blob: 5a7b6db8a8515382de4ce540b65407fa7fedb866 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ppc64 || ppc64le
// Based on CRYPTOGAMS code with the following comment:
// # ====================================================================
// # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
// # project. The module is, however, dual licensed under OpenSSL and
// # CRYPTOGAMS licenses depending on where you obtain it. For further
// # details see http://www.openssl.org/~appro/cryptogams/.
// # ====================================================================
// Original code can be found at the link below:
// https://github.com/dot-asm/cryptogams/blob/master/ppc/aesp8-ppc.pl
// Some function names were changed to be consistent with Go function
// names. For instance, function aes_p8_set_{en,de}crypt_key become
// set{En,De}cryptKeyAsm. I also split setEncryptKeyAsm in two parts
// and a new session was created (doEncryptKeyAsm). This was necessary to
// avoid arguments overwriting when setDecryptKeyAsm calls setEncryptKeyAsm.
// There were other modifications as well but kept the same functionality.
#include "textflag.h"
// For expandKeyAsm
#define INP R3
#define BITS R4
#define OUTENC R5 // Pointer to next expanded encrypt key
#define PTR R6
#define CNT R7
#define ROUNDS R8
#define OUTDEC R9 // Pointer to next expanded decrypt key
#define TEMP R19
#define ZERO V0
#define IN0 V1
#define IN1 V2
#define KEY V3
#define RCON V4
#define MASK V5
#define TMP V6
#define STAGE V7
#define OUTPERM V8
#define OUTMASK V9
#define OUTHEAD V10
#define OUTTAIL V11
// For P9 instruction emulation
#define ESPERM V21 // Endian swapping permute into BE
#define TMP2 V22 // Temporary for P8_STXVB16X/P8_STXV
// For {en,de}cryptBlockAsm
#define BLK_INP R3
#define BLK_OUT R4
#define BLK_KEY R5
#define BLK_ROUNDS R6
#define BLK_IDX R7
DATA ·rcon+0x00(SB)/8, $0x0f0e0d0c0b0a0908 // Permute for vector doubleword endian swap
DATA ·rcon+0x08(SB)/8, $0x0706050403020100
DATA ·rcon+0x10(SB)/8, $0x0100000001000000 // RCON
DATA ·rcon+0x18(SB)/8, $0x0100000001000000 // RCON
DATA ·rcon+0x20(SB)/8, $0x1b0000001b000000
DATA ·rcon+0x28(SB)/8, $0x1b0000001b000000
DATA ·rcon+0x30(SB)/8, $0x0d0e0f0c0d0e0f0c // MASK
DATA ·rcon+0x38(SB)/8, $0x0d0e0f0c0d0e0f0c // MASK
DATA ·rcon+0x40(SB)/8, $0x0000000000000000
DATA ·rcon+0x48(SB)/8, $0x0000000000000000
GLOBL ·rcon(SB), RODATA, $80
// Emulate unaligned BE vector load/stores on LE targets
#ifdef GOARCH_ppc64le
#define P8_LXVB16X(RA,RB,VT) \
LXVD2X (RA+RB), VT \
VPERM VT, VT, ESPERM, VT
#define P8_STXVB16X(VS,RA,RB) \
VPERM VS, VS, ESPERM, TMP2 \
STXVD2X TMP2, (RA+RB)
#define LXSDX_BE(RA,RB,VT) \
LXSDX (RA+RB), VT \
VPERM VT, VT, ESPERM, VT
#else
#define P8_LXVB16X(RA,RB,VT) \
LXVD2X (RA+RB), VT
#define P8_STXVB16X(VS,RA,RB) \
STXVD2X VS, (RA+RB)
#define LXSDX_BE(RA,RB,VT) \
LXSDX (RA+RB), VT
#endif
// func setEncryptKeyAsm(nr int, key *byte, enc *uint32, dec *uint32)
TEXT ·expandKeyAsm(SB), NOSPLIT|NOFRAME, $0
// Load the arguments inside the registers
MOVD nr+0(FP), ROUNDS
MOVD key+8(FP), INP
MOVD enc+16(FP), OUTENC
MOVD dec+24(FP), OUTDEC
#ifdef GOARCH_ppc64le
MOVD $·rcon(SB), PTR // PTR point to rcon addr
LVX (PTR), ESPERM
ADD $0x10, PTR
#else
MOVD $·rcon+0x10(SB), PTR // PTR point to rcon addr (skipping permute vector)
#endif
// Get key from memory and write aligned into VR
P8_LXVB16X(INP, R0, IN0)
ADD $0x10, INP, INP
MOVD $0x20, TEMP
CMPW ROUNDS, $12
LVX (PTR)(R0), RCON // lvx 4,0,6 Load first 16 bytes into RCON
LVX (PTR)(TEMP), MASK
ADD $0x10, PTR, PTR // addi 6,6,0x10 PTR to next 16 bytes of RCON
MOVD $8, CNT // li 7,8 CNT = 8
VXOR ZERO, ZERO, ZERO // vxor 0,0,0 Zero to be zero :)
MOVD CNT, CTR // mtctr 7 Set the counter to 8 (rounds)
// The expanded decrypt key is the expanded encrypt key stored in reverse order.
// Move OUTDEC to the last key location, and store in descending order.
ADD $160, OUTDEC, OUTDEC
BLT loop128
ADD $32, OUTDEC, OUTDEC
BEQ l192
ADD $32, OUTDEC, OUTDEC
JMP l256
loop128:
// Key schedule (Round 1 to 8)
VPERM IN0, IN0, MASK, KEY // vperm 3,1,1,5 Rotate-n-splat
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VADDUWM RCON, RCON, RCON // vadduwm 4,4,4
VXOR IN0, KEY, IN0 // vxor 1,1,3
BC 0x10, 0, loop128 // bdnz .Loop128
LVX (PTR)(R0), RCON // lvx 4,0,6 Last two round keys
// Key schedule (Round 9)
VPERM IN0, IN0, MASK, KEY // vperm 3,1,1,5 Rotate-n-spat
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
// Key schedule (Round 10)
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VADDUWM RCON, RCON, RCON // vadduwm 4,4,4
VXOR IN0, KEY, IN0 // vxor 1,1,3
VPERM IN0, IN0, MASK, KEY // vperm 3,1,1,5 Rotate-n-splat
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
// Key schedule (Round 11)
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VXOR IN0, KEY, IN0 // vxor 1,1,3
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
RET
l192:
LXSDX_BE(INP, R0, IN1) // Load next 8 bytes into upper half of VSR in BE order.
MOVD $4, CNT // li 7,4
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
VSPLTISB $8, KEY // vspltisb 3,8
MOVD CNT, CTR // mtctr 7
VSUBUBM MASK, KEY, MASK // vsububm 5,5,3
loop192:
VPERM IN1, IN1, MASK, KEY // vperm 3,2,2,5
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $8, ZERO, IN1, STAGE // vsldoi 7,0,2,8
VSPLTW $3, IN0, TMP // vspltw 6,1,3
VXOR TMP, IN1, TMP // vxor 6,6,2
VSLDOI $12, ZERO, IN1, IN1 // vsldoi 2,0,2,12
VADDUWM RCON, RCON, RCON // vadduwm 4,4,4
VXOR IN1, TMP, IN1 // vxor 2,2,6
VXOR IN0, KEY, IN0 // vxor 1,1,3
VXOR IN1, KEY, IN1 // vxor 2,2,3
VSLDOI $8, STAGE, IN0, STAGE // vsldoi 7,7,1,8
VPERM IN1, IN1, MASK, KEY // vperm 3,2,2,5
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
STXVD2X STAGE, (R0+OUTENC)
STXVD2X STAGE, (R0+OUTDEC)
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
VSLDOI $8, IN0, IN1, STAGE // vsldoi 7,1,2,8
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
STXVD2X STAGE, (R0+OUTENC)
STXVD2X STAGE, (R0+OUTDEC)
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
VSPLTW $3, IN0, TMP // vspltw 6,1,3
VXOR TMP, IN1, TMP // vxor 6,6,2
VSLDOI $12, ZERO, IN1, IN1 // vsldoi 2,0,2,12
VADDUWM RCON, RCON, RCON // vadduwm 4,4,4
VXOR IN1, TMP, IN1 // vxor 2,2,6
VXOR IN0, KEY, IN0 // vxor 1,1,3
VXOR IN1, KEY, IN1 // vxor 2,2,3
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
BC 0x10, 0, loop192 // bdnz .Loop192
RET
l256:
P8_LXVB16X(INP, R0, IN1)
MOVD $7, CNT // li 7,7
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
MOVD CNT, CTR // mtctr 7
loop256:
VPERM IN1, IN1, MASK, KEY // vperm 3,2,2,5
VSLDOI $12, ZERO, IN0, TMP // vsldoi 6,0,1,12
STXVD2X IN1, (R0+OUTENC)
STXVD2X IN1, (R0+OUTDEC)
VCIPHERLAST KEY, RCON, KEY // vcipherlast 3,3,4
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN0, TMP, IN0 // vxor 1,1,6
VADDUWM RCON, RCON, RCON // vadduwm 4,4,4
VXOR IN0, KEY, IN0 // vxor 1,1,3
STXVD2X IN0, (R0+OUTENC)
STXVD2X IN0, (R0+OUTDEC)
ADD $16, OUTENC, OUTENC
ADD $-16, OUTDEC, OUTDEC
BC 0x12, 0, done // bdz .Ldone
VSPLTW $3, IN0, KEY // vspltw 3,1,3
VSLDOI $12, ZERO, IN1, TMP // vsldoi 6,0,2,12
VSBOX KEY, KEY // vsbox 3,3
VXOR IN1, TMP, IN1 // vxor 2,2,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN1, TMP, IN1 // vxor 2,2,6
VSLDOI $12, ZERO, TMP, TMP // vsldoi 6,0,6,12
VXOR IN1, TMP, IN1 // vxor 2,2,6
VXOR IN1, KEY, IN1 // vxor 2,2,3
JMP loop256 // b .Loop256
done:
RET
// func encryptBlockAsm(nr int, xk *uint32, dst, src *byte)
TEXT ·encryptBlockAsm(SB), NOSPLIT|NOFRAME, $0
MOVD nr+0(FP), R6 // Round count/Key size
MOVD xk+8(FP), R5 // Key pointer
MOVD dst+16(FP), R3 // Dest pointer
MOVD src+24(FP), R4 // Src pointer
#ifdef GOARCH_ppc64le
MOVD $·rcon(SB), R7
LVX (R7), ESPERM // Permute value for P8_ macros.
#endif
// Set CR{1,2,3}EQ to hold the key size information.
CMPU R6, $10, CR1
CMPU R6, $12, CR2
CMPU R6, $14, CR3
MOVD $16, R6
MOVD $32, R7
MOVD $48, R8
MOVD $64, R9
MOVD $80, R10
MOVD $96, R11
MOVD $112, R12
// Load text in BE order
P8_LXVB16X(R4, R0, V0)
// V1, V2 will hold keys, V0 is a temp.
// At completion, V2 will hold the ciphertext.
// Load xk[0:3] and xor with text
LXVD2X (R0+R5), V1
VXOR V0, V1, V0
// Load xk[4:11] and cipher
LXVD2X (R6+R5), V1
LXVD2X (R7+R5), V2
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Load xk[12:19] and cipher
LXVD2X (R8+R5), V1
LXVD2X (R9+R5), V2
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Load xk[20:27] and cipher
LXVD2X (R10+R5), V1
LXVD2X (R11+R5), V2
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Increment xk pointer to reuse constant offsets in R6-R12.
ADD $112, R5
// Load xk[28:35] and cipher
LXVD2X (R0+R5), V1
LXVD2X (R6+R5), V2
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Load xk[36:43] and cipher
LXVD2X (R7+R5), V1
LXVD2X (R8+R5), V2
BEQ CR1, Ldec_tail // Key size 10?
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Load xk[44:51] and cipher
LXVD2X (R9+R5), V1
LXVD2X (R10+R5), V2
BEQ CR2, Ldec_tail // Key size 12?
VCIPHER V0, V1, V0
VCIPHER V0, V2, V0
// Load xk[52:59] and cipher
LXVD2X (R11+R5), V1
LXVD2X (R12+R5), V2
BNE CR3, Linvalid_key_len // Not key size 14?
// Fallthrough to final cipher
Ldec_tail:
// Cipher last two keys such that key information is
// cleared from V1 and V2.
VCIPHER V0, V1, V1
VCIPHERLAST V1, V2, V2
// Store the result in BE order.
P8_STXVB16X(V2, R3, R0)
RET
Linvalid_key_len:
// Segfault, this should never happen. Only 3 keys sizes are created/used.
MOVD R0, 0(R0)
RET
// func decryptBlockAsm(nr int, xk *uint32, dst, src *byte)
TEXT ·decryptBlockAsm(SB), NOSPLIT|NOFRAME, $0
MOVD nr+0(FP), R6 // Round count/Key size
MOVD xk+8(FP), R5 // Key pointer
MOVD dst+16(FP), R3 // Dest pointer
MOVD src+24(FP), R4 // Src pointer
#ifdef GOARCH_ppc64le
MOVD $·rcon(SB), R7
LVX (R7), ESPERM // Permute value for P8_ macros.
#endif
// Set CR{1,2,3}EQ to hold the key size information.
CMPU R6, $10, CR1
CMPU R6, $12, CR2
CMPU R6, $14, CR3
MOVD $16, R6
MOVD $32, R7
MOVD $48, R8
MOVD $64, R9
MOVD $80, R10
MOVD $96, R11
MOVD $112, R12
// Load text in BE order
P8_LXVB16X(R4, R0, V0)
// V1, V2 will hold keys, V0 is a temp.
// At completion, V2 will hold the text.
// Load xk[0:3] and xor with ciphertext
LXVD2X (R0+R5), V1
VXOR V0, V1, V0
// Load xk[4:11] and cipher
LXVD2X (R6+R5), V1
LXVD2X (R7+R5), V2
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Load xk[12:19] and cipher
LXVD2X (R8+R5), V1
LXVD2X (R9+R5), V2
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Load xk[20:27] and cipher
LXVD2X (R10+R5), V1
LXVD2X (R11+R5), V2
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Increment xk pointer to reuse constant offsets in R6-R12.
ADD $112, R5
// Load xk[28:35] and cipher
LXVD2X (R0+R5), V1
LXVD2X (R6+R5), V2
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Load xk[36:43] and cipher
LXVD2X (R7+R5), V1
LXVD2X (R8+R5), V2
BEQ CR1, Ldec_tail // Key size 10?
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Load xk[44:51] and cipher
LXVD2X (R9+R5), V1
LXVD2X (R10+R5), V2
BEQ CR2, Ldec_tail // Key size 12?
VNCIPHER V0, V1, V0
VNCIPHER V0, V2, V0
// Load xk[52:59] and cipher
LXVD2X (R11+R5), V1
LXVD2X (R12+R5), V2
BNE CR3, Linvalid_key_len // Not key size 14?
// Fallthrough to final cipher
Ldec_tail:
// Cipher last two keys such that key information is
// cleared from V1 and V2.
VNCIPHER V0, V1, V1
VNCIPHERLAST V1, V2, V2
// Store the result in BE order.
P8_STXVB16X(V2, R3, R0)
RET
Linvalid_key_len:
// Segfault, this should never happen. Only 3 keys sizes are created/used.
MOVD R0, 0(R0)
RET
// Remove defines from above so they can be defined here
#undef INP
#undef OUTENC
#undef ROUNDS
#undef KEY
#undef TMP
// CBC encrypt or decrypt
// R3 src
// R4 dst
// R5 len
// R6 key
// R7 iv
// R8 enc=1 dec=0
// Ported from: aes_p8_cbc_encrypt
// Register usage:
// R9: ROUNDS
// R10: Index
// V4: IV
// V5: SRC
// V7: DST
#define INP R3
#define OUT R4
#define LEN R5
#define KEY R6
#define IVP R7
#define ENC R8
#define ROUNDS R9
#define IDX R10
#define RNDKEY0 V0
#define INOUT V2
#define TMP V3
#define IVEC V4
// Vector loads are done using LVX followed by
// a VPERM using mask generated from previous
// LVSL or LVSR instruction, to obtain the correct
// bytes if address is unaligned.
// Encryption is done with VCIPHER and VCIPHERLAST
// Decryption is done with VNCIPHER and VNCIPHERLAST
// Encrypt and decypt is done as follows:
// - INOUT value is initialized in outer loop.
// - ROUNDS value is adjusted for loop unrolling.
// - Encryption/decryption is done in loop based on
// adjusted ROUNDS value.
// - Final INOUT value is encrypted/decrypted and stored.
// Note: original implementation had an 8X version
// for decryption which was omitted to avoid the
// complexity.
// func cryptBlocksChain(src, dst *byte, length int, key *uint32, iv *byte, enc int, nr int)
TEXT ·cryptBlocksChain(SB), NOSPLIT|NOFRAME, $0
MOVD src+0(FP), INP
MOVD dst+8(FP), OUT
MOVD length+16(FP), LEN
MOVD key+24(FP), KEY
MOVD iv+32(FP), IVP
MOVD enc+40(FP), ENC
MOVD nr+48(FP), ROUNDS
#ifdef GOARCH_ppc64le
MOVD $·rcon(SB), R11
LVX (R11), ESPERM // Permute value for P8_ macros.
#endif
CMPU LEN, $16 // cmpldi r5,16
BC 14, 0, LR // bltlr-, return if len < 16.
CMPW ENC, $0 // cmpwi r8,0
P8_LXVB16X(IVP, R0, IVEC) // load ivec in BE register order
SRW $1, ROUNDS // rlwinm r9,r9,31,1,31
MOVD $0, IDX // li r10,0
ADD $-1, ROUNDS // addi r9,r9,-1
BEQ Lcbc_dec // beq
PCALIGN $16
// Outer loop: initialize encrypted value (INOUT)
// Load input (INPTAIL) ivec (IVEC)
Lcbc_enc:
P8_LXVB16X(INP, R0, INOUT) // load text in BE vreg order
ADD $16, INP // addi r3,r3,16
MOVD ROUNDS, CTR // mtctr r9
ADD $-16, LEN // addi r5,r5,-16
LXVD2X (KEY+IDX), RNDKEY0 // load first xkey
ADD $16, IDX // addi r10,r10,16
VXOR INOUT, RNDKEY0, INOUT // vxor v2,v2,v0
VXOR INOUT, IVEC, INOUT // vxor v2,v2,v4
// Encryption loop of INOUT using RNDKEY0
Loop_cbc_enc:
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
VCIPHER INOUT, RNDKEY0, INOUT // vcipher v2,v2,v1
ADD $16, IDX // addi r10,r10,16
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
VCIPHER INOUT, RNDKEY0, INOUT // vcipher v2,v2,v1
ADD $16, IDX // addi r10,r10,16
BDNZ Loop_cbc_enc
// Encrypt tail values and store INOUT
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
VCIPHER INOUT, RNDKEY0, INOUT // vcipher v2,v2,v1
ADD $16, IDX // addi r10,r10,16
LXVD2X (KEY+IDX), RNDKEY0 // load final xkey
VCIPHERLAST INOUT, RNDKEY0, IVEC // vcipherlast v4,v2,v0
MOVD $0, IDX // reset key index for next block
CMPU LEN, $16 // cmpldi r5,16
P8_STXVB16X(IVEC, OUT, R0) // store ciphertext in BE order
ADD $16, OUT // addi r4,r4,16
BGE Lcbc_enc // bge Lcbc_enc
BR Lcbc_done // b Lcbc_done
// Outer loop: initialize decrypted value (INOUT)
// Load input (INPTAIL) ivec (IVEC)
Lcbc_dec:
P8_LXVB16X(INP, R0, TMP) // load ciphertext in BE vreg order
ADD $16, INP // addi r3,r3,16
MOVD ROUNDS, CTR // mtctr r9
ADD $-16, LEN // addi r5,r5,-16
LXVD2X (KEY+IDX), RNDKEY0 // load first xkey
ADD $16, IDX // addi r10,r10,16
VXOR TMP, RNDKEY0, INOUT // vxor v2,v3,v0
PCALIGN $16
// Decryption loop of INOUT using RNDKEY0
Loop_cbc_dec:
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
ADD $16, IDX // addi r10,r10,16
VNCIPHER INOUT, RNDKEY0, INOUT // vncipher v2,v2,v1
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
ADD $16, IDX // addi r10,r10,16
VNCIPHER INOUT, RNDKEY0, INOUT // vncipher v2,v2,v0
BDNZ Loop_cbc_dec
// Decrypt tail values and store INOUT
LXVD2X (KEY+IDX), RNDKEY0 // load next xkey
ADD $16, IDX // addi r10,r10,16
VNCIPHER INOUT, RNDKEY0, INOUT // vncipher v2,v2,v1
LXVD2X (KEY+IDX), RNDKEY0 // load final xkey
MOVD $0, IDX // li r10,0
VNCIPHERLAST INOUT, RNDKEY0, INOUT // vncipherlast v2,v2,v0
CMPU LEN, $16 // cmpldi r5,16
VXOR INOUT, IVEC, INOUT // vxor v2,v2,v4
VOR TMP, TMP, IVEC // vor v4,v3,v3
P8_STXVB16X(INOUT, OUT, R0) // store text in BE order
ADD $16, OUT // addi r4,r4,16
BGE Lcbc_dec // bge
Lcbc_done:
VXOR RNDKEY0, RNDKEY0, RNDKEY0 // clear key register
P8_STXVB16X(IVEC, R0, IVP) // Save ivec in BE order for next round.
RET // bclr 20,lt,0