuffmanCode corresponding to the fixed literal table |
| func generateFixedLiteralEncoding() *huffmanEncoder { |
| h := newHuffmanEncoder(maxLit) |
| codeBits := h.codeBits |
| code := h.code |
| var ch uint16 |
| for ch = 0; ch < maxLit; ch++ { |
| var bits uint16 |
| var size uint8 |
| switch { |
| case ch < 144: |
| // size 8, 000110000 .. 10111111 |
| bits = ch + 48 |
| size = 8 |
| break |
| case ch < 256: |
| // size 9, 110010000 .. 111111111 |
| bits = ch + 400 - 144 |
| size = 9 |
| break |
| case ch < 280: |
| // size 7, 0000000 .. 0010111 |
| bits = ch - 256 |
| size = 7 |
| break |
| default: |
| // size 8, 11000000 .. 11000111 |
| bits = ch + 192 - 280 |
| size = 8 |
| } |
| codeBits[ch] = size |
| code[ch] = reverseBits(bits, size) |
| } |
| return h |
| } |
| |
| func generateFixedOffsetEncoding() *huffmanEncoder { |
| h := newHuffmanEncoder(30) |
| codeBits := h.codeBits |
| code := h.code |
| for ch := uint16(0); ch < 30; ch++ { |
| codeBits[ch] = 5 |
| code[ch] = reverseBits(ch, 5) |
| } |
| return h |
| } |
| |
| var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() |
| var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() |
| |
| func (h *huffmanEncoder) bitLength(freq []int32) int64 { |
| var total int64 |
| for i, f := range freq { |
| if f != 0 { |
| total += int64(f) * int64(h.codeBits[i]) |
| } |
| } |
| return total |
| } |
| |
| // Generate elements in the chain using an iterative algorithm. |
| func (h *huffmanEncoder) generateChains(top *levelInfo, list []literalNode) { |
| n := len(list) |
| list = list[0 : n+1] |
| list[n] = maxNode() |
| |
| l := top |
| for { |
| if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { |
| // We've run out of both leafs and pairs. |
| // End all calculations for this level. |
| // To m sure we never come back to this level or any lower level, |
| // set nextPairFreq impossibly large. |
| l.lastChain = nil |
| l.needed = 0 |
| l = l.up |
| l.nextPairFreq = math.MaxInt32 |
| continue |
| } |
| |
| prevFreq := l.lastChain.freq |
| if l.nextCharFreq < l.nextPairFreq { |
| // The next item on this row is a leaf node. |
| n := l.lastChain.leafCount + 1 |
| l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up} |
| l.nextCharFreq = list[n].freq |
| } else { |
| // The next item on this row is a pair from the previous row. |
| // nextPairFreq isn't valid until we generate two |
| // more values in the level below |
| l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain} |
| l.down.needed = 2 |
| } |
| |
| if l.needed--; l.needed == 0 { |
| // We've done everything we need to do for this level. |
| // Continue calculating one level up. Fill in nextPairFreq |
| // of that level with the sum of the two nodes we've just calculated on |
| // this level. |
| up := l.up |
| if up == nil { |
| // All done! |
| return |
| } |
| up.nextPairFreq = prevFreq + l.lastChain.freq |
| l = up |
| } else { |
| // If we stole from below, move down temporarily to replenish it. |
| for l.down.needed > 0 { |
| l = l.down |
| } |
| } |
| } |
| } |
| |
| // Return the number of literals assigned to each bit size in the Huffman encoding |
| // |
| // This method is only called when list.length >= 3 |
| // The cases of 0, 1, and 2 literals are handled by special case code. |
| // |
| // list An array of the literals with non-zero frequencies |
| // and their associated frequencies. The array is in order of increasing |
| // frequency, and has as its last element a special element with frequency |
| // MaxInt32 |
| // maxBits The maximum number of bits that should be used to encode any literal. |
| // return An integer array in which array[i] indicates the number of literals |
| // that should be encoded in i bits. |
| func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { |
| n := int32(len(list)) |
| list = list[0 : n+1] |
| list[n] = maxNode() |
| |
| // The tree can't have greater depth than n - 1, no matter what. This |
| // saves a little bit of work in some small cases |
| maxBits = minInt32(maxBits, n-1) |
| |
| // Create information about each of the levels. |
| // A bogus "Level 0" whose sole purpose is so that |
| // level1.prev.needed==0. This makes level1.nextPairFreq |
| // be a legitimate value that never gets chosen. |
| top := &levelInfo{needed: 0} |
| chain2 := &chain{list[1].freq, 2, new(chain)} |
| for level := int32(1); level <= maxBits; level++ { |
| // For every level, the first two items are the first two characters. |
| // We initialize the levels as if we had already figured this out. |
| top = &levelInfo{ |
| level: level, |
| lastChain: chain2, |
| nextCharFreq: list[2].freq, |
| nextPairFreq: list[0].freq + list[1].freq, |
| down: top, |
| } |
| top.down.up = top |
| if level == 1 { |
| top.nextPairFreq = math.MaxInt32 |
| } |
| } |
| |
| // We need a total of 2*n - 2 items at top level and have already generated 2. |
| top.needed = 2*n - 4 |
| |
| l := top |
| for { |
| if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { |
| // We've run out of both leafs and pairs. |
| // End all calculations for this level. |
| // To m sure we never come back to this level or any lower level, |
| // set nextPairFreq impossibly large. |
| l.lastChain = nil |
| l.needed = 0 |
| l = l.up |
| l.nextPairFreq = math.MaxInt32 |
| continue |
| } |
| |
| prevFreq := l.lastChain.freq |
| if l.nextCharFreq < l.nextPairFreq { |
| // The next item on this row is a leaf node. |
| n := l.lastChain.leafCount + 1 |
| l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up} |
| l.nextCharFreq = list[n].freq |
| } else { |
| // The next item on this row is a pair from the previous row. |
| // nextPairFreq isn't valid until we generate two |
| // more values in the level below |
| l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain} |
| l.down.needed = 2 |
| } |
| |
| if l.needed--; l.needed == 0 { |
| // We've done everything we need to do for this level. |
| // Continue calculating one level up. Fill in nextPairFreq |
| // of that level with the sum of the two nodes we've just calculated on |
| // this level. |
| up := l.up |
| if up == nil { |
| // All done! |
| break |
| } |
| up.nextPairFreq = prevFreq + l.lastChain.freq |
| l = up |
| } else { |
| // If we stole from below, move down temporarily to replenish it. |
| for l.down.needed > 0 { |
| l = l.down |
| } |
| } |
| } |
| |
| // Somethings is wrong if at the end, the top level is null or hasn't used |
| // all of the leaves. |
| if top.lastChain.leafCount != n { |
| panic("top.lastChain.leafCount != n") |
| } |
| |
| bitCount := make([]int32, maxBits+1) |
| bits := 1 |
| for chain := top.lastChain; chain.up != nil; chain = chain.up { |
| // chain.leafCount gives the number of literals requiring at least "bits" |
| // bits to encode. |
| bitCount[bits] = chain.leafCount - chain.up.leafCount |
| bits++ |
| } |
| return bitCount |
| } |
| |
| // Look at the leaves and assign them a bit count and an encoding as specified |
| // in RFC 1951 3.2.2 |
| func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { |
| code := uint16(0) |
| for n, bits := range bitCount { |
| code <<= 1 |
| if n == 0 || bits == 0 { |
| continue |
| } |
| // The literals list[len(list)-bits] .. list[len(list)-bits] |
| // are encoded using "bits" bits, and get the values |
| // code, code + 1, .... The code values are |
| // assigned in literal order (not frequency order). |
| chunk := list[len(list)-int(bits):] |
| sortByLiteral(chunk) |
| for _, node := range chunk { |
| h.codeBits[node.literal] = uint8(n) |
| h.code[node.literal] = reverseBits(code, uint8(n)) |
| code++ |
| } |
| list = list[0 : len(list)-int(bits)] |
| } |
| } |
| |
| // Update this Huffman Code object to be the minimum code for the specified frequency count. |
| // |
| // freq An array of frequencies, in which frequency[i] gives the frequency of literal i. |
| // maxBits The maximum number of bits to use for any literal. |
| func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { |
| list := make([]literalNode, len(freq)+1) |
| // Number of non-zero literals |
| count := 0 |
| // Set list to be the set of all non-zero literals and their frequencies |
| for i, f := range freq { |
| if f != 0 { |
| list[count] = literalNode{uint16(i), f} |
| count++ |
| } else { |
| h.codeBits[i] = 0 |
| } |
| } |
| // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros |
| h.codeBits = h.codeBits[0:len(freq)] |
| list = list[0:count] |
| if count <= 2 { |
| // Handle the small cases here, because they are awkward for the general case code. With |
| // two or fewer literals, everything has bit length 1. |
| for i, node := range list { |
| // "list" is in order of increasing literal value. |
| h.codeBits[node.literal] = 1 |
| h.code[node.literal] = uint16(i) |
| } |
| return |
| } |
| sortByFreq(list) |
| |
| // Get the number of literals for each bit count |
| bitCount := h.bitCounts(list, maxBits) |
| // And do the assignment |
| h.assignEncodingAndSize(bitCount, list) |
| } |
| |
| type literalNodeSorter struct { |
| a []literalNode |
| less func(i, j int) bool |
| } |
| |
| func (s literalNodeSorter) Len() int { return len(s.a) } |
| |
| func (s literalNodeSorter) Less(i, j int) bool { |
| return s.less(i, j) |
| } |
| |
| func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] } |
| |
| func sortByFreq(a []literalNode) { |
| s := &literalNodeSorter{a, func(i, j int) bool { |
| if a[i].freq == a[j].freq { |
| return a[i].literal < a[j].literal |
| } |
| return a[i].freq < a[j].freq |
| }} |
| sort.Sort(s) |
| } |
| |
| func sortByLiteral(a []literalNode) { |
| s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }} |
| sort.Sort(s) |
| } |