| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "os_GOOS.h" |
| #include "signal_unix.h" |
| #include "stack.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| enum |
| { |
| ESRCH = 3, |
| ENOTSUP = 91, |
| |
| // From OpenBSD's sys/time.h |
| CLOCK_REALTIME = 0, |
| CLOCK_VIRTUAL = 1, |
| CLOCK_PROF = 2, |
| CLOCK_MONOTONIC = 3 |
| }; |
| |
| extern SigTab runtime·sigtab[]; |
| |
| static Sigset sigset_none; |
| static Sigset sigset_all = ~(Sigset)0; |
| |
| extern int64 runtime·tfork(void *param, uintptr psize, M *mp, G *gp, void (*fn)(void)); |
| extern int32 runtime·thrsleep(void *ident, int32 clock_id, void *tsp, void *lock, const int32 *abort); |
| extern int32 runtime·thrwakeup(void *ident, int32 n); |
| |
| // From OpenBSD's <sys/sysctl.h> |
| #define CTL_HW 6 |
| #define HW_NCPU 3 |
| |
| static int32 |
| getncpu(void) |
| { |
| uint32 mib[2]; |
| uint32 out; |
| int32 ret; |
| uintptr nout; |
| |
| // Fetch hw.ncpu via sysctl. |
| mib[0] = CTL_HW; |
| mib[1] = HW_NCPU; |
| nout = sizeof out; |
| out = 0; |
| ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); |
| if(ret >= 0) |
| return out; |
| else |
| return 1; |
| } |
| |
| uintptr |
| runtime·semacreate(void) |
| { |
| return 1; |
| } |
| |
| #pragma textflag NOSPLIT |
| int32 |
| runtime·semasleep(int64 ns) |
| { |
| Timespec ts; |
| |
| // spin-mutex lock |
| while(runtime·xchg(&m->waitsemalock, 1)) |
| runtime·osyield(); |
| |
| for(;;) { |
| // lock held |
| if(m->waitsemacount == 0) { |
| // sleep until semaphore != 0 or timeout. |
| // thrsleep unlocks m->waitsemalock. |
| if(ns < 0) |
| runtime·thrsleep(&m->waitsemacount, 0, nil, &m->waitsemalock, nil); |
| else { |
| ns += runtime·nanotime(); |
| // NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system. |
| ts.tv_nsec = 0; |
| ts.tv_sec = runtime·timediv(ns, 1000000000, (int32*)&ts.tv_nsec); |
| runtime·thrsleep(&m->waitsemacount, CLOCK_REALTIME, &ts, &m->waitsemalock, nil); |
| } |
| // reacquire lock |
| while(runtime·xchg(&m->waitsemalock, 1)) |
| runtime·osyield(); |
| } |
| |
| // lock held (again) |
| if(m->waitsemacount != 0) { |
| // semaphore is available. |
| m->waitsemacount--; |
| // spin-mutex unlock |
| runtime·atomicstore(&m->waitsemalock, 0); |
| return 0; // semaphore acquired |
| } |
| |
| // semaphore not available. |
| // if there is a timeout, stop now. |
| // otherwise keep trying. |
| if(ns >= 0) |
| break; |
| } |
| |
| // lock held but giving up |
| // spin-mutex unlock |
| runtime·atomicstore(&m->waitsemalock, 0); |
| return -1; |
| } |
| |
| void |
| runtime·semawakeup(M *mp) |
| { |
| uint32 ret; |
| |
| // spin-mutex lock |
| while(runtime·xchg(&mp->waitsemalock, 1)) |
| runtime·osyield(); |
| mp->waitsemacount++; |
| ret = runtime·thrwakeup(&mp->waitsemacount, 1); |
| if(ret != 0 && ret != ESRCH) |
| runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret); |
| // spin-mutex unlock |
| runtime·atomicstore(&mp->waitsemalock, 0); |
| } |
| |
| void |
| runtime·newosproc(M *mp, void *stk) |
| { |
| Tfork param; |
| Sigset oset; |
| int32 ret; |
| |
| if(0) { |
| runtime·printf( |
| "newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n", |
| stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp); |
| } |
| |
| mp->tls[0] = mp->id; // so 386 asm can find it |
| |
| param.tf_tcb = (byte*)&mp->tls[0]; |
| param.tf_tid = (int32*)&mp->procid; |
| param.tf_stack = stk; |
| |
| oset = runtime·sigprocmask(SIG_SETMASK, sigset_all); |
| ret = runtime·tfork((byte*)¶m, sizeof(param), mp, mp->g0, runtime·mstart); |
| runtime·sigprocmask(SIG_SETMASK, oset); |
| |
| if(ret < 0) { |
| runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret); |
| if (ret == -ENOTSUP) |
| runtime·printf("runtime: is kern.rthreads disabled?\n"); |
| runtime·throw("runtime.newosproc"); |
| } |
| } |
| |
| void |
| runtime·osinit(void) |
| { |
| runtime·ncpu = getncpu(); |
| } |
| |
| void |
| runtime·get_random_data(byte **rnd, int32 *rnd_len) |
| { |
| static byte urandom_data[HashRandomBytes]; |
| int32 fd; |
| fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); |
| if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { |
| *rnd = urandom_data; |
| *rnd_len = HashRandomBytes; |
| } else { |
| *rnd = nil; |
| *rnd_len = 0; |
| } |
| runtime·close(fd); |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| void |
| runtime·mpreinit(M *mp) |
| { |
| mp->gsignal = runtime·malg(32*1024); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, can not allocate memory. |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling |
| runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); |
| runtime·sigprocmask(SIG_SETMASK, sigset_none); |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| void |
| runtime·unminit(void) |
| { |
| runtime·signalstack(nil, 0); |
| } |
| |
| void |
| runtime·sigpanic(void) |
| { |
| switch(g->sig) { |
| case SIGBUS: |
| if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGSEGV: |
| if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGFPE: |
| switch(g->sigcode0) { |
| case FPE_INTDIV: |
| runtime·panicstring("integer divide by zero"); |
| case FPE_INTOVF: |
| runtime·panicstring("integer overflow"); |
| } |
| runtime·panicstring("floating point error"); |
| } |
| runtime·panicstring(runtime·sigtab[g->sig].name); |
| } |
| |
| uintptr |
| runtime·memlimit(void) |
| { |
| return 0; |
| } |
| |
| extern void runtime·sigtramp(void); |
| |
| typedef struct sigaction { |
| union { |
| void (*__sa_handler)(int32); |
| void (*__sa_sigaction)(int32, Siginfo*, void *); |
| } __sigaction_u; /* signal handler */ |
| uint32 sa_mask; /* signal mask to apply */ |
| int32 sa_flags; /* see signal options below */ |
| } Sigaction; |
| |
| void |
| runtime·setsig(int32 i, GoSighandler *fn, bool restart) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_SIGINFO|SA_ONSTACK; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask = ~0U; |
| if(fn == runtime·sighandler) |
| fn = (void*)runtime·sigtramp; |
| sa.__sigaction_u.__sa_sigaction = (void*)fn; |
| runtime·sigaction(i, &sa, nil); |
| } |
| |
| GoSighandler* |
| runtime·getsig(int32 i) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| runtime·sigaction(i, nil, &sa); |
| if((void*)sa.__sigaction_u.__sa_sigaction == runtime·sigtramp) |
| return runtime·sighandler; |
| return (void*)sa.__sigaction_u.__sa_sigaction; |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| StackT st; |
| |
| st.ss_sp = (void*)p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| if(p == nil) |
| st.ss_flags = SS_DISABLE; |
| runtime·sigaltstack(&st, nil); |
| } |