| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Goroutine preemption |
| // |
| // A goroutine can be preempted at any safe-point. Currently, there |
| // are a few categories of safe-points: |
| // |
| // 1. A blocked safe-point occurs for the duration that a goroutine is |
| // descheduled, blocked on synchronization, or in a system call. |
| // |
| // 2. Synchronous safe-points occur when a running goroutine checks |
| // for a preemption request. |
| // |
| // At both blocked and synchronous safe-points, a goroutine's CPU |
| // state is minimal and the garbage collector has complete information |
| // about its entire stack. This makes it possible to deschedule a |
| // goroutine with minimal space, and to precisely scan a goroutine's |
| // stack. |
| // |
| // Synchronous safe-points are implemented by overloading the stack |
| // bound check in function prologues. To preempt a goroutine at the |
| // next synchronous safe-point, the runtime poisons the goroutine's |
| // stack bound to a value that will cause the next stack bound check |
| // to fail and enter the stack growth implementation, which will |
| // detect that it was actually a preemption and redirect to preemption |
| // handling. |
| |
| package runtime |
| |
| type suspendGState struct { |
| g *g |
| |
| // dead indicates the goroutine was not suspended because it |
| // is dead. This goroutine could be reused after the dead |
| // state was observed, so the caller must not assume that it |
| // remains dead. |
| dead bool |
| |
| // stopped indicates that this suspendG transitioned the G to |
| // _Gwaiting via g.preemptStop and thus is responsible for |
| // readying it when done. |
| stopped bool |
| } |
| |
| // suspendG suspends goroutine gp at a safe-point and returns the |
| // state of the suspended goroutine. The caller gets read access to |
| // the goroutine until it calls resumeG. |
| // |
| // It is safe for multiple callers to attempt to suspend the same |
| // goroutine at the same time. The goroutine may execute between |
| // subsequent successful suspend operations. The current |
| // implementation grants exclusive access to the goroutine, and hence |
| // multiple callers will serialize. However, the intent is to grant |
| // shared read access, so please don't depend on exclusive access. |
| // |
| // This must be called from the system stack and the user goroutine on |
| // the current M (if any) must be in a preemptible state. This |
| // prevents deadlocks where two goroutines attempt to suspend each |
| // other and both are in non-preemptible states. There are other ways |
| // to resolve this deadlock, but this seems simplest. |
| // |
| // TODO(austin): What if we instead required this to be called from a |
| // user goroutine? Then we could deschedule the goroutine while |
| // waiting instead of blocking the thread. If two goroutines tried to |
| // suspend each other, one of them would win and the other wouldn't |
| // complete the suspend until it was resumed. We would have to be |
| // careful that they couldn't actually queue up suspend for each other |
| // and then both be suspended. This would also avoid the need for a |
| // kernel context switch in the synchronous case because we could just |
| // directly schedule the waiter. The context switch is unavoidable in |
| // the signal case. |
| // |
| //go:systemstack |
| func suspendG(gp *g) suspendGState { |
| if mp := getg().m; mp.curg != nil && readgstatus(mp.curg) == _Grunning { |
| // Since we're on the system stack of this M, the user |
| // G is stuck at an unsafe point. If another goroutine |
| // were to try to preempt m.curg, it could deadlock. |
| throw("suspendG from non-preemptible goroutine") |
| } |
| |
| // See https://golang.org/cl/21503 for justification of the yield delay. |
| const yieldDelay = 10 * 1000 |
| var nextYield int64 |
| |
| // Drive the goroutine to a preemption point. |
| stopped := false |
| for i := 0; ; i++ { |
| switch s := readgstatus(gp); s { |
| default: |
| if s&_Gscan != 0 { |
| // Someone else is suspending it. Wait |
| // for them to finish. |
| // |
| // TODO: It would be nicer if we could |
| // coalesce suspends. |
| break |
| } |
| |
| dumpgstatus(gp) |
| throw("invalid g status") |
| |
| case _Gdead: |
| // Nothing to suspend. |
| // |
| // preemptStop may need to be cleared, but |
| // doing that here could race with goroutine |
| // reuse. Instead, goexit0 clears it. |
| return suspendGState{dead: true} |
| |
| case _Gcopystack: |
| // The stack is being copied. We need to wait |
| // until this is done. |
| |
| case _Gpreempted: |
| // We (or someone else) suspended the G. Claim |
| // ownership of it by transitioning it to |
| // _Gwaiting. |
| if !casGFromPreempted(gp, _Gpreempted, _Gwaiting) { |
| break |
| } |
| |
| // We stopped the G, so we have to ready it later. |
| stopped = true |
| |
| s = _Gwaiting |
| fallthrough |
| |
| case _Grunnable, _Gsyscall, _Gwaiting: |
| // Claim goroutine by setting scan bit. |
| // This may race with execution or readying of gp. |
| // The scan bit keeps it from transition state. |
| if !castogscanstatus(gp, s, s|_Gscan) { |
| break |
| } |
| |
| // Clear the preemption request. It's safe to |
| // reset the stack guard because we hold the |
| // _Gscan bit and thus own the stack. |
| gp.preemptStop = false |
| gp.preempt = false |
| gp.stackguard0 = gp.stack.lo + _StackGuard |
| |
| // The goroutine was already at a safe-point |
| // and we've now locked that in. |
| // |
| // TODO: It would be much better if we didn't |
| // leave it in _Gscan, but instead gently |
| // prevented its scheduling until resumption. |
| // Maybe we only use this to bump a suspended |
| // count and the scheduler skips suspended |
| // goroutines? That wouldn't be enough for |
| // {_Gsyscall,_Gwaiting} -> _Grunning. Maybe |
| // for all those transitions we need to check |
| // suspended and deschedule? |
| return suspendGState{g: gp, stopped: stopped} |
| |
| case _Grunning: |
| // Optimization: if there is already a pending preemption request |
| // (from the previous loop iteration), don't bother with the atomics. |
| if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt { |
| break |
| } |
| |
| // Temporarily block state transitions. |
| if !castogscanstatus(gp, _Grunning, _Gscanrunning) { |
| break |
| } |
| |
| // Request synchronous preemption. |
| gp.preemptStop = true |
| gp.preempt = true |
| gp.stackguard0 = stackPreempt |
| |
| // TODO: Inject asynchronous preemption. |
| |
| casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) |
| } |
| |
| // TODO: Don't busy wait. This loop should really only |
| // be a simple read/decide/CAS loop that only fails if |
| // there's an active race. Once the CAS succeeds, we |
| // should queue up the preemption (which will require |
| // it to be reliable in the _Grunning case, not |
| // best-effort) and then sleep until we're notified |
| // that the goroutine is suspended. |
| if i == 0 { |
| nextYield = nanotime() + yieldDelay |
| } |
| if nanotime() < nextYield { |
| procyield(10) |
| } else { |
| osyield() |
| nextYield = nanotime() + yieldDelay/2 |
| } |
| } |
| } |
| |
| // resumeG undoes the effects of suspendG, allowing the suspended |
| // goroutine to continue from its current safe-point. |
| func resumeG(state suspendGState) { |
| if state.dead { |
| // We didn't actually stop anything. |
| return |
| } |
| |
| gp := state.g |
| switch s := readgstatus(gp); s { |
| default: |
| dumpgstatus(gp) |
| throw("unexpected g status") |
| |
| case _Grunnable | _Gscan, |
| _Gwaiting | _Gscan, |
| _Gsyscall | _Gscan: |
| casfrom_Gscanstatus(gp, s, s&^_Gscan) |
| } |
| |
| if state.stopped { |
| // We stopped it, so we need to re-schedule it. |
| ready(gp, 0, true) |
| } |
| } |
| |
| // canPreemptM reports whether mp is in a state that is safe to preempt. |
| // |
| // It is nosplit because it has nosplit callers. |
| // |
| //go:nosplit |
| func canPreemptM(mp *m) bool { |
| return mp.locks == 0 && mp.mallocing == 0 && mp.preemptoff == "" && mp.p.ptr().status == _Prunning |
| } |