runtime: replace per-M workbuf cache with per-P gcWork cache

Currently, each M has a cache of the most recently used *workbuf. This
is used primarily by the write barrier so it doesn't have to access
the global workbuf lists on every write barrier. It's also used by
stack scanning because it's convenient.

This cache is important for write barrier performance, but this
particular approach has several downsides. It's faster than no cache,
but far from optimal (as the benchmarks below show). It's complex:
access to the cache is sprinkled through most of the workbuf list
operations and it requires special care to transform into and back out
of the gcWork cache that's actually used for scanning and marking. It
requires atomic exchanges to take ownership of the cached workbuf and
to return it to the M's cache even though it's almost always used by
only the current M. Since it's per-M, flushing these caches is O(# of
Ms), which may be high. And it has some significant subtleties: for
example, in general the cache shouldn't be used after the
harvestwbufs() in mark termination because it could hide work from
mark termination, but stack scanning can happen after this and *will*
use the cache (but it turns out this is okay because it will always be
followed by a getfull(), which drains the cache).

This change replaces this cache with a per-P gcWork object. This
gcWork cache can be used directly by scanning and marking (as long as
preemption is disabled, which is a general requirement of gcWork).
Since it's per-P, it doesn't require synchronization, which simplifies
things and means the only atomic operations in the write barrier are
occasionally fetching new work buffers and setting a mark bit if the
object isn't already marked. This cache can be flushed in O(# of Ps),
which is generally small. It follows a simple flushing rule: the cache
can be used during any phase, but during mark termination it must be
flushed before allowing preemption. This also makes the dispose during
mutator assist no longer necessary, which eliminates the vast majority
of gcWork dispose calls and reduces contention on the global workbuf
lists. And it's a lot faster on some benchmarks:

benchmark                          old ns/op       new ns/op       delta
BenchmarkBinaryTree17              11963668673     11206112763     -6.33%
BenchmarkFannkuch11                2643217136      2649182499      +0.23%
BenchmarkFmtFprintfEmpty           70.4            70.2            -0.28%
BenchmarkFmtFprintfString          364             307             -15.66%
BenchmarkFmtFprintfInt             317             282             -11.04%
BenchmarkFmtFprintfIntInt          512             483             -5.66%
BenchmarkFmtFprintfPrefixedInt     404             380             -5.94%
BenchmarkFmtFprintfFloat           521             479             -8.06%
BenchmarkFmtManyArgs               2164            1894            -12.48%
BenchmarkGobDecode                 30366146        22429593        -26.14%
BenchmarkGobEncode                 29867472        26663152        -10.73%
BenchmarkGzip                      391236616       396779490       +1.42%
BenchmarkGunzip                    96639491        96297024        -0.35%
BenchmarkHTTPClientServer          100110          70763           -29.31%
BenchmarkJSONEncode                51866051        52511382        +1.24%
BenchmarkJSONDecode                103813138       86094963        -17.07%
BenchmarkMandelbrot200             4121834         4120886         -0.02%
BenchmarkGoParse                   16472789        5879949         -64.31%
BenchmarkRegexpMatchEasy0_32       140             140             +0.00%
BenchmarkRegexpMatchEasy0_1K       394             394             +0.00%
BenchmarkRegexpMatchEasy1_32       120             120             +0.00%
BenchmarkRegexpMatchEasy1_1K       621             614             -1.13%
BenchmarkRegexpMatchMedium_32      209             202             -3.35%
BenchmarkRegexpMatchMedium_1K      54889           55175           +0.52%
BenchmarkRegexpMatchHard_32        2682            2675            -0.26%
BenchmarkRegexpMatchHard_1K        79383           79524           +0.18%
BenchmarkRevcomp                   584116718       584595320       +0.08%
BenchmarkTemplate                  125400565       109620196       -12.58%
BenchmarkTimeParse                 386             387             +0.26%
BenchmarkTimeFormat                580             447             -22.93%

(Best out of 10 runs. The delta of averages is similar.)

This also puts us in a good position to flush these caches when
nearing the end of concurrent marking, which will let us increase the
size of the work buffers while still controlling mark termination
pause time.

Change-Id: I2dd94c8517a19297a98ec280203cccaa58792522
Reviewed-on: https://go-review.googlesource.com/9178
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
4 files changed
tree: f9accfd7e59c98932afa4d6f6e00fd27e607438b
  1. api/
  2. doc/
  3. lib/
  4. misc/
  5. src/
  6. test/
  7. .gitattributes
  8. .gitignore
  9. AUTHORS
  10. CONTRIBUTING.md
  11. CONTRIBUTORS
  12. favicon.ico
  13. LICENSE
  14. PATENTS
  15. README.md
  16. robots.txt
README.md

The Go Programming Language

Go is an open source programming language that makes it easy to build simple, reliable, and efficient software.

Gopher image

For documentation about how to install and use Go, visit https://golang.org/ or load doc/install-source.html in your web browser.

Our canonical Git repository is located at https://go.googlesource.com/go. There is a mirror of the repository at https://github.com/golang/go.

Please report issues here: https://golang.org/issue/new

Go is the work of hundreds of contributors. We appreciate your help!

To contribute, please read the contribution guidelines: https://golang.org/doc/contribute.html

Please note that we do not use pull requests.

Unless otherwise noted, the Go source files are distributed under the BSD-style license found in the LICENSE file.


Binary Distribution Notes

If you have just untarred a binary Go distribution, you need to set the environment variable $GOROOT to the full path of the go directory (the one containing this file). You can omit the variable if you unpack it into /usr/local/go, or if you rebuild from sources by running all.bash (see doc/install-source.html). You should also add the Go binary directory $GOROOT/bin to your shell's path.

For example, if you extracted the tar file into $HOME/go, you might put the following in your .profile:

export GOROOT=$HOME/go
export PATH=$PATH:$GOROOT/bin

See https://golang.org/doc/install or doc/install.html for more details.