| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| // The original C code and the the comment below are from |
| // FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came |
| // with this notice. The go code is a simplified version of |
| // the original C. |
| // |
| // ==================================================== |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Developed at SunPro, a Sun Microsystems, Inc. business. |
| // Permission to use, copy, modify, and distribute this |
| // software is freely granted, provided that this notice |
| // is preserved. |
| // ==================================================== |
| // |
| // __ieee754_remainder(x,y) |
| // Return : |
| // returns x REM y = x - [x/y]*y as if in infinite |
| // precision arithmetic, where [x/y] is the (infinite bit) |
| // integer nearest x/y (in half way cases, choose the even one). |
| // Method : |
| // Based on Mod() returning x - [x/y]chopped * y exactly. |
| |
| // Remainder returns the IEEE 754 floating-point remainder of x/y. |
| // |
| // Special cases are: |
| // Remainder(±Inf, y) = NaN |
| // Remainder(NaN, y) = NaN |
| // Remainder(x, 0) = NaN |
| // Remainder(x, ±Inf) = x |
| // Remainder(x, NaN) = NaN |
| func Remainder(x, y float64) float64 |
| |
| func remainder(x, y float64) float64 { |
| const ( |
| Tiny = 4.45014771701440276618e-308 // 0x0020000000000000 |
| HalfMax = MaxFloat64 / 2 |
| ) |
| // special cases |
| switch { |
| case IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0: |
| return NaN() |
| case IsInf(y, 0): |
| return x |
| } |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| if y < 0 { |
| y = -y |
| } |
| if x == y { |
| return 0 |
| } |
| if y <= HalfMax { |
| x = Mod(x, y+y) // now x < 2y |
| } |
| if y < Tiny { |
| if x+x > y { |
| x -= y |
| if x+x >= y { |
| x -= y |
| } |
| } |
| } else { |
| yHalf := 0.5 * y |
| if x > yHalf { |
| x -= y |
| if x >= yHalf { |
| x -= y |
| } |
| } |
| } |
| if sign { |
| x = -x |
| } |
| return x |
| } |