| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package dwarfgen |
| |
| import ( |
| "bytes" |
| "flag" |
| "fmt" |
| "internal/buildcfg" |
| "sort" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/reflectdata" |
| "cmd/compile/internal/ssa" |
| "cmd/compile/internal/ssagen" |
| "cmd/compile/internal/types" |
| "cmd/internal/dwarf" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| ) |
| |
| func Info(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) { |
| fn := curfn.(*ir.Func) |
| |
| if fn.Nname != nil { |
| expect := fn.Linksym() |
| if fnsym.ABI() == obj.ABI0 { |
| expect = fn.LinksymABI(obj.ABI0) |
| } |
| if fnsym != expect { |
| base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect) |
| } |
| } |
| |
| // Back when there were two different *Funcs for a function, this code |
| // was not consistent about whether a particular *Node being processed |
| // was an ODCLFUNC or ONAME node. Partly this is because inlined function |
| // bodies have no ODCLFUNC node, which was it's own inconsistency. |
| // In any event, the handling of the two different nodes for DWARF purposes |
| // was subtly different, likely in unintended ways. CL 272253 merged the |
| // two nodes' Func fields, so that code sees the same *Func whether it is |
| // holding the ODCLFUNC or the ONAME. This resulted in changes in the |
| // DWARF output. To preserve the existing DWARF output and leave an |
| // intentional change for a future CL, this code does the following when |
| // fn.Op == ONAME: |
| // |
| // 1. Disallow use of createComplexVars in createDwarfVars. |
| // It was not possible to reach that code for an ONAME before, |
| // because the DebugInfo was set only on the ODCLFUNC Func. |
| // Calling into it in the ONAME case causes an index out of bounds panic. |
| // |
| // 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func, |
| // not the ONAME Func. Populating apdecls for the ONAME case results |
| // in selected being populated after createSimpleVars is called in |
| // createDwarfVars, and then that causes the loop to skip all the entries |
| // in dcl, meaning that the RecordAutoType calls don't happen. |
| // |
| // These two adjustments keep toolstash -cmp working for now. |
| // Deciding the right answer is, as they say, future work. |
| // |
| // We can tell the difference between the old ODCLFUNC and ONAME |
| // cases by looking at the infosym.Name. If it's empty, DebugInfo is |
| // being called from (*obj.Link).populateDWARF, which used to use |
| // the ODCLFUNC. If it's non-empty (the name will end in $abstract), |
| // DebugInfo is being called from (*obj.Link).DwarfAbstractFunc, |
| // which used to use the ONAME form. |
| isODCLFUNC := infosym.Name == "" |
| |
| var apdecls []*ir.Name |
| // Populate decls for fn. |
| if isODCLFUNC { |
| for _, n := range fn.Dcl { |
| if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL |
| continue |
| } |
| switch n.Class { |
| case ir.PAUTO: |
| if !n.Used() { |
| // Text == nil -> generating abstract function |
| if fnsym.Func().Text != nil { |
| base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)") |
| } |
| continue |
| } |
| case ir.PPARAM, ir.PPARAMOUT: |
| default: |
| continue |
| } |
| apdecls = append(apdecls, n) |
| fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type())) |
| } |
| } |
| |
| decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls) |
| |
| // For each type referenced by the functions auto vars but not |
| // already referenced by a dwarf var, attach an R_USETYPE relocation to |
| // the function symbol to insure that the type included in DWARF |
| // processing during linking. |
| typesyms := []*obj.LSym{} |
| for t, _ := range fnsym.Func().Autot { |
| typesyms = append(typesyms, t) |
| } |
| sort.Sort(obj.BySymName(typesyms)) |
| for _, sym := range typesyms { |
| r := obj.Addrel(infosym) |
| r.Sym = sym |
| r.Type = objabi.R_USETYPE |
| } |
| fnsym.Func().Autot = nil |
| |
| var varScopes []ir.ScopeID |
| for _, decl := range decls { |
| pos := declPos(decl) |
| varScopes = append(varScopes, findScope(fn.Marks, pos)) |
| } |
| |
| scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes) |
| var inlcalls dwarf.InlCalls |
| if base.Flag.GenDwarfInl > 0 { |
| inlcalls = assembleInlines(fnsym, dwarfVars) |
| } |
| return scopes, inlcalls |
| } |
| |
| func declPos(decl *ir.Name) src.XPos { |
| return decl.Canonical().Pos() |
| } |
| |
| // createDwarfVars process fn, returning a list of DWARF variables and the |
| // Nodes they represent. |
| func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) { |
| // Collect a raw list of DWARF vars. |
| var vars []*dwarf.Var |
| var decls []*ir.Name |
| var selected ir.NameSet |
| |
| if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK { |
| decls, vars, selected = createComplexVars(fnsym, fn) |
| } else if fn.ABI == obj.ABIInternal && base.Flag.N != 0 && complexOK { |
| decls, vars, selected = createABIVars(fnsym, fn, apDecls) |
| } else { |
| decls, vars, selected = createSimpleVars(fnsym, apDecls) |
| } |
| |
| dcl := apDecls |
| if fnsym.WasInlined() { |
| dcl = preInliningDcls(fnsym) |
| } else { |
| // The backend's stackframe pass prunes away entries from the |
| // fn's Dcl list, including PARAMOUT nodes that correspond to |
| // output params passed in registers. Add back in these |
| // entries here so that we can process them properly during |
| // DWARF-gen. See issue 48573 for more details. |
| debugInfo := fn.DebugInfo.(*ssa.FuncDebug) |
| for _, n := range debugInfo.RegOutputParams { |
| if n.Class != ir.PPARAMOUT || !n.IsOutputParamInRegisters() { |
| panic("invalid ir.Name on debugInfo.RegOutputParams list") |
| } |
| dcl = append(dcl, n) |
| } |
| } |
| |
| // If optimization is enabled, the list above will typically be |
| // missing some of the original pre-optimization variables in the |
| // function (they may have been promoted to registers, folded into |
| // constants, dead-coded away, etc). Input arguments not eligible |
| // for SSA optimization are also missing. Here we add back in entries |
| // for selected missing vars. Note that the recipe below creates a |
| // conservative location. The idea here is that we want to |
| // communicate to the user that "yes, there is a variable named X |
| // in this function, but no, I don't have enough information to |
| // reliably report its contents." |
| // For non-SSA-able arguments, however, the correct information |
| // is known -- they have a single home on the stack. |
| for _, n := range dcl { |
| if selected.Has(n) { |
| continue |
| } |
| c := n.Sym().Name[0] |
| if c == '.' || n.Type().IsUntyped() { |
| continue |
| } |
| if n.Class == ir.PPARAM && !ssagen.TypeOK(n.Type()) { |
| // SSA-able args get location lists, and may move in and |
| // out of registers, so those are handled elsewhere. |
| // Autos and named output params seem to get handled |
| // with VARDEF, which creates location lists. |
| // Args not of SSA-able type are treated here; they |
| // are homed on the stack in a single place for the |
| // entire call. |
| vars = append(vars, createSimpleVar(fnsym, n)) |
| decls = append(decls, n) |
| continue |
| } |
| typename := dwarf.InfoPrefix + types.TypeSymName(n.Type()) |
| decls = append(decls, n) |
| abbrev := dwarf.DW_ABRV_AUTO_LOCLIST |
| isReturnValue := (n.Class == ir.PPARAMOUT) |
| if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| if n.Esc() == ir.EscHeap { |
| // The variable in question has been promoted to the heap. |
| // Its address is in n.Heapaddr. |
| // TODO(thanm): generate a better location expression |
| } |
| inlIndex := 0 |
| if base.Flag.GenDwarfInl > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos()) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := base.Ctxt.InnermostPos(n.Pos()) |
| vars = append(vars, &dwarf.Var{ |
| Name: n.Sym().Name, |
| IsReturnValue: isReturnValue, |
| Abbrev: abbrev, |
| StackOffset: int32(n.FrameOffset()), |
| Type: base.Ctxt.Lookup(typename), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.RelCol(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| DictIndex: n.DictIndex, |
| }) |
| // Record go type of to insure that it gets emitted by the linker. |
| fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type())) |
| } |
| |
| // Sort decls and vars. |
| sortDeclsAndVars(fn, decls, vars) |
| |
| return decls, vars |
| } |
| |
| // sortDeclsAndVars sorts the decl and dwarf var lists according to |
| // parameter declaration order, so as to insure that when a subprogram |
| // DIE is emitted, its parameter children appear in declaration order. |
| // Prior to the advent of the register ABI, sorting by frame offset |
| // would achieve this; with the register we now need to go back to the |
| // original function signature. |
| func sortDeclsAndVars(fn *ir.Func, decls []*ir.Name, vars []*dwarf.Var) { |
| paramOrder := make(map[*ir.Name]int) |
| idx := 1 |
| for _, selfn := range types.RecvsParamsResults { |
| fsl := selfn(fn.Type()).FieldSlice() |
| for _, f := range fsl { |
| if n, ok := f.Nname.(*ir.Name); ok { |
| paramOrder[n] = idx |
| idx++ |
| } |
| } |
| } |
| sort.Stable(varsAndDecls{decls, vars, paramOrder}) |
| } |
| |
| type varsAndDecls struct { |
| decls []*ir.Name |
| vars []*dwarf.Var |
| paramOrder map[*ir.Name]int |
| } |
| |
| func (v varsAndDecls) Len() int { |
| return len(v.decls) |
| } |
| |
| func (v varsAndDecls) Less(i, j int) bool { |
| nameLT := func(ni, nj *ir.Name) bool { |
| oi, foundi := v.paramOrder[ni] |
| oj, foundj := v.paramOrder[nj] |
| if foundi { |
| if foundj { |
| return oi < oj |
| } else { |
| return true |
| } |
| } |
| return false |
| } |
| return nameLT(v.decls[i], v.decls[j]) |
| } |
| |
| func (v varsAndDecls) Swap(i, j int) { |
| v.vars[i], v.vars[j] = v.vars[j], v.vars[i] |
| v.decls[i], v.decls[j] = v.decls[j], v.decls[i] |
| } |
| |
| // Given a function that was inlined at some point during the |
| // compilation, return a sorted list of nodes corresponding to the |
| // autos/locals in that function prior to inlining. If this is a |
| // function that is not local to the package being compiled, then the |
| // names of the variables may have been "versioned" to avoid conflicts |
| // with local vars; disregard this versioning when sorting. |
| func preInliningDcls(fnsym *obj.LSym) []*ir.Name { |
| fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func) |
| var rdcl []*ir.Name |
| for _, n := range fn.Inl.Dcl { |
| c := n.Sym().Name[0] |
| // Avoid reporting "_" parameters, since if there are more than |
| // one, it can result in a collision later on, as in #23179. |
| if unversion(n.Sym().Name) == "_" || c == '.' || n.Type().IsUntyped() { |
| continue |
| } |
| rdcl = append(rdcl, n) |
| } |
| return rdcl |
| } |
| |
| // createSimpleVars creates a DWARF entry for every variable declared in the |
| // function, claiming that they are permanently on the stack. |
| func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) { |
| var vars []*dwarf.Var |
| var decls []*ir.Name |
| var selected ir.NameSet |
| for _, n := range apDecls { |
| if ir.IsAutoTmp(n) { |
| continue |
| } |
| |
| decls = append(decls, n) |
| vars = append(vars, createSimpleVar(fnsym, n)) |
| selected.Add(n) |
| } |
| return decls, vars, selected |
| } |
| |
| func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var { |
| var abbrev int |
| var offs int64 |
| |
| localAutoOffset := func() int64 { |
| offs = n.FrameOffset() |
| if base.Ctxt.FixedFrameSize() == 0 { |
| offs -= int64(types.PtrSize) |
| } |
| if buildcfg.FramePointerEnabled { |
| offs -= int64(types.PtrSize) |
| } |
| return offs |
| } |
| |
| switch n.Class { |
| case ir.PAUTO: |
| offs = localAutoOffset() |
| abbrev = dwarf.DW_ABRV_AUTO |
| case ir.PPARAM, ir.PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM |
| if n.IsOutputParamInRegisters() { |
| offs = localAutoOffset() |
| } else { |
| offs = n.FrameOffset() + base.Ctxt.FixedFrameSize() |
| } |
| |
| default: |
| base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n) |
| } |
| |
| typename := dwarf.InfoPrefix + types.TypeSymName(n.Type()) |
| delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type())) |
| inlIndex := 0 |
| if base.Flag.GenDwarfInl > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos()) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM |
| } |
| } |
| } |
| declpos := base.Ctxt.InnermostPos(declPos(n)) |
| return &dwarf.Var{ |
| Name: n.Sym().Name, |
| IsReturnValue: n.Class == ir.PPARAMOUT, |
| IsInlFormal: n.InlFormal(), |
| Abbrev: abbrev, |
| StackOffset: int32(offs), |
| Type: base.Ctxt.Lookup(typename), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.RelCol(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| DictIndex: n.DictIndex, |
| } |
| } |
| |
| // createABIVars creates DWARF variables for functions in which the |
| // register ABI is enabled but optimization is turned off. It uses a |
| // hybrid approach in which register-resident input params are |
| // captured with location lists, and all other vars use the "simple" |
| // strategy. |
| func createABIVars(fnsym *obj.LSym, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) { |
| |
| // Invoke createComplexVars to generate dwarf vars for input parameters |
| // that are register-allocated according to the ABI rules. |
| decls, vars, selected := createComplexVars(fnsym, fn) |
| |
| // Now fill in the remainder of the variables: input parameters |
| // that are not register-resident, output parameters, and local |
| // variables. |
| for _, n := range apDecls { |
| if ir.IsAutoTmp(n) { |
| continue |
| } |
| if _, ok := selected[n]; ok { |
| // already handled |
| continue |
| } |
| |
| decls = append(decls, n) |
| vars = append(vars, createSimpleVar(fnsym, n)) |
| selected.Add(n) |
| } |
| |
| return decls, vars, selected |
| } |
| |
| // createComplexVars creates recomposed DWARF vars with location lists, |
| // suitable for describing optimized code. |
| func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var, ir.NameSet) { |
| debugInfo := fn.DebugInfo.(*ssa.FuncDebug) |
| |
| // Produce a DWARF variable entry for each user variable. |
| var decls []*ir.Name |
| var vars []*dwarf.Var |
| var ssaVars ir.NameSet |
| |
| for varID, dvar := range debugInfo.Vars { |
| n := dvar |
| ssaVars.Add(n) |
| for _, slot := range debugInfo.VarSlots[varID] { |
| ssaVars.Add(debugInfo.Slots[slot].N) |
| } |
| |
| if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil { |
| decls = append(decls, n) |
| vars = append(vars, dvar) |
| } |
| } |
| |
| return decls, vars, ssaVars |
| } |
| |
| // createComplexVar builds a single DWARF variable entry and location list. |
| func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var { |
| debug := fn.DebugInfo.(*ssa.FuncDebug) |
| n := debug.Vars[varID] |
| |
| var abbrev int |
| switch n.Class { |
| case ir.PAUTO: |
| abbrev = dwarf.DW_ABRV_AUTO_LOCLIST |
| case ir.PPARAM, ir.PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| default: |
| return nil |
| } |
| |
| gotype := reflectdata.TypeLinksym(n.Type()) |
| delete(fnsym.Func().Autot, gotype) |
| typename := dwarf.InfoPrefix + gotype.Name[len("type."):] |
| inlIndex := 0 |
| if base.Flag.GenDwarfInl > 1 { |
| if n.InlFormal() || n.InlLocal() { |
| inlIndex = posInlIndex(n.Pos()) + 1 |
| if n.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := base.Ctxt.InnermostPos(n.Pos()) |
| dvar := &dwarf.Var{ |
| Name: n.Sym().Name, |
| IsReturnValue: n.Class == ir.PPARAMOUT, |
| IsInlFormal: n.InlFormal(), |
| Abbrev: abbrev, |
| Type: base.Ctxt.Lookup(typename), |
| // The stack offset is used as a sorting key, so for decomposed |
| // variables just give it the first one. It's not used otherwise. |
| // This won't work well if the first slot hasn't been assigned a stack |
| // location, but it's not obvious how to do better. |
| StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.RelCol(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| DictIndex: n.DictIndex, |
| } |
| list := debug.LocationLists[varID] |
| if len(list) != 0 { |
| dvar.PutLocationList = func(listSym, startPC dwarf.Sym) { |
| debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym)) |
| } |
| } |
| return dvar |
| } |
| |
| // RecordFlags records the specified command-line flags to be placed |
| // in the DWARF info. |
| func RecordFlags(flags ...string) { |
| if base.Ctxt.Pkgpath == "" { |
| // We can't record the flags if we don't know what the |
| // package name is. |
| return |
| } |
| |
| type BoolFlag interface { |
| IsBoolFlag() bool |
| } |
| type CountFlag interface { |
| IsCountFlag() bool |
| } |
| var cmd bytes.Buffer |
| for _, name := range flags { |
| f := flag.Lookup(name) |
| if f == nil { |
| continue |
| } |
| getter := f.Value.(flag.Getter) |
| if getter.String() == f.DefValue { |
| // Flag has default value, so omit it. |
| continue |
| } |
| if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() { |
| val, ok := getter.Get().(bool) |
| if ok && val { |
| fmt.Fprintf(&cmd, " -%s", f.Name) |
| continue |
| } |
| } |
| if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() { |
| val, ok := getter.Get().(int) |
| if ok && val == 1 { |
| fmt.Fprintf(&cmd, " -%s", f.Name) |
| continue |
| } |
| } |
| fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get()) |
| } |
| |
| // Adds flag to producer string singalling whether regabi is turned on or |
| // off. |
| // Once regabi is turned on across the board and the relative GOEXPERIMENT |
| // knobs no longer exist this code should be removed. |
| if buildcfg.Experiment.RegabiArgs { |
| cmd.Write([]byte(" regabi")) |
| } |
| |
| if cmd.Len() == 0 { |
| return |
| } |
| s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath) |
| s.Type = objabi.SDWARFCUINFO |
| // Sometimes (for example when building tests) we can link |
| // together two package main archives. So allow dups. |
| s.Set(obj.AttrDuplicateOK, true) |
| base.Ctxt.Data = append(base.Ctxt.Data, s) |
| s.P = cmd.Bytes()[1:] |
| } |
| |
| // RecordPackageName records the name of the package being |
| // compiled, so that the linker can save it in the compile unit's DIE. |
| func RecordPackageName() { |
| s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath) |
| s.Type = objabi.SDWARFCUINFO |
| // Sometimes (for example when building tests) we can link |
| // together two package main archives. So allow dups. |
| s.Set(obj.AttrDuplicateOK, true) |
| base.Ctxt.Data = append(base.Ctxt.Data, s) |
| s.P = []byte(types.LocalPkg.Name) |
| } |