blob: 08298b76bbb2da5a7882d439d61d8428b28f632a [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// This encoding algorithm, which prioritizes speed over output size, is
// based on Snappy's LZ77-style encoder: github.com/golang/snappy
const (
tableBits = 14 // Bits used in the table.
tableSize = 1 << tableBits // Size of the table.
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
)
func load32(b []byte, i int32) uint32 {
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load64(b []byte, i int32) uint64 {
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func hash(u uint32) uint32 {
return (u * 0x1e35a7bd) >> tableShift
}
// These constants are defined by the Snappy implementation so that its
// assembly implementation can fast-path some 16-bytes-at-a-time copies. They
// aren't necessary in the pure Go implementation, as we don't use those same
// optimizations, but using the same thresholds doesn't really hurt.
const (
inputMargin = 16 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
type tableEntry struct {
val uint32 // Value at destination
offset int32
}
// deflateFast maintains the table for matches,
// and the previous byte block for cross block matching.
type deflateFast struct {
table [tableSize]tableEntry
prev []byte // Previous block, zero length if unknown.
cur int32 // Current match offset.
}
func newDeflateFast() *deflateFast {
return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}
}
// encode encodes a block given in src and appends tokens
// to dst and returns the result.
func (e *deflateFast) encode(dst []token, src []byte) []token {
// Ensure that e.cur doesn't wrap.
if e.cur > 1<<30 {
e.resetAll()
}
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src) < minNonLiteralBlockSize {
e.cur += maxStoreBlockSize
e.prev = e.prev[:0]
return emitLiteral(dst, src)
}
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int32(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := int32(0)
s := int32(0)
cv := load32(src, s)
nextHash := hash(cv)
for {
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned (or skipped), look at every third byte, etc.. When a match
// is found, immediately go back to looking at every byte. This is a
// small loss (~5% performance, ~0.1% density) for compressible data
// due to more bookkeeping, but for non-compressible data (such as
// JPEG) it's a huge win since the compressor quickly "realizes" the
// data is incompressible and doesn't bother looking for matches
// everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip := int32(32)
nextS := s
var candidate tableEntry
for {
s = nextS
bytesBetweenHashLookups := skip >> 5
nextS = s + bytesBetweenHashLookups
skip += bytesBetweenHashLookups
if nextS > sLimit {
goto emitRemainder
}
candidate = e.table[nextHash&tableMask]
now := load32(src, nextS)
e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
nextHash = hash(now)
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || cv != candidate.val {
// Out of range or not matched.
cv = now
continue
}
break
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
dst = emitLiteral(dst, src[nextEmit:s])
// Call emitCopy, and then see if another emitCopy could be our next
// move. Repeat until we find no match for the input immediately after
// what was consumed by the last emitCopy call.
//
// If we exit this loop normally then we need to call emitLiteral next,
// though we don't yet know how big the literal will be. We handle that
// by proceeding to the next iteration of the main loop. We also can
// exit this loop via goto if we get close to exhausting the input.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
//
s += 4
t := candidate.offset - e.cur + 4
l := e.matchLen(s, t, src)
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)))
s += l
nextEmit = s
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-1 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load64(src, s-1)
prevHash := hash(uint32(x))
e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
x >>= 8
currHash := hash(uint32(x))
candidate = e.table[currHash&tableMask]
e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
offset := s - (candidate.offset - e.cur)
if offset > maxMatchOffset || uint32(x) != candidate.val {
cv = uint32(x >> 8)
nextHash = hash(cv)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
dst = emitLiteral(dst, src[nextEmit:])
}
e.cur += int32(len(src))
e.prev = e.prev[:len(src)]
copy(e.prev, src)
return dst
}
func emitLiteral(dst []token, lit []byte) []token {
for _, v := range lit {
dst = append(dst, literalToken(uint32(v)))
}
return dst
}
// matchLen returns the match length between src[s:] and src[t:].
// t can be negative to indicate the match is starting in e.prev.
// We assume that src[s-4:s] and src[t-4:t] already match.
func (e *deflateFast) matchLen(s, t int32, src []byte) int32 {
s1 := int(s) + maxMatchLength - 4
if s1 > len(src) {
s1 = len(src)
}
// If we are inside the current block
if t >= 0 {
b := src[t:]
a := src[s:s1]
b = b[:len(a)]
// Extend the match to be as long as possible.
for i := range a {
if a[i] != b[i] {
return int32(i)
}
}
return int32(len(a))
}
// We found a match in the previous block.
tp := int32(len(e.prev)) + t
if tp < 0 {
return 0
}
// Extend the match to be as long as possible.
a := src[s:s1]
b := e.prev[tp:]
if len(b) > len(a) {
b = b[:len(a)]
}
a = a[:len(b)]
for i := range b {
if a[i] != b[i] {
return int32(i)
}
}
// If we reached our limit, we matched everything we are
// allowed to in the previous block and we return.
n := int32(len(b))
if int(s+n) == s1 {
return n
}
// Continue looking for more matches in the current block.
a = src[s+n : s1]
b = src[:len(a)]
for i := range a {
if a[i] != b[i] {
return int32(i) + n
}
}
return int32(len(a)) + n
}
// Reset resets the encoding history.
// This ensures that no matches are made to the previous block.
func (e *deflateFast) reset() {
e.prev = e.prev[:0]
// Bump the offset, so all matches will fail distance check.
e.cur += maxMatchOffset
// Protect against e.cur wraparound.
if e.cur > 1<<30 {
e.resetAll()
}
}
// resetAll resets the deflateFast struct and is only called in rare
// situations to prevent integer overflow. It manually resets each field
// to avoid causing large stack growth.
//
// See https://golang.org/issue/18636.
func (e *deflateFast) resetAll() {
// This is equivalent to:
// *e = deflateFast{cur: maxStoreBlockSize, prev: e.prev[:0]}
e.cur = maxStoreBlockSize
e.prev = e.prev[:0]
for i := range e.table {
e.table[i] = tableEntry{}
}
}