blob: 2f137daf822a91466ef3ff0c221bafcc68d1e3d0 [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package compare contains code for generating comparison
// routines for structs, strings and interfaces.
package compare
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"fmt"
"math/bits"
"sort"
)
// IsRegularMemory reports whether t can be compared/hashed as regular memory.
func IsRegularMemory(t *types.Type) bool {
return types.AlgType(t) == types.AMEM
}
// Memrun finds runs of struct fields for which memory-only algs are appropriate.
// t is the parent struct type, and start is the field index at which to start the run.
// size is the length in bytes of the memory included in the run.
// next is the index just after the end of the memory run.
func Memrun(t *types.Type, start int) (size int64, next int) {
next = start
for {
next++
if next == t.NumFields() {
break
}
// Stop run after a padded field.
if types.IsPaddedField(t, next-1) {
break
}
// Also, stop before a blank or non-memory field.
if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) {
break
}
// For issue 46283, don't combine fields if the resulting load would
// require a larger alignment than the component fields.
if base.Ctxt.Arch.Alignment > 1 {
align := t.Alignment()
if off := t.Field(start).Offset; off&(align-1) != 0 {
// Offset is less aligned than the containing type.
// Use offset to determine alignment.
align = 1 << uint(bits.TrailingZeros64(uint64(off)))
}
size := t.Field(next).End() - t.Field(start).Offset
if size > align {
break
}
}
}
return t.Field(next-1).End() - t.Field(start).Offset, next
}
// EqCanPanic reports whether == on type t could panic (has an interface somewhere).
// t must be comparable.
func EqCanPanic(t *types.Type) bool {
switch t.Kind() {
default:
return false
case types.TINTER:
return true
case types.TARRAY:
return EqCanPanic(t.Elem())
case types.TSTRUCT:
for _, f := range t.Fields() {
if !f.Sym.IsBlank() && EqCanPanic(f.Type) {
return true
}
}
return false
}
}
// EqStructCost returns the cost of an equality comparison of two structs.
//
// The cost is determined using an algorithm which takes into consideration
// the size of the registers in the current architecture and the size of the
// memory-only fields in the struct.
func EqStructCost(t *types.Type) int64 {
cost := int64(0)
for i, fields := 0, t.Fields(); i < len(fields); {
f := fields[i]
// Skip blank-named fields.
if f.Sym.IsBlank() {
i++
continue
}
n, _, next := eqStructFieldCost(t, i)
cost += n
i = next
}
return cost
}
// eqStructFieldCost returns the cost of an equality comparison of two struct fields.
// t is the parent struct type, and i is the index of the field in the parent struct type.
// eqStructFieldCost may compute the cost of several adjacent fields at once. It returns
// the cost, the size of the set of fields it computed the cost for (in bytes), and the
// index of the first field not part of the set of fields for which the cost
// has already been calculated.
func eqStructFieldCost(t *types.Type, i int) (int64, int64, int) {
var (
cost = int64(0)
regSize = int64(types.RegSize)
size int64
next int
)
if base.Ctxt.Arch.CanMergeLoads {
// If we can merge adjacent loads then we can calculate the cost of the
// comparison using the size of the memory run and the size of the registers.
size, next = Memrun(t, i)
cost = size / regSize
if size%regSize != 0 {
cost++
}
return cost, size, next
}
// If we cannot merge adjacent loads then we have to use the size of the
// field and take into account the type to determine how many loads and compares
// are needed.
ft := t.Field(i).Type
size = ft.Size()
next = i + 1
return calculateCostForType(ft), size, next
}
func calculateCostForType(t *types.Type) int64 {
var cost int64
switch t.Kind() {
case types.TSTRUCT:
return EqStructCost(t)
case types.TSLICE:
// Slices are not comparable.
base.Fatalf("eqStructFieldCost: unexpected slice type")
case types.TARRAY:
elemCost := calculateCostForType(t.Elem())
cost = t.NumElem() * elemCost
case types.TSTRING, types.TINTER, types.TCOMPLEX64, types.TCOMPLEX128:
cost = 2
case types.TINT64, types.TUINT64:
cost = 8 / int64(types.RegSize)
default:
cost = 1
}
return cost
}
// EqStruct compares two structs np and nq for equality.
// It works by building a list of boolean conditions to satisfy.
// Conditions must be evaluated in the returned order and
// properly short-circuited by the caller.
// The first return value is the flattened list of conditions,
// the second value is a boolean indicating whether any of the
// comparisons could panic.
func EqStruct(t *types.Type, np, nq ir.Node) ([]ir.Node, bool) {
// The conditions are a list-of-lists. Conditions are reorderable
// within each inner list. The outer lists must be evaluated in order.
var conds [][]ir.Node
conds = append(conds, []ir.Node{})
and := func(n ir.Node) {
i := len(conds) - 1
conds[i] = append(conds[i], n)
}
// Walk the struct using memequal for runs of AMEM
// and calling specific equality tests for the others.
for i, fields := 0, t.Fields(); i < len(fields); {
f := fields[i]
// Skip blank-named fields.
if f.Sym.IsBlank() {
i++
continue
}
typeCanPanic := EqCanPanic(f.Type)
// Compare non-memory fields with field equality.
if !IsRegularMemory(f.Type) {
if typeCanPanic {
// Enforce ordering by starting a new set of reorderable conditions.
conds = append(conds, []ir.Node{})
}
switch {
case f.Type.IsString():
p := typecheck.DotField(base.Pos, typecheck.Expr(np), i)
q := typecheck.DotField(base.Pos, typecheck.Expr(nq), i)
eqlen, eqmem := EqString(p, q)
and(eqlen)
and(eqmem)
default:
and(eqfield(np, nq, i))
}
if typeCanPanic {
// Also enforce ordering after something that can panic.
conds = append(conds, []ir.Node{})
}
i++
continue
}
cost, size, next := eqStructFieldCost(t, i)
if cost <= 4 {
// Cost of 4 or less: use plain field equality.
for j := i; j < next; j++ {
and(eqfield(np, nq, j))
}
} else {
// Higher cost: use memequal.
cc := eqmem(np, nq, i, size)
and(cc)
}
i = next
}
// Sort conditions to put runtime calls last.
// Preserve the rest of the ordering.
var flatConds []ir.Node
for _, c := range conds {
isCall := func(n ir.Node) bool {
return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
}
sort.SliceStable(c, func(i, j int) bool {
return !isCall(c[i]) && isCall(c[j])
})
flatConds = append(flatConds, c...)
}
return flatConds, len(conds) > 1
}
// EqString returns the nodes
//
// len(s) == len(t)
//
// and
//
// memequal(s.ptr, t.ptr, len(s))
//
// which can be used to construct string equality comparison.
// eqlen must be evaluated before eqmem, and shortcircuiting is required.
func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) {
s = typecheck.Conv(s, types.Types[types.TSTRING])
t = typecheck.Conv(t, types.Types[types.TSTRING])
sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t)
slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR])
tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR])
// Pick the 3rd arg to memequal. Both slen and tlen are fine to use, because we short
// circuit the memequal call if they aren't the same. But if one is a constant some
// memequal optimizations are easier to apply.
probablyConstant := func(n ir.Node) bool {
if n.Op() == ir.OCONVNOP {
n = n.(*ir.ConvExpr).X
}
if n.Op() == ir.OLITERAL {
return true
}
if n.Op() != ir.ONAME {
return false
}
name := n.(*ir.Name)
if name.Class != ir.PAUTO {
return false
}
if def := name.Defn; def == nil {
// n starts out as the empty string
return true
} else if def.Op() == ir.OAS && (def.(*ir.AssignStmt).Y == nil || def.(*ir.AssignStmt).Y.Op() == ir.OLITERAL) {
// n starts out as a constant string
return true
}
return false
}
cmplen := slen
if probablyConstant(t) && !probablyConstant(s) {
cmplen = tlen
}
fn := typecheck.LookupRuntime("memequal", types.Types[types.TUINT8], types.Types[types.TUINT8])
call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(cmplen)}, false).(*ir.CallExpr)
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen)
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
cmp.SetType(types.Types[types.TBOOL])
return cmp, call
}
// EqInterface returns the nodes
//
// s.tab == t.tab (or s.typ == t.typ, as appropriate)
//
// and
//
// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
//
// which can be used to construct interface equality comparison.
// eqtab must be evaluated before eqdata, and shortcircuiting is required.
func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) {
if !types.Identical(s.Type(), t.Type()) {
base.Fatalf("EqInterface %v %v", s.Type(), t.Type())
}
// func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
// func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
var fn ir.Node
if s.Type().IsEmptyInterface() {
fn = typecheck.LookupRuntime("efaceeq")
} else {
fn = typecheck.LookupRuntime("ifaceeq")
}
stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s)
ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t)
sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s)
tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t)
sdata.SetType(types.Types[types.TUNSAFEPTR])
tdata.SetType(types.Types[types.TUNSAFEPTR])
sdata.SetTypecheck(1)
tdata.SetTypecheck(1)
call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr)
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab)
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
cmp.SetType(types.Types[types.TBOOL])
return cmp, call
}
// eqfield returns the node
//
// p.field == q.field
func eqfield(p, q ir.Node, field int) ir.Node {
nx := typecheck.DotField(base.Pos, typecheck.Expr(p), field)
ny := typecheck.DotField(base.Pos, typecheck.Expr(q), field)
return typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny))
}
// eqmem returns the node
//
// memequal(&p.field, &q.field, size)
func eqmem(p, q ir.Node, field int, size int64) ir.Node {
nx := typecheck.Expr(typecheck.NodAddr(typecheck.DotField(base.Pos, p, field)))
ny := typecheck.Expr(typecheck.NodAddr(typecheck.DotField(base.Pos, q, field)))
fn, needsize := eqmemfunc(size, nx.Type().Elem())
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
call.Args.Append(nx)
call.Args.Append(ny)
if needsize {
call.Args.Append(ir.NewInt(base.Pos, size))
}
return call
}
func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) {
switch size {
case 1, 2, 4, 8, 16:
buf := fmt.Sprintf("memequal%d", int(size)*8)
return typecheck.LookupRuntime(buf, t, t), false
}
return typecheck.LookupRuntime("memequal", t, t), true
}