| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package tar |
| |
| import ( |
| "bytes" |
| "fmt" |
| "strconv" |
| "strings" |
| "time" |
| ) |
| |
| func isASCII(s string) bool { |
| for _, c := range s { |
| if c >= 0x80 { |
| return false |
| } |
| } |
| return true |
| } |
| |
| func toASCII(s string) string { |
| if isASCII(s) { |
| return s |
| } |
| var buf bytes.Buffer |
| for _, c := range s { |
| if c < 0x80 { |
| buf.WriteByte(byte(c)) |
| } |
| } |
| return buf.String() |
| } |
| |
| type parser struct { |
| err error // Last error seen |
| } |
| |
| type formatter struct { |
| err error // Last error seen |
| } |
| |
| // parseString parses bytes as a NUL-terminated C-style string. |
| // If a NUL byte is not found then the whole slice is returned as a string. |
| func (*parser) parseString(b []byte) string { |
| n := 0 |
| for n < len(b) && b[n] != 0 { |
| n++ |
| } |
| return string(b[0:n]) |
| } |
| |
| // Write s into b, terminating it with a NUL if there is room. |
| func (f *formatter) formatString(b []byte, s string) { |
| if len(s) > len(b) { |
| f.err = ErrFieldTooLong |
| return |
| } |
| ascii := toASCII(s) |
| copy(b, ascii) |
| if len(ascii) < len(b) { |
| b[len(ascii)] = 0 |
| } |
| } |
| |
| // fitsInBase256 reports whether x can be encoded into n bytes using base-256 |
| // encoding. Unlike octal encoding, base-256 encoding does not require that the |
| // string ends with a NUL character. Thus, all n bytes are available for output. |
| // |
| // If operating in binary mode, this assumes strict GNU binary mode; which means |
| // that the first byte can only be either 0x80 or 0xff. Thus, the first byte is |
| // equivalent to the sign bit in two's complement form. |
| func fitsInBase256(n int, x int64) bool { |
| var binBits = uint(n-1) * 8 |
| return n >= 9 || (x >= -1<<binBits && x < 1<<binBits) |
| } |
| |
| // parseNumeric parses the input as being encoded in either base-256 or octal. |
| // This function may return negative numbers. |
| // If parsing fails or an integer overflow occurs, err will be set. |
| func (p *parser) parseNumeric(b []byte) int64 { |
| // Check for base-256 (binary) format first. |
| // If the first bit is set, then all following bits constitute a two's |
| // complement encoded number in big-endian byte order. |
| if len(b) > 0 && b[0]&0x80 != 0 { |
| // Handling negative numbers relies on the following identity: |
| // -a-1 == ^a |
| // |
| // If the number is negative, we use an inversion mask to invert the |
| // data bytes and treat the value as an unsigned number. |
| var inv byte // 0x00 if positive or zero, 0xff if negative |
| if b[0]&0x40 != 0 { |
| inv = 0xff |
| } |
| |
| var x uint64 |
| for i, c := range b { |
| c ^= inv // Inverts c only if inv is 0xff, otherwise does nothing |
| if i == 0 { |
| c &= 0x7f // Ignore signal bit in first byte |
| } |
| if (x >> 56) > 0 { |
| p.err = ErrHeader // Integer overflow |
| return 0 |
| } |
| x = x<<8 | uint64(c) |
| } |
| if (x >> 63) > 0 { |
| p.err = ErrHeader // Integer overflow |
| return 0 |
| } |
| if inv == 0xff { |
| return ^int64(x) |
| } |
| return int64(x) |
| } |
| |
| // Normal case is base-8 (octal) format. |
| return p.parseOctal(b) |
| } |
| |
| // Write x into b, as binary (GNUtar/star extension). |
| func (f *formatter) formatNumeric(b []byte, x int64) { |
| if fitsInBase256(len(b), x) { |
| for i := len(b) - 1; i >= 0; i-- { |
| b[i] = byte(x) |
| x >>= 8 |
| } |
| b[0] |= 0x80 // Highest bit indicates binary format |
| return |
| } |
| |
| f.formatOctal(b, 0) // Last resort, just write zero |
| f.err = ErrFieldTooLong |
| } |
| |
| func (p *parser) parseOctal(b []byte) int64 { |
| // Because unused fields are filled with NULs, we need |
| // to skip leading NULs. Fields may also be padded with |
| // spaces or NULs. |
| // So we remove leading and trailing NULs and spaces to |
| // be sure. |
| b = bytes.Trim(b, " \x00") |
| |
| if len(b) == 0 { |
| return 0 |
| } |
| x, perr := strconv.ParseUint(p.parseString(b), 8, 64) |
| if perr != nil { |
| p.err = ErrHeader |
| } |
| return int64(x) |
| } |
| |
| func (f *formatter) formatOctal(b []byte, x int64) { |
| s := strconv.FormatInt(x, 8) |
| // Add leading zeros, but leave room for a NUL. |
| if n := len(b) - len(s) - 1; n > 0 { |
| s = strings.Repeat("0", n) + s |
| } |
| f.formatString(b, s) |
| } |
| |
| // parsePAXTime takes a string of the form %d.%d as described in the PAX |
| // specification. Note that this implementation allows for negative timestamps, |
| // which is allowed for by the PAX specification, but not always portable. |
| func parsePAXTime(s string) (time.Time, error) { |
| const maxNanoSecondDigits = 9 |
| |
| // Split string into seconds and sub-seconds parts. |
| ss, sn := s, "" |
| if pos := strings.IndexByte(s, '.'); pos >= 0 { |
| ss, sn = s[:pos], s[pos+1:] |
| } |
| |
| // Parse the seconds. |
| secs, err := strconv.ParseInt(ss, 10, 64) |
| if err != nil { |
| return time.Time{}, ErrHeader |
| } |
| if len(sn) == 0 { |
| return time.Unix(secs, 0), nil // No sub-second values |
| } |
| |
| // Parse the nanoseconds. |
| if strings.Trim(sn, "0123456789") != "" { |
| return time.Time{}, ErrHeader |
| } |
| if len(sn) < maxNanoSecondDigits { |
| sn += strings.Repeat("0", maxNanoSecondDigits-len(sn)) // Right pad |
| } else { |
| sn = sn[:maxNanoSecondDigits] // Right truncate |
| } |
| nsecs, _ := strconv.ParseInt(sn, 10, 64) // Must succeed |
| if len(ss) > 0 && ss[0] == '-' { |
| return time.Unix(secs, -1*int64(nsecs)), nil // Negative correction |
| } |
| return time.Unix(secs, int64(nsecs)), nil |
| } |
| |
| // TODO(dsnet): Implement formatPAXTime. |
| |
| // parsePAXRecord parses the input PAX record string into a key-value pair. |
| // If parsing is successful, it will slice off the currently read record and |
| // return the remainder as r. |
| // |
| // A PAX record is of the following form: |
| // "%d %s=%s\n" % (size, key, value) |
| func parsePAXRecord(s string) (k, v, r string, err error) { |
| // The size field ends at the first space. |
| sp := strings.IndexByte(s, ' ') |
| if sp == -1 { |
| return "", "", s, ErrHeader |
| } |
| |
| // Parse the first token as a decimal integer. |
| n, perr := strconv.ParseInt(s[:sp], 10, 0) // Intentionally parse as native int |
| if perr != nil || n < 5 || int64(len(s)) < n { |
| return "", "", s, ErrHeader |
| } |
| |
| // Extract everything between the space and the final newline. |
| rec, nl, rem := s[sp+1:n-1], s[n-1:n], s[n:] |
| if nl != "\n" { |
| return "", "", s, ErrHeader |
| } |
| |
| // The first equals separates the key from the value. |
| eq := strings.IndexByte(rec, '=') |
| if eq == -1 { |
| return "", "", s, ErrHeader |
| } |
| return rec[:eq], rec[eq+1:], rem, nil |
| } |
| |
| // formatPAXRecord formats a single PAX record, prefixing it with the |
| // appropriate length. |
| func formatPAXRecord(k, v string) string { |
| const padding = 3 // Extra padding for ' ', '=', and '\n' |
| size := len(k) + len(v) + padding |
| size += len(strconv.Itoa(size)) |
| record := fmt.Sprintf("%d %s=%s\n", size, k, v) |
| |
| // Final adjustment if adding size field increased the record size. |
| if len(record) != size { |
| size = len(record) |
| record = fmt.Sprintf("%d %s=%s\n", size, k, v) |
| } |
| return record |
| } |