blob: 189c1ae915912c75a517eca05496efbd1b6c486b [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Writing Go object files.
package obj
import (
"bytes"
"cmd/internal/bio"
"cmd/internal/goobj"
"cmd/internal/notsha256"
"cmd/internal/objabi"
"cmd/internal/sys"
"encoding/binary"
"fmt"
"internal/abi"
"io"
"log"
"os"
"path/filepath"
"sort"
"strings"
)
const UnlinkablePkg = "<unlinkable>" // invalid package path, used when compiled without -p flag
// Entry point of writing new object file.
func WriteObjFile(ctxt *Link, b *bio.Writer) {
debugAsmEmit(ctxt)
genFuncInfoSyms(ctxt)
w := writer{
Writer: goobj.NewWriter(b),
ctxt: ctxt,
pkgpath: objabi.PathToPrefix(ctxt.Pkgpath),
}
start := b.Offset()
w.init()
// Header
// We just reserve the space. We'll fill in the offsets later.
flags := uint32(0)
if ctxt.Flag_shared {
flags |= goobj.ObjFlagShared
}
if w.pkgpath == UnlinkablePkg {
flags |= goobj.ObjFlagUnlinkable
}
if w.pkgpath == "" {
log.Fatal("empty package path")
}
if ctxt.IsAsm {
flags |= goobj.ObjFlagFromAssembly
}
h := goobj.Header{
Magic: goobj.Magic,
Fingerprint: ctxt.Fingerprint,
Flags: flags,
}
h.Write(w.Writer)
// String table
w.StringTable()
// Autolib
h.Offsets[goobj.BlkAutolib] = w.Offset()
for i := range ctxt.Imports {
ctxt.Imports[i].Write(w.Writer)
}
// Package references
h.Offsets[goobj.BlkPkgIdx] = w.Offset()
for _, pkg := range w.pkglist {
w.StringRef(pkg)
}
// File table (for DWARF and pcln generation).
h.Offsets[goobj.BlkFile] = w.Offset()
for _, f := range ctxt.PosTable.FileTable() {
w.StringRef(filepath.ToSlash(f))
}
// Symbol definitions
h.Offsets[goobj.BlkSymdef] = w.Offset()
for _, s := range ctxt.defs {
w.Sym(s)
}
// Short hashed symbol definitions
h.Offsets[goobj.BlkHashed64def] = w.Offset()
for _, s := range ctxt.hashed64defs {
w.Sym(s)
}
// Hashed symbol definitions
h.Offsets[goobj.BlkHasheddef] = w.Offset()
for _, s := range ctxt.hasheddefs {
w.Sym(s)
}
// Non-pkg symbol definitions
h.Offsets[goobj.BlkNonpkgdef] = w.Offset()
for _, s := range ctxt.nonpkgdefs {
w.Sym(s)
}
// Non-pkg symbol references
h.Offsets[goobj.BlkNonpkgref] = w.Offset()
for _, s := range ctxt.nonpkgrefs {
w.Sym(s)
}
// Referenced package symbol flags
h.Offsets[goobj.BlkRefFlags] = w.Offset()
w.refFlags()
// Hashes
h.Offsets[goobj.BlkHash64] = w.Offset()
for _, s := range ctxt.hashed64defs {
w.Hash64(s)
}
h.Offsets[goobj.BlkHash] = w.Offset()
for _, s := range ctxt.hasheddefs {
w.Hash(s)
}
// TODO: hashedrefs unused/unsupported for now
// Reloc indexes
h.Offsets[goobj.BlkRelocIdx] = w.Offset()
nreloc := uint32(0)
lists := [][]*LSym{ctxt.defs, ctxt.hashed64defs, ctxt.hasheddefs, ctxt.nonpkgdefs}
for _, list := range lists {
for _, s := range list {
w.Uint32(nreloc)
nreloc += uint32(len(s.R))
}
}
w.Uint32(nreloc)
// Symbol Info indexes
h.Offsets[goobj.BlkAuxIdx] = w.Offset()
naux := uint32(0)
for _, list := range lists {
for _, s := range list {
w.Uint32(naux)
naux += uint32(nAuxSym(s))
}
}
w.Uint32(naux)
// Data indexes
h.Offsets[goobj.BlkDataIdx] = w.Offset()
dataOff := int64(0)
for _, list := range lists {
for _, s := range list {
w.Uint32(uint32(dataOff))
dataOff += int64(len(s.P))
if file := s.File(); file != nil {
dataOff += int64(file.Size)
}
}
}
if int64(uint32(dataOff)) != dataOff {
log.Fatalf("data too large")
}
w.Uint32(uint32(dataOff))
// Relocs
h.Offsets[goobj.BlkReloc] = w.Offset()
for _, list := range lists {
for _, s := range list {
sort.Sort(relocByOff(s.R)) // some platforms (e.g. PE) requires relocations in address order
for i := range s.R {
w.Reloc(&s.R[i])
}
}
}
// Aux symbol info
h.Offsets[goobj.BlkAux] = w.Offset()
for _, list := range lists {
for _, s := range list {
w.Aux(s)
}
}
// Data
h.Offsets[goobj.BlkData] = w.Offset()
for _, list := range lists {
for _, s := range list {
w.Bytes(s.P)
if file := s.File(); file != nil {
w.writeFile(ctxt, file)
}
}
}
// Blocks used only by tools (objdump, nm).
// Referenced symbol names from other packages
h.Offsets[goobj.BlkRefName] = w.Offset()
w.refNames()
h.Offsets[goobj.BlkEnd] = w.Offset()
// Fix up block offsets in the header
end := start + int64(w.Offset())
b.MustSeek(start, 0)
h.Write(w.Writer)
b.MustSeek(end, 0)
}
type writer struct {
*goobj.Writer
filebuf []byte
ctxt *Link
pkgpath string // the package import path (escaped), "" if unknown
pkglist []string // list of packages referenced, indexed by ctxt.pkgIdx
// scratch space for writing (the Write methods escape
// as they are interface calls)
tmpSym goobj.Sym
tmpReloc goobj.Reloc
tmpAux goobj.Aux
tmpHash64 goobj.Hash64Type
tmpHash goobj.HashType
tmpRefFlags goobj.RefFlags
tmpRefName goobj.RefName
}
// prepare package index list
func (w *writer) init() {
w.pkglist = make([]string, len(w.ctxt.pkgIdx)+1)
w.pkglist[0] = "" // dummy invalid package for index 0
for pkg, i := range w.ctxt.pkgIdx {
w.pkglist[i] = pkg
}
}
func (w *writer) writeFile(ctxt *Link, file *FileInfo) {
f, err := os.Open(file.Name)
if err != nil {
ctxt.Diag("%v", err)
return
}
defer f.Close()
if w.filebuf == nil {
w.filebuf = make([]byte, 1024)
}
buf := w.filebuf
written := int64(0)
for {
n, err := f.Read(buf)
w.Bytes(buf[:n])
written += int64(n)
if err == io.EOF {
break
}
if err != nil {
ctxt.Diag("%v", err)
return
}
}
if written != file.Size {
ctxt.Diag("copy %s: unexpected length %d != %d", file.Name, written, file.Size)
}
}
func (w *writer) StringTable() {
w.AddString("")
for _, p := range w.ctxt.Imports {
w.AddString(p.Pkg)
}
for _, pkg := range w.pkglist {
w.AddString(pkg)
}
w.ctxt.traverseSyms(traverseAll, func(s *LSym) {
// Don't put names of builtins into the string table (to save
// space).
if s.PkgIdx == goobj.PkgIdxBuiltin {
return
}
// TODO: this includes references of indexed symbols from other packages,
// for which the linker doesn't need the name. Consider moving them to
// a separate block (for tools only).
if w.ctxt.Flag_noRefName && s.PkgIdx < goobj.PkgIdxSpecial {
// Don't include them if Flag_noRefName
return
}
if strings.HasPrefix(s.Name, `"".`) {
w.ctxt.Diag("unqualified symbol name: %v", s.Name)
}
w.AddString(s.Name)
})
// All filenames are in the postable.
for _, f := range w.ctxt.PosTable.FileTable() {
w.AddString(filepath.ToSlash(f))
}
}
// cutoff is the maximum data section size permitted by the linker
// (see issue #9862).
const cutoff = int64(2e9) // 2 GB (or so; looks better in errors than 2^31)
func (w *writer) Sym(s *LSym) {
abi := uint16(s.ABI())
if s.Static() {
abi = goobj.SymABIstatic
}
flag := uint8(0)
if s.DuplicateOK() {
flag |= goobj.SymFlagDupok
}
if s.Local() {
flag |= goobj.SymFlagLocal
}
if s.MakeTypelink() {
flag |= goobj.SymFlagTypelink
}
if s.Leaf() {
flag |= goobj.SymFlagLeaf
}
if s.NoSplit() {
flag |= goobj.SymFlagNoSplit
}
if s.ReflectMethod() {
flag |= goobj.SymFlagReflectMethod
}
if strings.HasPrefix(s.Name, "type:") && s.Name[5] != '.' && s.Type == objabi.SRODATA {
flag |= goobj.SymFlagGoType
}
flag2 := uint8(0)
if s.UsedInIface() {
flag2 |= goobj.SymFlagUsedInIface
}
if strings.HasPrefix(s.Name, "go:itab.") && s.Type == objabi.SRODATA {
flag2 |= goobj.SymFlagItab
}
if strings.HasPrefix(s.Name, w.ctxt.Pkgpath) && strings.HasPrefix(s.Name[len(w.ctxt.Pkgpath):], ".") && strings.HasPrefix(s.Name[len(w.ctxt.Pkgpath)+1:], objabi.GlobalDictPrefix) {
flag2 |= goobj.SymFlagDict
}
if s.IsPkgInit() {
flag2 |= goobj.SymFlagPkgInit
}
name := s.Name
if strings.HasPrefix(name, "gofile..") {
name = filepath.ToSlash(name)
}
var align uint32
if fn := s.Func(); fn != nil {
align = uint32(fn.Align)
}
if s.ContentAddressable() && s.Size != 0 {
// We generally assume data symbols are naturally aligned
// (e.g. integer constants), except for strings and a few
// compiler-emitted funcdata. If we dedup a string symbol and
// a non-string symbol with the same content, we should keep
// the largest alignment.
// TODO: maybe the compiler could set the alignment for all
// data symbols more carefully.
switch {
case strings.HasPrefix(s.Name, "go:string."),
strings.HasPrefix(name, "type:.namedata."),
strings.HasPrefix(name, "type:.importpath."),
strings.HasSuffix(name, ".opendefer"),
strings.HasSuffix(name, ".arginfo0"),
strings.HasSuffix(name, ".arginfo1"),
strings.HasSuffix(name, ".argliveinfo"):
// These are just bytes, or varints.
align = 1
case strings.HasPrefix(name, "gclocals·"):
// It has 32-bit fields.
align = 4
default:
switch {
case w.ctxt.Arch.PtrSize == 8 && s.Size%8 == 0:
align = 8
case s.Size%4 == 0:
align = 4
case s.Size%2 == 0:
align = 2
default:
align = 1
}
}
}
if s.Size > cutoff {
w.ctxt.Diag("%s: symbol too large (%d bytes > %d bytes)", s.Name, s.Size, cutoff)
}
o := &w.tmpSym
o.SetName(name, w.Writer)
o.SetABI(abi)
o.SetType(uint8(s.Type))
o.SetFlag(flag)
o.SetFlag2(flag2)
o.SetSiz(uint32(s.Size))
o.SetAlign(align)
o.Write(w.Writer)
}
func (w *writer) Hash64(s *LSym) {
if !s.ContentAddressable() || len(s.R) != 0 {
panic("Hash of non-content-addressable symbol")
}
w.tmpHash64 = contentHash64(s)
w.Bytes(w.tmpHash64[:])
}
func (w *writer) Hash(s *LSym) {
if !s.ContentAddressable() {
panic("Hash of non-content-addressable symbol")
}
w.tmpHash = w.contentHash(s)
w.Bytes(w.tmpHash[:])
}
// contentHashSection returns a mnemonic for s's section.
// The goal is to prevent content-addressability from moving symbols between sections.
// contentHashSection only distinguishes between sets of sections for which this matters.
// Allowing flexibility increases the effectiveness of content-addressability.
// But in some cases, such as doing addressing based on a base symbol,
// we need to ensure that a symbol is always in a particular section.
// Some of these conditions are duplicated in cmd/link/internal/ld.(*Link).symtab.
// TODO: instead of duplicating them, have the compiler decide where symbols go.
func contentHashSection(s *LSym) byte {
name := s.Name
if s.IsPcdata() {
return 'P'
}
if strings.HasPrefix(name, "gcargs.") ||
strings.HasPrefix(name, "gclocals.") ||
strings.HasPrefix(name, "gclocals·") ||
strings.HasSuffix(name, ".opendefer") ||
strings.HasSuffix(name, ".arginfo0") ||
strings.HasSuffix(name, ".arginfo1") ||
strings.HasSuffix(name, ".argliveinfo") ||
strings.HasSuffix(name, ".wrapinfo") ||
strings.HasSuffix(name, ".args_stackmap") ||
strings.HasSuffix(name, ".stkobj") {
return 'F' // go:func.* or go:funcrel.*
}
if strings.HasPrefix(name, "type:") {
return 'T'
}
return 0
}
func contentHash64(s *LSym) goobj.Hash64Type {
if contentHashSection(s) != 0 {
panic("short hash of non-default-section sym " + s.Name)
}
var b goobj.Hash64Type
copy(b[:], s.P)
return b
}
// Compute the content hash for a content-addressable symbol.
// We build a content hash based on its content and relocations.
// Depending on the category of the referenced symbol, we choose
// different hash algorithms such that the hash is globally
// consistent.
// - For referenced content-addressable symbol, its content hash
// is globally consistent.
// - For package symbol and builtin symbol, its local index is
// globally consistent.
// - For non-package symbol, its fully-expanded name is globally
// consistent. For now, we require we know the current package
// path so we can always expand symbol names. (Otherwise,
// symbols with relocations are not considered hashable.)
//
// For now, we assume there is no circular dependencies among
// hashed symbols.
func (w *writer) contentHash(s *LSym) goobj.HashType {
h := notsha256.New()
var tmp [14]byte
// Include the size of the symbol in the hash.
// This preserves the length of symbols, preventing the following two symbols
// from hashing the same:
//
// [2]int{1,2} ≠ [10]int{1,2,0,0,0...}
//
// In this case, if the smaller symbol is alive, the larger is not kept unless
// needed.
binary.LittleEndian.PutUint64(tmp[:8], uint64(s.Size))
// Some symbols require being in separate sections.
tmp[8] = contentHashSection(s)
h.Write(tmp[:9])
// The compiler trims trailing zeros _sometimes_. We just do
// it always.
h.Write(bytes.TrimRight(s.P, "\x00"))
for i := range s.R {
r := &s.R[i]
binary.LittleEndian.PutUint32(tmp[:4], uint32(r.Off))
tmp[4] = r.Siz
tmp[5] = uint8(r.Type)
binary.LittleEndian.PutUint64(tmp[6:14], uint64(r.Add))
h.Write(tmp[:])
rs := r.Sym
if rs == nil {
fmt.Printf("symbol: %s\n", s)
fmt.Printf("relocation: %#v\n", r)
panic("nil symbol target in relocation")
}
switch rs.PkgIdx {
case goobj.PkgIdxHashed64:
h.Write([]byte{0})
t := contentHash64(rs)
h.Write(t[:])
case goobj.PkgIdxHashed:
h.Write([]byte{1})
t := w.contentHash(rs)
h.Write(t[:])
case goobj.PkgIdxNone:
h.Write([]byte{2})
io.WriteString(h, rs.Name) // name is already expanded at this point
case goobj.PkgIdxBuiltin:
h.Write([]byte{3})
binary.LittleEndian.PutUint32(tmp[:4], uint32(rs.SymIdx))
h.Write(tmp[:4])
case goobj.PkgIdxSelf:
io.WriteString(h, w.pkgpath)
binary.LittleEndian.PutUint32(tmp[:4], uint32(rs.SymIdx))
h.Write(tmp[:4])
default:
io.WriteString(h, rs.Pkg)
binary.LittleEndian.PutUint32(tmp[:4], uint32(rs.SymIdx))
h.Write(tmp[:4])
}
}
var b goobj.HashType
copy(b[:], h.Sum(nil))
return b
}
func makeSymRef(s *LSym) goobj.SymRef {
if s == nil {
return goobj.SymRef{}
}
if s.PkgIdx == 0 || !s.Indexed() {
fmt.Printf("unindexed symbol reference: %v\n", s)
panic("unindexed symbol reference")
}
return goobj.SymRef{PkgIdx: uint32(s.PkgIdx), SymIdx: uint32(s.SymIdx)}
}
func (w *writer) Reloc(r *Reloc) {
o := &w.tmpReloc
o.SetOff(r.Off)
o.SetSiz(r.Siz)
o.SetType(uint16(r.Type))
o.SetAdd(r.Add)
o.SetSym(makeSymRef(r.Sym))
o.Write(w.Writer)
}
func (w *writer) aux1(typ uint8, rs *LSym) {
o := &w.tmpAux
o.SetType(typ)
o.SetSym(makeSymRef(rs))
o.Write(w.Writer)
}
func (w *writer) Aux(s *LSym) {
if s.Gotype != nil {
w.aux1(goobj.AuxGotype, s.Gotype)
}
if fn := s.Func(); fn != nil {
w.aux1(goobj.AuxFuncInfo, fn.FuncInfoSym)
for _, d := range fn.Pcln.Funcdata {
w.aux1(goobj.AuxFuncdata, d)
}
if fn.dwarfInfoSym != nil && fn.dwarfInfoSym.Size != 0 {
w.aux1(goobj.AuxDwarfInfo, fn.dwarfInfoSym)
}
if fn.dwarfLocSym != nil && fn.dwarfLocSym.Size != 0 {
w.aux1(goobj.AuxDwarfLoc, fn.dwarfLocSym)
}
if fn.dwarfRangesSym != nil && fn.dwarfRangesSym.Size != 0 {
w.aux1(goobj.AuxDwarfRanges, fn.dwarfRangesSym)
}
if fn.dwarfDebugLinesSym != nil && fn.dwarfDebugLinesSym.Size != 0 {
w.aux1(goobj.AuxDwarfLines, fn.dwarfDebugLinesSym)
}
if fn.Pcln.Pcsp != nil && fn.Pcln.Pcsp.Size != 0 {
w.aux1(goobj.AuxPcsp, fn.Pcln.Pcsp)
}
if fn.Pcln.Pcfile != nil && fn.Pcln.Pcfile.Size != 0 {
w.aux1(goobj.AuxPcfile, fn.Pcln.Pcfile)
}
if fn.Pcln.Pcline != nil && fn.Pcln.Pcline.Size != 0 {
w.aux1(goobj.AuxPcline, fn.Pcln.Pcline)
}
if fn.Pcln.Pcinline != nil && fn.Pcln.Pcinline.Size != 0 {
w.aux1(goobj.AuxPcinline, fn.Pcln.Pcinline)
}
if fn.sehUnwindInfoSym != nil && fn.sehUnwindInfoSym.Size != 0 {
w.aux1(goobj.AuxSehUnwindInfo, fn.sehUnwindInfoSym)
}
for _, pcSym := range fn.Pcln.Pcdata {
w.aux1(goobj.AuxPcdata, pcSym)
}
if fn.WasmImportSym != nil {
if fn.WasmImportSym.Size == 0 {
panic("wasmimport aux sym must have non-zero size")
}
w.aux1(goobj.AuxWasmImport, fn.WasmImportSym)
}
} else if v := s.VarInfo(); v != nil {
if v.dwarfInfoSym != nil && v.dwarfInfoSym.Size != 0 {
w.aux1(goobj.AuxDwarfInfo, v.dwarfInfoSym)
}
}
}
// Emits flags of referenced indexed symbols.
func (w *writer) refFlags() {
seen := make(map[*LSym]bool)
w.ctxt.traverseSyms(traverseRefs, func(rs *LSym) { // only traverse refs, not auxs, as tools don't need auxs
switch rs.PkgIdx {
case goobj.PkgIdxNone, goobj.PkgIdxHashed64, goobj.PkgIdxHashed, goobj.PkgIdxBuiltin, goobj.PkgIdxSelf: // not an external indexed reference
return
case goobj.PkgIdxInvalid:
panic("unindexed symbol reference")
}
if seen[rs] {
return
}
seen[rs] = true
symref := makeSymRef(rs)
flag2 := uint8(0)
if rs.UsedInIface() {
flag2 |= goobj.SymFlagUsedInIface
}
if flag2 == 0 {
return // no need to write zero flags
}
o := &w.tmpRefFlags
o.SetSym(symref)
o.SetFlag2(flag2)
o.Write(w.Writer)
})
}
// Emits names of referenced indexed symbols, used by tools (objdump, nm)
// only.
func (w *writer) refNames() {
if w.ctxt.Flag_noRefName {
return
}
seen := make(map[*LSym]bool)
w.ctxt.traverseSyms(traverseRefs, func(rs *LSym) { // only traverse refs, not auxs, as tools don't need auxs
switch rs.PkgIdx {
case goobj.PkgIdxNone, goobj.PkgIdxHashed64, goobj.PkgIdxHashed, goobj.PkgIdxBuiltin, goobj.PkgIdxSelf: // not an external indexed reference
return
case goobj.PkgIdxInvalid:
panic("unindexed symbol reference")
}
if seen[rs] {
return
}
seen[rs] = true
symref := makeSymRef(rs)
o := &w.tmpRefName
o.SetSym(symref)
o.SetName(rs.Name, w.Writer)
o.Write(w.Writer)
})
// TODO: output in sorted order?
// Currently tools (cmd/internal/goobj package) doesn't use mmap,
// and it just read it into a map in memory upfront. If it uses
// mmap, if the output is sorted, it probably could avoid reading
// into memory and just do lookups in the mmap'd object file.
}
// return the number of aux symbols s have.
func nAuxSym(s *LSym) int {
n := 0
if s.Gotype != nil {
n++
}
if fn := s.Func(); fn != nil {
// FuncInfo is an aux symbol, each Funcdata is an aux symbol
n += 1 + len(fn.Pcln.Funcdata)
if fn.dwarfInfoSym != nil && fn.dwarfInfoSym.Size != 0 {
n++
}
if fn.dwarfLocSym != nil && fn.dwarfLocSym.Size != 0 {
n++
}
if fn.dwarfRangesSym != nil && fn.dwarfRangesSym.Size != 0 {
n++
}
if fn.dwarfDebugLinesSym != nil && fn.dwarfDebugLinesSym.Size != 0 {
n++
}
if fn.Pcln.Pcsp != nil && fn.Pcln.Pcsp.Size != 0 {
n++
}
if fn.Pcln.Pcfile != nil && fn.Pcln.Pcfile.Size != 0 {
n++
}
if fn.Pcln.Pcline != nil && fn.Pcln.Pcline.Size != 0 {
n++
}
if fn.Pcln.Pcinline != nil && fn.Pcln.Pcinline.Size != 0 {
n++
}
if fn.sehUnwindInfoSym != nil && fn.sehUnwindInfoSym.Size != 0 {
n++
}
n += len(fn.Pcln.Pcdata)
if fn.WasmImport != nil {
if fn.WasmImportSym == nil || fn.WasmImportSym.Size == 0 {
panic("wasmimport aux sym must exist and have non-zero size")
}
n++
}
} else if v := s.VarInfo(); v != nil {
if v.dwarfInfoSym != nil && v.dwarfInfoSym.Size != 0 {
n++
}
}
return n
}
// generate symbols for FuncInfo.
func genFuncInfoSyms(ctxt *Link) {
infosyms := make([]*LSym, 0, len(ctxt.Text))
var b bytes.Buffer
symidx := int32(len(ctxt.defs))
for _, s := range ctxt.Text {
fn := s.Func()
if fn == nil {
continue
}
o := goobj.FuncInfo{
Args: uint32(fn.Args),
Locals: uint32(fn.Locals),
FuncID: fn.FuncID,
FuncFlag: fn.FuncFlag,
StartLine: fn.StartLine,
}
pc := &fn.Pcln
i := 0
o.File = make([]goobj.CUFileIndex, len(pc.UsedFiles))
for f := range pc.UsedFiles {
o.File[i] = f
i++
}
sort.Slice(o.File, func(i, j int) bool { return o.File[i] < o.File[j] })
o.InlTree = make([]goobj.InlTreeNode, len(pc.InlTree.nodes))
for i, inl := range pc.InlTree.nodes {
f, l := ctxt.getFileIndexAndLine(inl.Pos)
o.InlTree[i] = goobj.InlTreeNode{
Parent: int32(inl.Parent),
File: goobj.CUFileIndex(f),
Line: l,
Func: makeSymRef(inl.Func),
ParentPC: inl.ParentPC,
}
}
o.Write(&b)
p := b.Bytes()
isym := &LSym{
Type: objabi.SDATA, // for now, I don't think it matters
PkgIdx: goobj.PkgIdxSelf,
SymIdx: symidx,
P: append([]byte(nil), p...),
Size: int64(len(p)),
}
isym.Set(AttrIndexed, true)
symidx++
infosyms = append(infosyms, isym)
fn.FuncInfoSym = isym
b.Reset()
auxsyms := []*LSym{fn.dwarfRangesSym, fn.dwarfLocSym, fn.dwarfDebugLinesSym, fn.dwarfInfoSym, fn.WasmImportSym, fn.sehUnwindInfoSym}
for _, s := range auxsyms {
if s == nil || s.Size == 0 {
continue
}
s.PkgIdx = goobj.PkgIdxSelf
s.SymIdx = symidx
s.Set(AttrIndexed, true)
symidx++
infosyms = append(infosyms, s)
}
}
ctxt.defs = append(ctxt.defs, infosyms...)
}
func writeAuxSymDebug(ctxt *Link, par *LSym, aux *LSym) {
// Most aux symbols (ex: funcdata) are not interesting--
// pick out just the DWARF ones for now.
switch aux.Type {
case objabi.SDWARFLOC,
objabi.SDWARFFCN,
objabi.SDWARFABSFCN,
objabi.SDWARFLINES,
objabi.SDWARFRANGE,
objabi.SDWARFVAR:
default:
return
}
ctxt.writeSymDebugNamed(aux, "aux for "+par.Name)
}
func debugAsmEmit(ctxt *Link) {
if ctxt.Debugasm > 0 {
ctxt.traverseSyms(traverseDefs, ctxt.writeSymDebug)
if ctxt.Debugasm > 1 {
fn := func(par *LSym, aux *LSym) {
writeAuxSymDebug(ctxt, par, aux)
}
ctxt.traverseAuxSyms(traverseAux, fn)
}
}
}
func (ctxt *Link) writeSymDebug(s *LSym) {
ctxt.writeSymDebugNamed(s, s.Name)
}
func (ctxt *Link) writeSymDebugNamed(s *LSym, name string) {
ver := ""
if ctxt.Debugasm > 1 {
ver = fmt.Sprintf("<%d>", s.ABI())
}
fmt.Fprintf(ctxt.Bso, "%s%s ", name, ver)
if s.Type != 0 {
fmt.Fprintf(ctxt.Bso, "%v ", s.Type)
}
if s.Static() {
fmt.Fprint(ctxt.Bso, "static ")
}
if s.DuplicateOK() {
fmt.Fprintf(ctxt.Bso, "dupok ")
}
if s.CFunc() {
fmt.Fprintf(ctxt.Bso, "cfunc ")
}
if s.NoSplit() {
fmt.Fprintf(ctxt.Bso, "nosplit ")
}
if s.Func() != nil && s.Func().FuncFlag&abi.FuncFlagTopFrame != 0 {
fmt.Fprintf(ctxt.Bso, "topframe ")
}
if s.Func() != nil && s.Func().FuncFlag&abi.FuncFlagAsm != 0 {
fmt.Fprintf(ctxt.Bso, "asm ")
}
fmt.Fprintf(ctxt.Bso, "size=%d", s.Size)
if s.Type == objabi.STEXT {
fn := s.Func()
fmt.Fprintf(ctxt.Bso, " args=%#x locals=%#x funcid=%#x align=%#x", uint64(fn.Args), uint64(fn.Locals), uint64(fn.FuncID), uint64(fn.Align))
if s.Leaf() {
fmt.Fprintf(ctxt.Bso, " leaf")
}
}
fmt.Fprintf(ctxt.Bso, "\n")
if s.Type == objabi.STEXT {
for p := s.Func().Text; p != nil; p = p.Link {
fmt.Fprintf(ctxt.Bso, "\t%#04x ", uint(int(p.Pc)))
if ctxt.Debugasm > 1 {
io.WriteString(ctxt.Bso, p.String())
} else {
p.InnermostString(ctxt.Bso)
}
fmt.Fprintln(ctxt.Bso)
}
}
for i := 0; i < len(s.P); i += 16 {
fmt.Fprintf(ctxt.Bso, "\t%#04x", uint(i))
j := i
for ; j < i+16 && j < len(s.P); j++ {
fmt.Fprintf(ctxt.Bso, " %02x", s.P[j])
}
for ; j < i+16; j++ {
fmt.Fprintf(ctxt.Bso, " ")
}
fmt.Fprintf(ctxt.Bso, " ")
for j = i; j < i+16 && j < len(s.P); j++ {
c := int(s.P[j])
b := byte('.')
if ' ' <= c && c <= 0x7e {
b = byte(c)
}
ctxt.Bso.WriteByte(b)
}
fmt.Fprintf(ctxt.Bso, "\n")
}
sort.Sort(relocByOff(s.R)) // generate stable output
for _, r := range s.R {
name := ""
ver := ""
if r.Sym != nil {
name = r.Sym.Name
if ctxt.Debugasm > 1 {
ver = fmt.Sprintf("<%d>", r.Sym.ABI())
}
} else if r.Type == objabi.R_TLS_LE {
name = "TLS"
}
if ctxt.Arch.InFamily(sys.ARM, sys.PPC64) {
fmt.Fprintf(ctxt.Bso, "\trel %d+%d t=%v %s%s+%x\n", int(r.Off), r.Siz, r.Type, name, ver, uint64(r.Add))
} else {
fmt.Fprintf(ctxt.Bso, "\trel %d+%d t=%v %s%s+%d\n", int(r.Off), r.Siz, r.Type, name, ver, r.Add)
}
}
}
// relocByOff sorts relocations by their offsets.
type relocByOff []Reloc
func (x relocByOff) Len() int { return len(x) }
func (x relocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }
func (x relocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] }