| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // See malloc.h for overview. |
| // |
| // TODO(rsc): double-check stats. |
| |
| package runtime |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| #include "type.h" |
| #include "typekind.h" |
| #include "race.h" |
| #include "stack.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| // Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K. |
| #pragma dataflag NOPTR |
| MHeap runtime·mheap; |
| |
| int32 runtime·checking; |
| |
| extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go |
| |
| extern volatile intgo runtime·MemProfileRate; |
| |
| // Allocate an object of at least size bytes. |
| // Small objects are allocated from the per-thread cache's free lists. |
| // Large objects (> 32 kB) are allocated straight from the heap. |
| // If the block will be freed with runtime·free(), typ must be 0. |
| void* |
| runtime·mallocgc(uintptr size, uintptr typ, uint32 flag) |
| { |
| int32 sizeclass; |
| intgo rate; |
| MCache *c; |
| MCacheList *l; |
| uintptr npages; |
| MSpan *s; |
| MLink *v; |
| |
| if(size == 0) { |
| // All 0-length allocations use this pointer. |
| // The language does not require the allocations to |
| // have distinct values. |
| return &runtime·zerobase; |
| } |
| if(m->mallocing) |
| runtime·throw("malloc/free - deadlock"); |
| // Disable preemption during settype_flush. |
| // We can not use m->mallocing for this, because settype_flush calls mallocgc. |
| m->locks++; |
| m->mallocing = 1; |
| |
| if(DebugTypeAtBlockEnd) |
| size += sizeof(uintptr); |
| |
| c = m->mcache; |
| if(size <= MaxSmallSize) { |
| // Allocate from mcache free lists. |
| // Inlined version of SizeToClass(). |
| if(size <= 1024-8) |
| sizeclass = runtime·size_to_class8[(size+7)>>3]; |
| else |
| sizeclass = runtime·size_to_class128[(size-1024+127) >> 7]; |
| size = runtime·class_to_size[sizeclass]; |
| l = &c->list[sizeclass]; |
| if(l->list == nil) |
| runtime·MCache_Refill(c, sizeclass); |
| v = l->list; |
| l->list = v->next; |
| l->nlist--; |
| if(!(flag & FlagNoZero)) { |
| v->next = nil; |
| // block is zeroed iff second word is zero ... |
| if(size > sizeof(uintptr) && ((uintptr*)v)[1] != 0) |
| runtime·memclr((byte*)v, size); |
| } |
| c->local_cachealloc += size; |
| } else { |
| // TODO(rsc): Report tracebacks for very large allocations. |
| |
| // Allocate directly from heap. |
| npages = size >> PageShift; |
| if((size & PageMask) != 0) |
| npages++; |
| s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero)); |
| if(s == nil) |
| runtime·throw("out of memory"); |
| s->limit = (byte*)(s->start<<PageShift) + size; |
| size = npages<<PageShift; |
| v = (void*)(s->start << PageShift); |
| |
| // setup for mark sweep |
| runtime·markspan(v, 0, 0, true); |
| } |
| |
| if(!(flag & FlagNoGC)) |
| runtime·markallocated(v, size, (flag&FlagNoScan) != 0); |
| |
| if(DebugTypeAtBlockEnd) |
| *(uintptr*)((uintptr)v+size-sizeof(uintptr)) = typ; |
| |
| // TODO: save type even if FlagNoScan? Potentially expensive but might help |
| // heap profiling/tracing. |
| if(UseSpanType && !(flag & FlagNoScan) && typ != 0) { |
| uintptr *buf, i; |
| |
| buf = m->settype_buf; |
| i = m->settype_bufsize; |
| buf[i++] = (uintptr)v; |
| buf[i++] = typ; |
| m->settype_bufsize = i; |
| } |
| |
| m->mallocing = 0; |
| if(UseSpanType && !(flag & FlagNoScan) && typ != 0 && m->settype_bufsize == nelem(m->settype_buf)) |
| runtime·settype_flush(m); |
| m->locks--; |
| if(m->locks == 0 && g->preempt) // restore the preemption request in case we've cleared it in newstack |
| g->stackguard0 = StackPreempt; |
| |
| if(!(flag & FlagNoProfiling) && (rate = runtime·MemProfileRate) > 0) { |
| if(size >= rate) |
| goto profile; |
| if(m->mcache->next_sample > size) |
| m->mcache->next_sample -= size; |
| else { |
| // pick next profile time |
| // If you change this, also change allocmcache. |
| if(rate > 0x3fffffff) // make 2*rate not overflow |
| rate = 0x3fffffff; |
| m->mcache->next_sample = runtime·fastrand1() % (2*rate); |
| profile: |
| runtime·setblockspecial(v, true); |
| runtime·MProf_Malloc(v, size); |
| } |
| } |
| |
| if(!(flag & FlagNoInvokeGC) && mstats.heap_alloc >= mstats.next_gc) |
| runtime·gc(0); |
| |
| if(raceenabled) |
| runtime·racemalloc(v, size); |
| return v; |
| } |
| |
| void* |
| runtime·malloc(uintptr size) |
| { |
| return runtime·mallocgc(size, 0, FlagNoInvokeGC); |
| } |
| |
| // Free the object whose base pointer is v. |
| void |
| runtime·free(void *v) |
| { |
| int32 sizeclass; |
| MSpan *s; |
| MCache *c; |
| uint32 prof; |
| uintptr size; |
| |
| if(v == nil) |
| return; |
| |
| // If you change this also change mgc0.c:/^sweep, |
| // which has a copy of the guts of free. |
| |
| if(m->mallocing) |
| runtime·throw("malloc/free - deadlock"); |
| m->mallocing = 1; |
| |
| if(!runtime·mlookup(v, nil, nil, &s)) { |
| runtime·printf("free %p: not an allocated block\n", v); |
| runtime·throw("free runtime·mlookup"); |
| } |
| prof = runtime·blockspecial(v); |
| |
| if(raceenabled) |
| runtime·racefree(v); |
| |
| // Find size class for v. |
| sizeclass = s->sizeclass; |
| c = m->mcache; |
| if(sizeclass == 0) { |
| // Large object. |
| size = s->npages<<PageShift; |
| *(uintptr*)(s->start<<PageShift) = (uintptr)0xfeedfeedfeedfeedll; // mark as "needs to be zeroed" |
| // Must mark v freed before calling unmarkspan and MHeap_Free: |
| // they might coalesce v into other spans and change the bitmap further. |
| runtime·markfreed(v, size); |
| runtime·unmarkspan(v, 1<<PageShift); |
| runtime·MHeap_Free(&runtime·mheap, s, 1); |
| c->local_nlargefree++; |
| c->local_largefree += size; |
| } else { |
| // Small object. |
| size = runtime·class_to_size[sizeclass]; |
| if(size > sizeof(uintptr)) |
| ((uintptr*)v)[1] = (uintptr)0xfeedfeedfeedfeedll; // mark as "needs to be zeroed" |
| // Must mark v freed before calling MCache_Free: |
| // it might coalesce v and other blocks into a bigger span |
| // and change the bitmap further. |
| runtime·markfreed(v, size); |
| c->local_nsmallfree[sizeclass]++; |
| runtime·MCache_Free(c, v, sizeclass, size); |
| } |
| if(prof) |
| runtime·MProf_Free(v, size); |
| m->mallocing = 0; |
| } |
| |
| int32 |
| runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp) |
| { |
| uintptr n, i; |
| byte *p; |
| MSpan *s; |
| |
| m->mcache->local_nlookup++; |
| if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) { |
| // purge cache stats to prevent overflow |
| runtime·lock(&runtime·mheap); |
| runtime·purgecachedstats(m->mcache); |
| runtime·unlock(&runtime·mheap); |
| } |
| |
| s = runtime·MHeap_LookupMaybe(&runtime·mheap, v); |
| if(sp) |
| *sp = s; |
| if(s == nil) { |
| runtime·checkfreed(v, 1); |
| if(base) |
| *base = nil; |
| if(size) |
| *size = 0; |
| return 0; |
| } |
| |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| // Large object. |
| if(base) |
| *base = p; |
| if(size) |
| *size = s->npages<<PageShift; |
| return 1; |
| } |
| |
| n = s->elemsize; |
| if(base) { |
| i = ((byte*)v - p)/n; |
| *base = p + i*n; |
| } |
| if(size) |
| *size = n; |
| |
| return 1; |
| } |
| |
| MCache* |
| runtime·allocmcache(void) |
| { |
| intgo rate; |
| MCache *c; |
| |
| runtime·lock(&runtime·mheap); |
| c = runtime·FixAlloc_Alloc(&runtime·mheap.cachealloc); |
| runtime·unlock(&runtime·mheap); |
| runtime·memclr((byte*)c, sizeof(*c)); |
| |
| // Set first allocation sample size. |
| rate = runtime·MemProfileRate; |
| if(rate > 0x3fffffff) // make 2*rate not overflow |
| rate = 0x3fffffff; |
| if(rate != 0) |
| c->next_sample = runtime·fastrand1() % (2*rate); |
| |
| return c; |
| } |
| |
| void |
| runtime·freemcache(MCache *c) |
| { |
| runtime·MCache_ReleaseAll(c); |
| runtime·lock(&runtime·mheap); |
| runtime·purgecachedstats(c); |
| runtime·FixAlloc_Free(&runtime·mheap.cachealloc, c); |
| runtime·unlock(&runtime·mheap); |
| } |
| |
| void |
| runtime·purgecachedstats(MCache *c) |
| { |
| MHeap *h; |
| int32 i; |
| |
| // Protected by either heap or GC lock. |
| h = &runtime·mheap; |
| mstats.heap_alloc += c->local_cachealloc; |
| c->local_cachealloc = 0; |
| mstats.nlookup += c->local_nlookup; |
| c->local_nlookup = 0; |
| h->largefree += c->local_largefree; |
| c->local_largefree = 0; |
| h->nlargefree += c->local_nlargefree; |
| c->local_nlargefree = 0; |
| for(i=0; i<nelem(c->local_nsmallfree); i++) { |
| h->nsmallfree[i] += c->local_nsmallfree[i]; |
| c->local_nsmallfree[i] = 0; |
| } |
| } |
| |
| uintptr runtime·sizeof_C_MStats = sizeof(MStats); |
| |
| #define MaxArena32 (2U<<30) |
| |
| void |
| runtime·mallocinit(void) |
| { |
| byte *p; |
| uintptr arena_size, bitmap_size, spans_size; |
| extern byte end[]; |
| byte *want; |
| uintptr limit; |
| uint64 i; |
| |
| p = nil; |
| arena_size = 0; |
| bitmap_size = 0; |
| spans_size = 0; |
| |
| // for 64-bit build |
| USED(p); |
| USED(arena_size); |
| USED(bitmap_size); |
| USED(spans_size); |
| |
| runtime·InitSizes(); |
| |
| // limit = runtime·memlimit(); |
| // See https://code.google.com/p/go/issues/detail?id=5049 |
| // TODO(rsc): Fix after 1.1. |
| limit = 0; |
| |
| // Set up the allocation arena, a contiguous area of memory where |
| // allocated data will be found. The arena begins with a bitmap large |
| // enough to hold 4 bits per allocated word. |
| if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) { |
| // On a 64-bit machine, allocate from a single contiguous reservation. |
| // 128 GB (MaxMem) should be big enough for now. |
| // |
| // The code will work with the reservation at any address, but ask |
| // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). |
| // Allocating a 128 GB region takes away 37 bits, and the amd64 |
| // doesn't let us choose the top 17 bits, so that leaves the 11 bits |
| // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means |
| // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. |
| // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid |
| // UTF-8 sequences, and they are otherwise as far away from |
| // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 |
| // addresses. An earlier attempt to use 0x11f8 caused out of memory errors |
| // on OS X during thread allocations. 0x00c0 causes conflicts with |
| // AddressSanitizer which reserves all memory up to 0x0100. |
| // These choices are both for debuggability and to reduce the |
| // odds of the conservative garbage collector not collecting memory |
| // because some non-pointer block of memory had a bit pattern |
| // that matched a memory address. |
| // |
| // Actually we reserve 136 GB (because the bitmap ends up being 8 GB) |
| // but it hardly matters: e0 00 is not valid UTF-8 either. |
| // |
| // If this fails we fall back to the 32 bit memory mechanism |
| arena_size = MaxMem; |
| bitmap_size = arena_size / (sizeof(void*)*8/4); |
| spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]); |
| spans_size = ROUND(spans_size, PageSize); |
| for(i = 0; i <= 0x7f; i++) { |
| p = (void*)(i<<40 | 0x00c0ULL<<32); |
| p = runtime·SysReserve(p, bitmap_size + spans_size + arena_size); |
| if(p != nil) |
| break; |
| } |
| } |
| if (p == nil) { |
| // On a 32-bit machine, we can't typically get away |
| // with a giant virtual address space reservation. |
| // Instead we map the memory information bitmap |
| // immediately after the data segment, large enough |
| // to handle another 2GB of mappings (256 MB), |
| // along with a reservation for another 512 MB of memory. |
| // When that gets used up, we'll start asking the kernel |
| // for any memory anywhere and hope it's in the 2GB |
| // following the bitmap (presumably the executable begins |
| // near the bottom of memory, so we'll have to use up |
| // most of memory before the kernel resorts to giving out |
| // memory before the beginning of the text segment). |
| // |
| // Alternatively we could reserve 512 MB bitmap, enough |
| // for 4GB of mappings, and then accept any memory the |
| // kernel threw at us, but normally that's a waste of 512 MB |
| // of address space, which is probably too much in a 32-bit world. |
| bitmap_size = MaxArena32 / (sizeof(void*)*8/4); |
| arena_size = 512<<20; |
| spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]); |
| if(limit > 0 && arena_size+bitmap_size+spans_size > limit) { |
| bitmap_size = (limit / 9) & ~((1<<PageShift) - 1); |
| arena_size = bitmap_size * 8; |
| spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]); |
| } |
| spans_size = ROUND(spans_size, PageSize); |
| |
| // SysReserve treats the address we ask for, end, as a hint, |
| // not as an absolute requirement. If we ask for the end |
| // of the data segment but the operating system requires |
| // a little more space before we can start allocating, it will |
| // give out a slightly higher pointer. Except QEMU, which |
| // is buggy, as usual: it won't adjust the pointer upward. |
| // So adjust it upward a little bit ourselves: 1/4 MB to get |
| // away from the running binary image and then round up |
| // to a MB boundary. |
| want = (byte*)ROUND((uintptr)end + (1<<18), 1<<20); |
| p = runtime·SysReserve(want, bitmap_size + spans_size + arena_size); |
| if(p == nil) |
| runtime·throw("runtime: cannot reserve arena virtual address space"); |
| if((uintptr)p & (((uintptr)1<<PageShift)-1)) |
| runtime·printf("runtime: SysReserve returned unaligned address %p; asked for %p", p, |
| bitmap_size+spans_size+arena_size); |
| } |
| if((uintptr)p & (((uintptr)1<<PageShift)-1)) |
| runtime·throw("runtime: SysReserve returned unaligned address"); |
| |
| runtime·mheap.spans = (MSpan**)p; |
| runtime·mheap.bitmap = p + spans_size; |
| runtime·mheap.arena_start = p + spans_size + bitmap_size; |
| runtime·mheap.arena_used = runtime·mheap.arena_start; |
| runtime·mheap.arena_end = runtime·mheap.arena_start + arena_size; |
| |
| // Initialize the rest of the allocator. |
| runtime·MHeap_Init(&runtime·mheap); |
| m->mcache = runtime·allocmcache(); |
| |
| // See if it works. |
| runtime·free(runtime·malloc(1)); |
| } |
| |
| void* |
| runtime·MHeap_SysAlloc(MHeap *h, uintptr n) |
| { |
| byte *p; |
| |
| if(n > h->arena_end - h->arena_used) { |
| // We are in 32-bit mode, maybe we didn't use all possible address space yet. |
| // Reserve some more space. |
| byte *new_end; |
| uintptr needed; |
| |
| needed = (uintptr)h->arena_used + n - (uintptr)h->arena_end; |
| needed = ROUND(needed, 256<<20); |
| new_end = h->arena_end + needed; |
| if(new_end <= h->arena_start + MaxArena32) { |
| p = runtime·SysReserve(h->arena_end, new_end - h->arena_end); |
| if(p == h->arena_end) |
| h->arena_end = new_end; |
| } |
| } |
| if(n <= h->arena_end - h->arena_used) { |
| // Keep taking from our reservation. |
| p = h->arena_used; |
| runtime·SysMap(p, n, &mstats.heap_sys); |
| h->arena_used += n; |
| runtime·MHeap_MapBits(h); |
| runtime·MHeap_MapSpans(h); |
| if(raceenabled) |
| runtime·racemapshadow(p, n); |
| return p; |
| } |
| |
| // If using 64-bit, our reservation is all we have. |
| if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU) |
| return nil; |
| |
| // On 32-bit, once the reservation is gone we can |
| // try to get memory at a location chosen by the OS |
| // and hope that it is in the range we allocated bitmap for. |
| p = runtime·SysAlloc(n, &mstats.heap_sys); |
| if(p == nil) |
| return nil; |
| |
| if(p < h->arena_start || p+n - h->arena_start >= MaxArena32) { |
| runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n", |
| p, h->arena_start, h->arena_start+MaxArena32); |
| runtime·SysFree(p, n, &mstats.heap_sys); |
| return nil; |
| } |
| |
| if(p+n > h->arena_used) { |
| h->arena_used = p+n; |
| if(h->arena_used > h->arena_end) |
| h->arena_end = h->arena_used; |
| runtime·MHeap_MapBits(h); |
| runtime·MHeap_MapSpans(h); |
| if(raceenabled) |
| runtime·racemapshadow(p, n); |
| } |
| |
| return p; |
| } |
| |
| static struct |
| { |
| Lock; |
| byte* pos; |
| byte* end; |
| } persistent; |
| |
| enum |
| { |
| PersistentAllocChunk = 256<<10, |
| PersistentAllocMaxBlock = 64<<10, // VM reservation granularity is 64K on windows |
| }; |
| |
| // Wrapper around SysAlloc that can allocate small chunks. |
| // There is no associated free operation. |
| // Intended for things like function/type/debug-related persistent data. |
| // If align is 0, uses default align (currently 8). |
| void* |
| runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat) |
| { |
| byte *p; |
| |
| if(align != 0) { |
| if(align&(align-1)) |
| runtime·throw("persistentalloc: align is now a power of 2"); |
| if(align > PageSize) |
| runtime·throw("persistentalloc: align is too large"); |
| } else |
| align = 8; |
| if(size >= PersistentAllocMaxBlock) |
| return runtime·SysAlloc(size, stat); |
| runtime·lock(&persistent); |
| persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align); |
| if(persistent.pos + size > persistent.end) { |
| persistent.pos = runtime·SysAlloc(PersistentAllocChunk, &mstats.other_sys); |
| if(persistent.pos == nil) { |
| runtime·unlock(&persistent); |
| runtime·throw("runtime: cannot allocate memory"); |
| } |
| persistent.end = persistent.pos + PersistentAllocChunk; |
| } |
| p = persistent.pos; |
| persistent.pos += size; |
| runtime·unlock(&persistent); |
| if(stat != &mstats.other_sys) { |
| // reaccount the allocation against provided stat |
| runtime·xadd64(stat, size); |
| runtime·xadd64(&mstats.other_sys, -(uint64)size); |
| } |
| return p; |
| } |
| |
| static Lock settype_lock; |
| |
| void |
| runtime·settype_flush(M *mp) |
| { |
| uintptr *buf, *endbuf; |
| uintptr size, ofs, j, t; |
| uintptr ntypes, nbytes2, nbytes3; |
| uintptr *data2; |
| byte *data3; |
| void *v; |
| uintptr typ, p; |
| MSpan *s; |
| |
| buf = mp->settype_buf; |
| endbuf = buf + mp->settype_bufsize; |
| |
| runtime·lock(&settype_lock); |
| while(buf < endbuf) { |
| v = (void*)*buf; |
| *buf = 0; |
| buf++; |
| typ = *buf; |
| buf++; |
| |
| // (Manually inlined copy of runtime·MHeap_Lookup) |
| p = (uintptr)v>>PageShift; |
| if(sizeof(void*) == 8) |
| p -= (uintptr)runtime·mheap.arena_start >> PageShift; |
| s = runtime·mheap.spans[p]; |
| |
| if(s->sizeclass == 0) { |
| s->types.compression = MTypes_Single; |
| s->types.data = typ; |
| continue; |
| } |
| |
| size = s->elemsize; |
| ofs = ((uintptr)v - (s->start<<PageShift)) / size; |
| |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| ntypes = (s->npages << PageShift) / size; |
| nbytes3 = 8*sizeof(uintptr) + 1*ntypes; |
| data3 = runtime·mallocgc(nbytes3, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); |
| s->types.compression = MTypes_Bytes; |
| s->types.data = (uintptr)data3; |
| ((uintptr*)data3)[1] = typ; |
| data3[8*sizeof(uintptr) + ofs] = 1; |
| break; |
| |
| case MTypes_Words: |
| ((uintptr*)s->types.data)[ofs] = typ; |
| break; |
| |
| case MTypes_Bytes: |
| data3 = (byte*)s->types.data; |
| for(j=1; j<8; j++) { |
| if(((uintptr*)data3)[j] == typ) { |
| break; |
| } |
| if(((uintptr*)data3)[j] == 0) { |
| ((uintptr*)data3)[j] = typ; |
| break; |
| } |
| } |
| if(j < 8) { |
| data3[8*sizeof(uintptr) + ofs] = j; |
| } else { |
| ntypes = (s->npages << PageShift) / size; |
| nbytes2 = ntypes * sizeof(uintptr); |
| data2 = runtime·mallocgc(nbytes2, 0, FlagNoProfiling|FlagNoScan|FlagNoInvokeGC); |
| s->types.compression = MTypes_Words; |
| s->types.data = (uintptr)data2; |
| |
| // Move the contents of data3 to data2. Then deallocate data3. |
| for(j=0; j<ntypes; j++) { |
| t = data3[8*sizeof(uintptr) + j]; |
| t = ((uintptr*)data3)[t]; |
| data2[j] = t; |
| } |
| data2[ofs] = typ; |
| } |
| break; |
| } |
| } |
| runtime·unlock(&settype_lock); |
| |
| mp->settype_bufsize = 0; |
| } |
| |
| uintptr |
| runtime·gettype(void *v) |
| { |
| MSpan *s; |
| uintptr t, ofs; |
| byte *data; |
| |
| s = runtime·MHeap_LookupMaybe(&runtime·mheap, v); |
| if(s != nil) { |
| t = 0; |
| switch(s->types.compression) { |
| case MTypes_Empty: |
| break; |
| case MTypes_Single: |
| t = s->types.data; |
| break; |
| case MTypes_Words: |
| ofs = (uintptr)v - (s->start<<PageShift); |
| t = ((uintptr*)s->types.data)[ofs/s->elemsize]; |
| break; |
| case MTypes_Bytes: |
| ofs = (uintptr)v - (s->start<<PageShift); |
| data = (byte*)s->types.data; |
| t = data[8*sizeof(uintptr) + ofs/s->elemsize]; |
| t = ((uintptr*)data)[t]; |
| break; |
| default: |
| runtime·throw("runtime·gettype: invalid compression kind"); |
| } |
| if(0) { |
| runtime·lock(&settype_lock); |
| runtime·printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t); |
| runtime·unlock(&settype_lock); |
| } |
| return t; |
| } |
| return 0; |
| } |
| |
| // Runtime stubs. |
| |
| void* |
| runtime·mal(uintptr n) |
| { |
| return runtime·mallocgc(n, 0, 0); |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·new(Type *typ, uint8 *ret) |
| { |
| ret = runtime·mallocgc(typ->size, (uintptr)typ | TypeInfo_SingleObject, typ->kind&KindNoPointers ? FlagNoScan : 0); |
| FLUSH(&ret); |
| } |
| |
| static void* |
| cnew(Type *typ, intgo n, int32 objtyp) |
| { |
| if((objtyp&(PtrSize-1)) != objtyp) |
| runtime·throw("runtime: invalid objtyp"); |
| if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size)) |
| runtime·panicstring("runtime: allocation size out of range"); |
| return runtime·mallocgc(typ->size*n, (uintptr)typ | objtyp, typ->kind&KindNoPointers ? FlagNoScan : 0); |
| } |
| |
| // same as runtime·new, but callable from C |
| void* |
| runtime·cnew(Type *typ) |
| { |
| return cnew(typ, 1, TypeInfo_SingleObject); |
| } |
| |
| void* |
| runtime·cnewarray(Type *typ, intgo n) |
| { |
| return cnew(typ, n, TypeInfo_Array); |
| } |
| |
| func GC() { |
| runtime·gc(1); |
| } |
| |
| func SetFinalizer(obj Eface, finalizer Eface) { |
| byte *base; |
| uintptr size; |
| FuncType *ft; |
| int32 i; |
| uintptr nret; |
| Type *t; |
| Type *fint; |
| PtrType *ot; |
| Iface iface; |
| |
| if(obj.type == nil) { |
| runtime·printf("runtime.SetFinalizer: first argument is nil interface\n"); |
| goto throw; |
| } |
| if(obj.type->kind != KindPtr) { |
| runtime·printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string); |
| goto throw; |
| } |
| if(!runtime·mlookup(obj.data, &base, &size, nil) || obj.data != base) { |
| runtime·printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n"); |
| goto throw; |
| } |
| nret = 0; |
| ot = (PtrType*)obj.type; |
| fint = nil; |
| if(finalizer.type != nil) { |
| if(finalizer.type->kind != KindFunc) |
| goto badfunc; |
| ft = (FuncType*)finalizer.type; |
| if(ft->dotdotdot || ft->in.len != 1) |
| goto badfunc; |
| fint = *(Type**)ft->in.array; |
| if(fint == obj.type) { |
| // ok - same type |
| } else if(fint->kind == KindPtr && (fint->x == nil || fint->x->name == nil || obj.type->x == nil || obj.type->x->name == nil) && ((PtrType*)fint)->elem == ((PtrType*)obj.type)->elem) { |
| // ok - not same type, but both pointers, |
| // one or the other is unnamed, and same element type, so assignable. |
| } else if(fint->kind == KindInterface && ((InterfaceType*)fint)->mhdr.len == 0) { |
| // ok - satisfies empty interface |
| } else if(fint->kind == KindInterface && runtime·ifaceE2I2((InterfaceType*)fint, obj, &iface)) { |
| // ok - satisfies non-empty interface |
| } else |
| goto badfunc; |
| |
| // compute size needed for return parameters |
| for(i=0; i<ft->out.len; i++) { |
| t = ((Type**)ft->out.array)[i]; |
| nret = ROUND(nret, t->align) + t->size; |
| } |
| nret = ROUND(nret, sizeof(void*)); |
| } |
| |
| if(!runtime·addfinalizer(obj.data, finalizer.data, nret, fint, ot)) { |
| runtime·printf("runtime.SetFinalizer: finalizer already set\n"); |
| goto throw; |
| } |
| return; |
| |
| badfunc: |
| runtime·printf("runtime.SetFinalizer: cannot pass %S to finalizer %S\n", *obj.type->string, *finalizer.type->string); |
| throw: |
| runtime·throw("runtime.SetFinalizer"); |
| } |