blob: 6a83e48a330e846e771df56ae5559a15e3450c86 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "stack.h"
extern SigTab runtime·sigtab[];
static Sigset sigset_all = ~(Sigset)0;
static Sigset sigset_none;
static Sigset sigset_prof = 1<<(SIGPROF-1);
static void
unimplemented(int8 *name)
{
runtime·prints(name);
runtime·prints(" not implemented\n");
*(int32*)1231 = 1231;
}
int32
runtime·semasleep(int64 ns)
{
int32 v;
if(m->profilehz > 0)
runtime·setprof(false);
v = runtime·mach_semacquire(m->waitsema, ns);
if(m->profilehz > 0)
runtime·setprof(true);
return v;
}
void
runtime·semawakeup(M *mp)
{
runtime·mach_semrelease(mp->waitsema);
}
uintptr
runtime·semacreate(void)
{
return runtime·mach_semcreate();
}
// BSD interface for threading.
void
runtime·osinit(void)
{
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
// but only if we're not using cgo. If we are using cgo we need
// to let the C pthread libary install its own thread-creation callback.
if(!runtime·iscgo)
runtime·bsdthread_register();
// Use sysctl to fetch hw.ncpu.
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
mib[0] = 6;
mib[1] = 3;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
runtime·ncpu = out;
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
void
runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
int32 errno;
Sigset oset;
m->tls[0] = m->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n",
stk, m, g, fn, m->id, m->tls[0], &m);
}
runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset);
errno = runtime·bsdthread_create(stk, m, g, fn);
runtime·sigprocmask(SIG_SETMASK, &oset, nil);
if(errno < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno);
runtime·throw("runtime.newosproc");
}
}
// Called to initialize a new m (including the bootstrap m).
void
runtime·minit(void)
{
// Initialize signal handling.
m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
runtime·signalstack(m->gsignal->stackguard - StackGuard, 32*1024);
if(m->profilehz > 0)
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
else
runtime·sigprocmask(SIG_SETMASK, &sigset_prof, nil);
}
// Mach IPC, to get at semaphores
// Definitions are in /usr/include/mach on a Mac.
static void
macherror(int32 r, int8 *fn)
{
runtime·printf("mach error %s: %d\n", fn, r);
runtime·throw("mach error");
}
enum
{
DebugMach = 0
};
static MachNDR zerondr;
#define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8))
static int32
mach_msg(MachHeader *h,
int32 op,
uint32 send_size,
uint32 rcv_size,
uint32 rcv_name,
uint32 timeout,
uint32 notify)
{
// TODO: Loop on interrupt.
return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify);
}
// Mach RPC (MIG)
enum
{
MinMachMsg = 48,
Reply = 100,
};
#pragma pack on
typedef struct CodeMsg CodeMsg;
struct CodeMsg
{
MachHeader h;
MachNDR NDR;
int32 code;
};
#pragma pack off
static int32
machcall(MachHeader *h, int32 maxsize, int32 rxsize)
{
uint32 *p;
int32 i, ret, id;
uint32 port;
CodeMsg *c;
if((port = m->machport) == 0){
port = runtime·mach_reply_port();
m->machport = port;
}
h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE);
h->msgh_local_port = port;
h->msgh_reserved = 0;
id = h->msgh_id;
if(DebugMach){
p = (uint32*)h;
runtime·prints("send:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG,
h->msgh_size, maxsize, port, 0, 0);
if(ret != 0){
if(DebugMach){
runtime·prints("mach_msg error ");
runtime·printint(ret);
runtime·prints("\n");
}
return ret;
}
if(DebugMach){
p = (uint32*)h;
runtime·prints("recv:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
if(h->msgh_id != id+Reply){
if(DebugMach){
runtime·prints("mach_msg reply id mismatch ");
runtime·printint(h->msgh_id);
runtime·prints(" != ");
runtime·printint(id+Reply);
runtime·prints("\n");
}
return -303; // MIG_REPLY_MISMATCH
}
// Look for a response giving the return value.
// Any call can send this back with an error,
// and some calls only have return values so they
// send it back on success too. I don't quite see how
// you know it's one of these and not the full response
// format, so just look if the message is right.
c = (CodeMsg*)h;
if(h->msgh_size == sizeof(CodeMsg)
&& !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){
if(DebugMach){
runtime·prints("mig result ");
runtime·printint(c->code);
runtime·prints("\n");
}
return c->code;
}
if(h->msgh_size != rxsize){
if(DebugMach){
runtime·prints("mach_msg reply size mismatch ");
runtime·printint(h->msgh_size);
runtime·prints(" != ");
runtime·printint(rxsize);
runtime·prints("\n");
}
return -307; // MIG_ARRAY_TOO_LARGE
}
return 0;
}
// Semaphores!
enum
{
Tmach_semcreate = 3418,
Rmach_semcreate = Tmach_semcreate + Reply,
Tmach_semdestroy = 3419,
Rmach_semdestroy = Tmach_semdestroy + Reply,
// Mach calls that get interrupted by Unix signals
// return this error code. We retry them.
KERN_ABORTED = 14,
KERN_OPERATION_TIMED_OUT = 49,
};
typedef struct Tmach_semcreateMsg Tmach_semcreateMsg;
typedef struct Rmach_semcreateMsg Rmach_semcreateMsg;
typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg;
// Rmach_semdestroyMsg = CodeMsg
#pragma pack on
struct Tmach_semcreateMsg
{
MachHeader h;
MachNDR ndr;
int32 policy;
int32 value;
};
struct Rmach_semcreateMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
struct Tmach_semdestroyMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
#pragma pack off
uint32
runtime·mach_semcreate(void)
{
union {
Tmach_semcreateMsg tx;
Rmach_semcreateMsg rx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = 0;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semcreate;
m.tx.ndr = zerondr;
m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO
m.tx.value = 0;
while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_create");
}
if(m.rx.body.msgh_descriptor_count != 1)
unimplemented("mach_semcreate desc count");
return m.rx.semaphore.name;
}
void
runtime·mach_semdestroy(uint32 sem)
{
union {
Tmach_semdestroyMsg tx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semdestroy;
m.tx.body.msgh_descriptor_count = 1;
m.tx.semaphore.name = sem;
m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND;
m.tx.semaphore.type = 0;
while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_destroy");
}
}
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
int32 runtime·mach_semaphore_wait(uint32 sema);
int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec);
int32 runtime·mach_semaphore_signal(uint32 sema);
int32 runtime·mach_semaphore_signal_all(uint32 sema);
int32
runtime·mach_semacquire(uint32 sem, int64 ns)
{
int32 r;
if(ns >= 0) {
r = runtime·mach_semaphore_timedwait(sem, ns/1000000000LL, ns%1000000000LL);
if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT)
return -1;
if(r != 0)
macherror(r, "semaphore_wait");
return 0;
}
while((r = runtime·mach_semaphore_wait(sem)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_wait");
}
return 0;
}
void
runtime·mach_semrelease(uint32 sem)
{
int32 r;
while((r = runtime·mach_semaphore_signal(sem)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_signal");
}
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
// TODO(rsc): place holder to fix build.
void
runtime·osyield(void)
{
}
uintptr
runtime·memlimit(void)
{
// NOTE(rsc): Could use getrlimit here,
// like on FreeBSD or Linux, but Darwin doesn't enforce
// ulimit -v, so it's unclear why we'd try to stay within
// the limit.
return 0;
}
// NOTE(rsc): On OS X, when the CPU profiling timer expires, the SIGPROF
// signal is not guaranteed to be sent to the thread that was executing to
// cause it to expire. It can and often does go to a sleeping thread, which is
// not interesting for our profile. This is filed Apple Bug Report #9177434,
// copied to http://code.google.com/p/go/source/detail?r=35b716c94225.
// To work around this bug, we disable receipt of the profiling signal on
// a thread while in blocking system calls. This forces the kernel to deliver
// the profiling signal to an executing thread.
//
// The workaround fails on OS X machines using a 64-bit Snow Leopard kernel.
// In that configuration, the kernel appears to want to deliver SIGPROF to the
// sleeping threads regardless of signal mask and, worse, does not deliver
// the signal until the thread wakes up on its own.
//
// If necessary, we can switch to using ITIMER_REAL for OS X and handle
// the kernel-generated SIGALRM by generating our own SIGALRMs to deliver
// to all the running threads. SIGALRM does not appear to be affected by
// the 64-bit Snow Leopard bug. However, as of this writing Mountain Lion
// is in preview, making Snow Leopard two versions old, so it is unclear how
// much effort we need to spend on one buggy kernel.
// Control whether profiling signal can be delivered to this thread.
void
runtime·setprof(bool on)
{
if(on)
runtime·sigprocmask(SIG_UNBLOCK, &sigset_prof, nil);
else
runtime·sigprocmask(SIG_BLOCK, &sigset_prof, nil);
}
static int8 badcallback[] = "runtime: cgo callback on thread not created by Go.\n";
// This runs on a foreign stack, without an m or a g. No stack split.
#pragma textflag 7
void
runtime·badcallback(void)
{
runtime·write(2, badcallback, sizeof badcallback - 1);
}
static int8 badsignal[] = "runtime: signal received on thread not created by Go.\n";
// This runs on a foreign stack, without an m or a g. No stack split.
#pragma textflag 7
void
runtime·badsignal(void)
{
runtime·write(2, badsignal, sizeof badsignal - 1);
}