| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package rand_test |
| |
| import ( |
| "bytes" |
| "errors" |
| "fmt" |
| "internal/testenv" |
| "io" |
| "math" |
| . "math/rand" |
| "os" |
| "runtime" |
| "strings" |
| "sync" |
| "testing" |
| "testing/iotest" |
| ) |
| |
| const ( |
| numTestSamples = 10000 |
| ) |
| |
| var rn, kn, wn, fn = GetNormalDistributionParameters() |
| var re, ke, we, fe = GetExponentialDistributionParameters() |
| |
| type statsResults struct { |
| mean float64 |
| stddev float64 |
| closeEnough float64 |
| maxError float64 |
| } |
| |
| func nearEqual(a, b, closeEnough, maxError float64) bool { |
| absDiff := math.Abs(a - b) |
| if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. |
| return true |
| } |
| return absDiff/max(math.Abs(a), math.Abs(b)) < maxError |
| } |
| |
| var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} |
| |
| // checkSimilarDistribution returns success if the mean and stddev of the |
| // two statsResults are similar. |
| func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error { |
| if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) { |
| s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError) |
| fmt.Println(s) |
| return errors.New(s) |
| } |
| if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) { |
| s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) |
| fmt.Println(s) |
| return errors.New(s) |
| } |
| return nil |
| } |
| |
| func getStatsResults(samples []float64) *statsResults { |
| res := new(statsResults) |
| var sum, squaresum float64 |
| for _, s := range samples { |
| sum += s |
| squaresum += s * s |
| } |
| res.mean = sum / float64(len(samples)) |
| res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean) |
| return res |
| } |
| |
| func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { |
| t.Helper() |
| actual := getStatsResults(samples) |
| err := actual.checkSimilarDistribution(expected) |
| if err != nil { |
| t.Errorf(err.Error()) |
| } |
| } |
| |
| func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { |
| t.Helper() |
| chunk := len(samples) / nslices |
| for i := 0; i < nslices; i++ { |
| low := i * chunk |
| var high int |
| if i == nslices-1 { |
| high = len(samples) - 1 |
| } else { |
| high = (i + 1) * chunk |
| } |
| checkSampleDistribution(t, samples[low:high], expected) |
| } |
| } |
| |
| // |
| // Normal distribution tests |
| // |
| |
| func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { |
| r := New(NewSource(seed)) |
| samples := make([]float64, nsamples) |
| for i := range samples { |
| samples[i] = r.NormFloat64()*stddev + mean |
| } |
| return samples |
| } |
| |
| func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { |
| //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); |
| |
| samples := generateNormalSamples(nsamples, mean, stddev, seed) |
| errorScale := max(1.0, stddev) // Error scales with stddev |
| expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} |
| |
| // Make sure that the entire set matches the expected distribution. |
| checkSampleDistribution(t, samples, expected) |
| |
| // Make sure that each half of the set matches the expected distribution. |
| checkSampleSliceDistributions(t, samples, 2, expected) |
| |
| // Make sure that each 7th of the set matches the expected distribution. |
| checkSampleSliceDistributions(t, samples, 7, expected) |
| } |
| |
| // Actual tests |
| |
| func TestStandardNormalValues(t *testing.T) { |
| for _, seed := range testSeeds { |
| testNormalDistribution(t, numTestSamples, 0, 1, seed) |
| } |
| } |
| |
| func TestNonStandardNormalValues(t *testing.T) { |
| sdmax := 1000.0 |
| mmax := 1000.0 |
| if testing.Short() { |
| sdmax = 5 |
| mmax = 5 |
| } |
| for sd := 0.5; sd < sdmax; sd *= 2 { |
| for m := 0.5; m < mmax; m *= 2 { |
| for _, seed := range testSeeds { |
| testNormalDistribution(t, numTestSamples, m, sd, seed) |
| if testing.Short() { |
| break |
| } |
| } |
| } |
| } |
| } |
| |
| // |
| // Exponential distribution tests |
| // |
| |
| func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { |
| r := New(NewSource(seed)) |
| samples := make([]float64, nsamples) |
| for i := range samples { |
| samples[i] = r.ExpFloat64() / rate |
| } |
| return samples |
| } |
| |
| func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { |
| //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); |
| |
| mean := 1 / rate |
| stddev := mean |
| |
| samples := generateExponentialSamples(nsamples, rate, seed) |
| errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate |
| expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} |
| |
| // Make sure that the entire set matches the expected distribution. |
| checkSampleDistribution(t, samples, expected) |
| |
| // Make sure that each half of the set matches the expected distribution. |
| checkSampleSliceDistributions(t, samples, 2, expected) |
| |
| // Make sure that each 7th of the set matches the expected distribution. |
| checkSampleSliceDistributions(t, samples, 7, expected) |
| } |
| |
| // Actual tests |
| |
| func TestStandardExponentialValues(t *testing.T) { |
| for _, seed := range testSeeds { |
| testExponentialDistribution(t, numTestSamples, 1, seed) |
| } |
| } |
| |
| func TestNonStandardExponentialValues(t *testing.T) { |
| for rate := 0.05; rate < 10; rate *= 2 { |
| for _, seed := range testSeeds { |
| testExponentialDistribution(t, numTestSamples, rate, seed) |
| if testing.Short() { |
| break |
| } |
| } |
| } |
| } |
| |
| // |
| // Table generation tests |
| // |
| |
| func initNorm() (testKn []uint32, testWn, testFn []float32) { |
| const m1 = 1 << 31 |
| var ( |
| dn float64 = rn |
| tn = dn |
| vn float64 = 9.91256303526217e-3 |
| ) |
| |
| testKn = make([]uint32, 128) |
| testWn = make([]float32, 128) |
| testFn = make([]float32, 128) |
| |
| q := vn / math.Exp(-0.5*dn*dn) |
| testKn[0] = uint32((dn / q) * m1) |
| testKn[1] = 0 |
| testWn[0] = float32(q / m1) |
| testWn[127] = float32(dn / m1) |
| testFn[0] = 1.0 |
| testFn[127] = float32(math.Exp(-0.5 * dn * dn)) |
| for i := 126; i >= 1; i-- { |
| dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) |
| testKn[i+1] = uint32((dn / tn) * m1) |
| tn = dn |
| testFn[i] = float32(math.Exp(-0.5 * dn * dn)) |
| testWn[i] = float32(dn / m1) |
| } |
| return |
| } |
| |
| func initExp() (testKe []uint32, testWe, testFe []float32) { |
| const m2 = 1 << 32 |
| var ( |
| de float64 = re |
| te = de |
| ve float64 = 3.9496598225815571993e-3 |
| ) |
| |
| testKe = make([]uint32, 256) |
| testWe = make([]float32, 256) |
| testFe = make([]float32, 256) |
| |
| q := ve / math.Exp(-de) |
| testKe[0] = uint32((de / q) * m2) |
| testKe[1] = 0 |
| testWe[0] = float32(q / m2) |
| testWe[255] = float32(de / m2) |
| testFe[0] = 1.0 |
| testFe[255] = float32(math.Exp(-de)) |
| for i := 254; i >= 1; i-- { |
| de = -math.Log(ve/de + math.Exp(-de)) |
| testKe[i+1] = uint32((de / te) * m2) |
| te = de |
| testFe[i] = float32(math.Exp(-de)) |
| testWe[i] = float32(de / m2) |
| } |
| return |
| } |
| |
| // compareUint32Slices returns the first index where the two slices |
| // disagree, or <0 if the lengths are the same and all elements |
| // are identical. |
| func compareUint32Slices(s1, s2 []uint32) int { |
| if len(s1) != len(s2) { |
| if len(s1) > len(s2) { |
| return len(s2) + 1 |
| } |
| return len(s1) + 1 |
| } |
| for i := range s1 { |
| if s1[i] != s2[i] { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // compareFloat32Slices returns the first index where the two slices |
| // disagree, or <0 if the lengths are the same and all elements |
| // are identical. |
| func compareFloat32Slices(s1, s2 []float32) int { |
| if len(s1) != len(s2) { |
| if len(s1) > len(s2) { |
| return len(s2) + 1 |
| } |
| return len(s1) + 1 |
| } |
| for i := range s1 { |
| if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| func TestNormTables(t *testing.T) { |
| testKn, testWn, testFn := initNorm() |
| if i := compareUint32Slices(kn[0:], testKn); i >= 0 { |
| t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) |
| } |
| if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { |
| t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) |
| } |
| if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { |
| t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) |
| } |
| } |
| |
| func TestExpTables(t *testing.T) { |
| testKe, testWe, testFe := initExp() |
| if i := compareUint32Slices(ke[0:], testKe); i >= 0 { |
| t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) |
| } |
| if i := compareFloat32Slices(we[0:], testWe); i >= 0 { |
| t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) |
| } |
| if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { |
| t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) |
| } |
| } |
| |
| func hasSlowFloatingPoint() bool { |
| switch runtime.GOARCH { |
| case "arm": |
| return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat") |
| case "mips", "mipsle", "mips64", "mips64le": |
| // Be conservative and assume that all mips boards |
| // have emulated floating point. |
| // TODO: detect what it actually has. |
| return true |
| } |
| return false |
| } |
| |
| func TestFloat32(t *testing.T) { |
| // For issue 6721, the problem came after 7533753 calls, so check 10e6. |
| num := int(10e6) |
| // But do the full amount only on builders (not locally). |
| // But ARM5 floating point emulation is slow (Issue 10749), so |
| // do less for that builder: |
| if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) { |
| num /= 100 // 1.72 seconds instead of 172 seconds |
| } |
| |
| r := New(NewSource(1)) |
| for ct := 0; ct < num; ct++ { |
| f := r.Float32() |
| if f >= 1 { |
| t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f) |
| } |
| } |
| } |
| |
| func testReadUniformity(t *testing.T, n int, seed int64) { |
| r := New(NewSource(seed)) |
| buf := make([]byte, n) |
| nRead, err := r.Read(buf) |
| if err != nil { |
| t.Errorf("Read err %v", err) |
| } |
| if nRead != n { |
| t.Errorf("Read returned unexpected n; %d != %d", nRead, n) |
| } |
| |
| // Expect a uniform distribution of byte values, which lie in [0, 255]. |
| var ( |
| mean = 255.0 / 2 |
| stddev = 256.0 / math.Sqrt(12.0) |
| errorScale = stddev / math.Sqrt(float64(n)) |
| ) |
| |
| expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} |
| |
| // Cast bytes as floats to use the common distribution-validity checks. |
| samples := make([]float64, n) |
| for i, val := range buf { |
| samples[i] = float64(val) |
| } |
| // Make sure that the entire set matches the expected distribution. |
| checkSampleDistribution(t, samples, expected) |
| } |
| |
| func TestReadUniformity(t *testing.T) { |
| testBufferSizes := []int{ |
| 2, 4, 7, 64, 1024, 1 << 16, 1 << 20, |
| } |
| for _, seed := range testSeeds { |
| for _, n := range testBufferSizes { |
| testReadUniformity(t, n, seed) |
| } |
| } |
| } |
| |
| func TestReadEmpty(t *testing.T) { |
| r := New(NewSource(1)) |
| buf := make([]byte, 0) |
| n, err := r.Read(buf) |
| if err != nil { |
| t.Errorf("Read err into empty buffer; %v", err) |
| } |
| if n != 0 { |
| t.Errorf("Read into empty buffer returned unexpected n of %d", n) |
| } |
| } |
| |
| func TestReadByOneByte(t *testing.T) { |
| r := New(NewSource(1)) |
| b1 := make([]byte, 100) |
| _, err := io.ReadFull(iotest.OneByteReader(r), b1) |
| if err != nil { |
| t.Errorf("read by one byte: %v", err) |
| } |
| r = New(NewSource(1)) |
| b2 := make([]byte, 100) |
| _, err = r.Read(b2) |
| if err != nil { |
| t.Errorf("read: %v", err) |
| } |
| if !bytes.Equal(b1, b2) { |
| t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2) |
| } |
| } |
| |
| func TestReadSeedReset(t *testing.T) { |
| r := New(NewSource(42)) |
| b1 := make([]byte, 128) |
| _, err := r.Read(b1) |
| if err != nil { |
| t.Errorf("read: %v", err) |
| } |
| r.Seed(42) |
| b2 := make([]byte, 128) |
| _, err = r.Read(b2) |
| if err != nil { |
| t.Errorf("read: %v", err) |
| } |
| if !bytes.Equal(b1, b2) { |
| t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2) |
| } |
| } |
| |
| func TestShuffleSmall(t *testing.T) { |
| // Check that Shuffle allows n=0 and n=1, but that swap is never called for them. |
| r := New(NewSource(1)) |
| for n := 0; n <= 1; n++ { |
| r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) }) |
| } |
| } |
| |
| // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!). |
| // See https://en.wikipedia.org/wiki/Lehmer_code. |
| // encodePerm modifies the input slice. |
| func encodePerm(s []int) int { |
| // Convert to Lehmer code. |
| for i, x := range s { |
| r := s[i+1:] |
| for j, y := range r { |
| if y > x { |
| r[j]-- |
| } |
| } |
| } |
| // Convert to int in [0, n!). |
| m := 0 |
| fact := 1 |
| for i := len(s) - 1; i >= 0; i-- { |
| m += s[i] * fact |
| fact *= len(s) - i |
| } |
| return m |
| } |
| |
| // TestUniformFactorial tests several ways of generating a uniform value in [0, n!). |
| func TestUniformFactorial(t *testing.T) { |
| r := New(NewSource(testSeeds[0])) |
| top := 6 |
| if testing.Short() { |
| top = 3 |
| } |
| for n := 3; n <= top; n++ { |
| t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) { |
| // Calculate n!. |
| nfact := 1 |
| for i := 2; i <= n; i++ { |
| nfact *= i |
| } |
| |
| // Test a few different ways to generate a uniform distribution. |
| p := make([]int, n) // re-usable slice for Shuffle generator |
| tests := [...]struct { |
| name string |
| fn func() int |
| }{ |
| {name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }}, |
| {name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }}, |
| {name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }}, |
| {name: "Shuffle", fn: func() int { |
| // Generate permutation using Shuffle. |
| for i := range p { |
| p[i] = i |
| } |
| r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] }) |
| return encodePerm(p) |
| }}, |
| } |
| |
| for _, test := range tests { |
| t.Run(test.name, func(t *testing.T) { |
| // Gather chi-squared values and check that they follow |
| // the expected normal distribution given n!-1 degrees of freedom. |
| // See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and |
| // https://www.johndcook.com/Beautiful_Testing_ch10.pdf. |
| nsamples := 10 * nfact |
| if nsamples < 200 { |
| nsamples = 200 |
| } |
| samples := make([]float64, nsamples) |
| for i := range samples { |
| // Generate some uniformly distributed values and count their occurrences. |
| const iters = 1000 |
| counts := make([]int, nfact) |
| for i := 0; i < iters; i++ { |
| counts[test.fn()]++ |
| } |
| // Calculate chi-squared and add to samples. |
| want := iters / float64(nfact) |
| var χ2 float64 |
| for _, have := range counts { |
| err := float64(have) - want |
| χ2 += err * err |
| } |
| χ2 /= want |
| samples[i] = χ2 |
| } |
| |
| // Check that our samples approximate the appropriate normal distribution. |
| dof := float64(nfact - 1) |
| expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)} |
| errorScale := max(1.0, expected.stddev) |
| expected.closeEnough = 0.10 * errorScale |
| expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211. |
| checkSampleDistribution(t, samples, expected) |
| }) |
| } |
| }) |
| } |
| } |
| |
| // Benchmarks |
| |
| func BenchmarkInt63Threadsafe(b *testing.B) { |
| for n := b.N; n > 0; n-- { |
| Int63() |
| } |
| } |
| |
| func BenchmarkInt63ThreadsafeParallel(b *testing.B) { |
| b.RunParallel(func(pb *testing.PB) { |
| for pb.Next() { |
| Int63() |
| } |
| }) |
| } |
| |
| func BenchmarkInt63Unthreadsafe(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Int63() |
| } |
| } |
| |
| func BenchmarkIntn1000(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Intn(1000) |
| } |
| } |
| |
| func BenchmarkInt63n1000(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Int63n(1000) |
| } |
| } |
| |
| func BenchmarkInt31n1000(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Int31n(1000) |
| } |
| } |
| |
| func BenchmarkFloat32(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Float32() |
| } |
| } |
| |
| func BenchmarkFloat64(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Float64() |
| } |
| } |
| |
| func BenchmarkPerm3(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Perm(3) |
| } |
| } |
| |
| func BenchmarkPerm30(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Perm(30) |
| } |
| } |
| |
| func BenchmarkPerm30ViaShuffle(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| p := make([]int, 30) |
| for i := range p { |
| p[i] = i |
| } |
| r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] }) |
| } |
| } |
| |
| // BenchmarkShuffleOverhead uses a minimal swap function |
| // to measure just the shuffling overhead. |
| func BenchmarkShuffleOverhead(b *testing.B) { |
| r := New(NewSource(1)) |
| for n := b.N; n > 0; n-- { |
| r.Shuffle(52, func(i, j int) { |
| if i < 0 || i >= 52 || j < 0 || j >= 52 { |
| b.Fatalf("bad swap(%d, %d)", i, j) |
| } |
| }) |
| } |
| } |
| |
| func BenchmarkRead3(b *testing.B) { |
| r := New(NewSource(1)) |
| buf := make([]byte, 3) |
| b.ResetTimer() |
| for n := b.N; n > 0; n-- { |
| r.Read(buf) |
| } |
| } |
| |
| func BenchmarkRead64(b *testing.B) { |
| r := New(NewSource(1)) |
| buf := make([]byte, 64) |
| b.ResetTimer() |
| for n := b.N; n > 0; n-- { |
| r.Read(buf) |
| } |
| } |
| |
| func BenchmarkRead1000(b *testing.B) { |
| r := New(NewSource(1)) |
| buf := make([]byte, 1000) |
| b.ResetTimer() |
| for n := b.N; n > 0; n-- { |
| r.Read(buf) |
| } |
| } |
| |
| func BenchmarkConcurrent(b *testing.B) { |
| const goroutines = 4 |
| var wg sync.WaitGroup |
| wg.Add(goroutines) |
| for i := 0; i < goroutines; i++ { |
| go func() { |
| defer wg.Done() |
| for n := b.N; n > 0; n-- { |
| Int63() |
| } |
| }() |
| } |
| wg.Wait() |
| } |