blob: 2e0c91de0817105a4d45f018bc70291e153ff488 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "stack.h"
#include "funcdata.h"
#include "typekind.h"
#include "type.h"
#include "race.h"
#include "mgc0.h"
#include "textflag.h"
enum
{
// StackDebug == 0: no logging
// == 1: logging of per-stack operations
// == 2: logging of per-frame operations
// == 3: logging of per-word updates
// == 4: logging of per-word reads
StackDebug = 0,
StackFromSystem = 0, // allocate stacks from system memory instead of the heap
StackFaultOnFree = 0, // old stacks are mapped noaccess to detect use after free
StackCache = 1,
};
// Global pool of spans that have free stacks.
// Stacks are assigned an order according to size.
// order = log_2(size/FixedStack)
// There is a free list for each order.
static MSpan stackpool[NumStackOrders];
static Mutex stackpoolmu;
// TODO: one lock per order?
void
runtime·stackinit(void)
{
int32 i;
if((StackCacheSize & PageMask) != 0)
runtime·throw("cache size must be a multiple of page size");
for(i = 0; i < NumStackOrders; i++)
runtime·MSpanList_Init(&stackpool[i]);
}
// Allocates a stack from the free pool. Must be called with
// stackpoolmu held.
static MLink*
poolalloc(uint8 order)
{
MSpan *list;
MSpan *s;
MLink *x;
uintptr i;
list = &stackpool[order];
s = list->next;
if(s == list) {
// no free stacks. Allocate another span worth.
s = runtime·MHeap_AllocStack(&runtime·mheap, StackCacheSize >> PageShift);
if(s == nil)
runtime·throw("out of memory");
if(s->ref != 0)
runtime·throw("bad ref");
if(s->freelist != nil)
runtime·throw("bad freelist");
for(i = 0; i < StackCacheSize; i += FixedStack << order) {
x = (MLink*)((s->start << PageShift) + i);
x->next = s->freelist;
s->freelist = x;
}
runtime·MSpanList_Insert(list, s);
}
x = s->freelist;
if(x == nil)
runtime·throw("span has no free stacks");
s->freelist = x->next;
s->ref++;
if(s->freelist == nil) {
// all stacks in s are allocated.
runtime·MSpanList_Remove(s);
}
return x;
}
// Adds stack x to the free pool. Must be called with stackpoolmu held.
static void
poolfree(MLink *x, uint8 order)
{
MSpan *s;
s = runtime·MHeap_Lookup(&runtime·mheap, x);
if(s->state != MSpanStack)
runtime·throw("freeing stack not in a stack span");
if(s->freelist == nil) {
// s will now have a free stack
runtime·MSpanList_Insert(&stackpool[order], s);
}
x->next = s->freelist;
s->freelist = x;
s->ref--;
if(s->ref == 0) {
// span is completely free - return to heap
runtime·MSpanList_Remove(s);
s->freelist = nil;
runtime·MHeap_FreeStack(&runtime·mheap, s);
}
}
// stackcacherefill/stackcacherelease implement a global pool of stack segments.
// The pool is required to prevent unlimited growth of per-thread caches.
static void
stackcacherefill(MCache *c, uint8 order)
{
MLink *x, *list;
uintptr size;
if(StackDebug >= 1)
runtime·printf("stackcacherefill order=%d\n", order);
// Grab some stacks from the global cache.
// Grab half of the allowed capacity (to prevent thrashing).
list = nil;
size = 0;
runtime·lock(&stackpoolmu);
while(size < StackCacheSize/2) {
x = poolalloc(order);
x->next = list;
list = x;
size += FixedStack << order;
}
runtime·unlock(&stackpoolmu);
c->stackcache[order].list = list;
c->stackcache[order].size = size;
}
static void
stackcacherelease(MCache *c, uint8 order)
{
MLink *x, *y;
uintptr size;
if(StackDebug >= 1)
runtime·printf("stackcacherelease order=%d\n", order);
x = c->stackcache[order].list;
size = c->stackcache[order].size;
runtime·lock(&stackpoolmu);
while(size > StackCacheSize/2) {
y = x->next;
poolfree(x, order);
x = y;
size -= FixedStack << order;
}
runtime·unlock(&stackpoolmu);
c->stackcache[order].list = x;
c->stackcache[order].size = size;
}
void
runtime·stackcache_clear(MCache *c)
{
uint8 order;
MLink *x, *y;
if(StackDebug >= 1)
runtime·printf("stackcache clear\n");
runtime·lock(&stackpoolmu);
for(order = 0; order < NumStackOrders; order++) {
x = c->stackcache[order].list;
while(x != nil) {
y = x->next;
poolfree(x, order);
x = y;
}
c->stackcache[order].list = nil;
c->stackcache[order].size = 0;
}
runtime·unlock(&stackpoolmu);
}
Stack
runtime·stackalloc(uint32 n)
{
uint8 order;
uint32 n2;
void *v;
MLink *x;
MSpan *s;
MCache *c;
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
if(g != g->m->g0)
runtime·throw("stackalloc not on scheduler stack");
if((n & (n-1)) != 0)
runtime·throw("stack size not a power of 2");
if(StackDebug >= 1)
runtime·printf("stackalloc %d\n", n);
if(runtime·debug.efence || StackFromSystem) {
v = runtime·sysAlloc(ROUND(n, PageSize), &mstats.stacks_sys);
if(v == nil)
runtime·throw("out of memory (stackalloc)");
return (Stack){(uintptr)v, (uintptr)v+n};
}
// Small stacks are allocated with a fixed-size free-list allocator.
// If we need a stack of a bigger size, we fall back on allocating
// a dedicated span.
if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
order = 0;
n2 = n;
while(n2 > FixedStack) {
order++;
n2 >>= 1;
}
c = g->m->mcache;
if(c == nil || g->m->gcing || g->m->helpgc) {
// c == nil can happen in the guts of exitsyscall or
// procresize. Just get a stack from the global pool.
// Also don't touch stackcache during gc
// as it's flushed concurrently.
runtime·lock(&stackpoolmu);
x = poolalloc(order);
runtime·unlock(&stackpoolmu);
} else {
x = c->stackcache[order].list;
if(x == nil) {
stackcacherefill(c, order);
x = c->stackcache[order].list;
}
c->stackcache[order].list = x->next;
c->stackcache[order].size -= n;
}
v = (byte*)x;
} else {
s = runtime·MHeap_AllocStack(&runtime·mheap, ROUND(n, PageSize) >> PageShift);
if(s == nil)
runtime·throw("out of memory");
v = (byte*)(s->start<<PageShift);
}
if(raceenabled)
runtime·racemalloc(v, n);
if(StackDebug >= 1)
runtime·printf(" allocated %p\n", v);
return (Stack){(uintptr)v, (uintptr)v+n};
}
void
runtime·stackfree(Stack stk)
{
uint8 order;
uintptr n, n2;
MSpan *s;
MLink *x;
MCache *c;
void *v;
n = stk.hi - stk.lo;
v = (void*)stk.lo;
if(n & (n-1))
runtime·throw("stack not a power of 2");
if(StackDebug >= 1) {
runtime·printf("stackfree %p %d\n", v, (int32)n);
runtime·memclr(v, n); // for testing, clobber stack data
}
if(runtime·debug.efence || StackFromSystem) {
if(runtime·debug.efence || StackFaultOnFree)
runtime·SysFault(v, n);
else
runtime·SysFree(v, n, &mstats.stacks_sys);
return;
}
if(StackCache && n < FixedStack << NumStackOrders && n < StackCacheSize) {
order = 0;
n2 = n;
while(n2 > FixedStack) {
order++;
n2 >>= 1;
}
x = (MLink*)v;
c = g->m->mcache;
if(c == nil || g->m->gcing || g->m->helpgc) {
runtime·lock(&stackpoolmu);
poolfree(x, order);
runtime·unlock(&stackpoolmu);
} else {
if(c->stackcache[order].size >= StackCacheSize)
stackcacherelease(c, order);
x->next = c->stackcache[order].list;
c->stackcache[order].list = x;
c->stackcache[order].size += n;
}
} else {
s = runtime·MHeap_Lookup(&runtime·mheap, v);
if(s->state != MSpanStack) {
runtime·printf("%p %p\n", s->start<<PageShift, v);
runtime·throw("bad span state");
}
runtime·MHeap_FreeStack(&runtime·mheap, s);
}
}
uintptr runtime·maxstacksize = 1<<20; // enough until runtime.main sets it for real
static uint8*
mapnames[] = {
(uint8*)"---",
(uint8*)"scalar",
(uint8*)"ptr",
(uint8*)"multi",
};
// Stack frame layout
//
// (x86)
// +------------------+
// | args from caller |
// +------------------+ <- frame->argp
// | return address |
// +------------------+ <- frame->varp
// | locals |
// +------------------+
// | args to callee |
// +------------------+ <- frame->sp
//
// (arm: TODO)
typedef struct CopyableInfo CopyableInfo;
struct CopyableInfo {
Stack stk;
int32 frames; // count of copyable frames (-1 = not copyable)
};
void runtime·main(void);
void runtime·switchtoM(void(*)(void));
static bool
checkframecopy(Stkframe *frame, void *arg)
{
CopyableInfo *cinfo;
Func *f;
StackMap *stackmap;
cinfo = arg;
f = frame->fn;
if(StackDebug >= 2)
runtime·printf(" checking %s frame=[%p,%p] stk=[%p,%p]\n", runtime·funcname(f), frame->sp, frame->fp, cinfo->stk.lo, cinfo->stk.hi);
// if we're not in the segment any more, return immediately.
if(frame->varp < cinfo->stk.lo || frame->varp >= cinfo->stk.hi) {
if(StackDebug >= 2)
runtime·printf(" <next segment>\n");
return false; // stop traceback
}
if(f->entry == (uintptr)runtime·switchtoM) {
// A special routine at the bottom of stack of a goroutine that does onM call.
// We will allow it to be copied even though we don't
// have full GC info for it (because it is written in asm).
cinfo->frames++;
return true;
}
if((byte*)frame->varp != (byte*)frame->sp) { // not in prologue (and has at least one local or outarg)
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil) {
cinfo->frames = -1;
runtime·printf("runtime: copystack: no locals info for %s\n", runtime·funcname(f));
return false;
}
if(stackmap->n <= 0) {
cinfo->frames = -1;
runtime·printf("runtime: copystack: locals size info only for %s\n", runtime·funcname(f));
return false;
}
}
if(frame->arglen != 0) {
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap == nil) {
cinfo->frames = -1;
runtime·printf("runtime: copystack: no arg info for %s\n", runtime·funcname(f));
return false;
}
}
cinfo->frames++;
return true; // this frame is ok; keep going
}
// If the top segment of the stack contains an uncopyable
// frame, return -1. Otherwise return the number of frames
// in the top segment, all of which are copyable.
static int32
copyabletopsegment(G *gp)
{
CopyableInfo cinfo;
Defer *d;
Func *f;
FuncVal *fn;
StackMap *stackmap;
bool (*cb)(Stkframe*, void*);
if(gp->stack.lo == 0)
runtime·throw("missing stack in copyabletopsegment");
cinfo.stk = gp->stack;
cinfo.frames = 0;
// Check that each frame is copyable. As a side effect,
// count the frames.
cb = checkframecopy;
runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, &cb, &cinfo, false);
if(StackDebug >= 1 && cinfo.frames != -1)
runtime·printf("copystack: %d copyable frames\n", cinfo.frames);
if(cinfo.frames == -1)
return -1;
// Check to make sure all Defers are copyable
for(d = gp->defer; d != nil; d = d->link) {
if(cinfo.stk.lo <= (uintptr)d && (uintptr)d < cinfo.stk.hi) {
// Defer is on the stack. Its copyableness has
// been established during stack walking.
// For now, this only happens with the Defer in runtime.main.
continue;
}
if(d->argp < cinfo.stk.lo || cinfo.stk.hi <= d->argp)
break; // a defer for the next segment
fn = d->fn;
if(fn == nil) // See issue 8047
continue;
f = runtime·findfunc((uintptr)fn->fn);
if(f == nil) {
runtime·printf("runtime: copystack: no func for deferred pc %p\n", fn->fn);
return -1;
}
// Check to make sure we have an args pointer map for the defer's args.
// We only need the args map, but we check
// for the locals map also, because when the locals map
// isn't provided it means the ptr map came from C and
// C (particularly, cgo) lies to us. See issue 7695.
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap == nil || stackmap->n <= 0) {
runtime·printf("runtime: copystack: no arg info for deferred %s\n", runtime·funcname(f));
return -1;
}
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil || stackmap->n <= 0) {
runtime·printf("runtime: copystack: no local info for deferred %s\n", runtime·funcname(f));
return -1;
}
if(cinfo.stk.lo <= (uintptr)fn && (uintptr)fn < cinfo.stk.hi) {
// FuncVal is on the stack. Again, its copyableness
// was established during stack walking.
continue;
}
// The FuncVal may have pointers in it, but fortunately for us
// the compiler won't put pointers into the stack in a
// heap-allocated FuncVal.
// One day if we do need to check this, we'll need maps of the
// pointerness of the closure args. The only place we have that map
// right now is in the gc program for the FuncVal. Ugh.
}
return cinfo.frames;
}
typedef struct AdjustInfo AdjustInfo;
struct AdjustInfo {
Stack old;
uintptr delta; // ptr distance from old to new stack (newbase - oldbase)
};
// bv describes the memory starting at address scanp.
// Adjust any pointers contained therein.
static void
adjustpointers(byte **scanp, BitVector *bv, AdjustInfo *adjinfo, Func *f)
{
uintptr delta;
int32 num, i;
byte *p, *minp, *maxp;
Type *t;
Itab *tab;
minp = (byte*)adjinfo->old.lo;
maxp = (byte*)adjinfo->old.hi;
delta = adjinfo->delta;
num = bv->n / BitsPerPointer;
for(i = 0; i < num; i++) {
if(StackDebug >= 4)
runtime·printf(" %p:%s:%p\n", &scanp[i], mapnames[bv->data[i / (32 / BitsPerPointer)] >> (i * BitsPerPointer & 31) & 3], scanp[i]);
switch(bv->data[i / (32 / BitsPerPointer)] >> (i * BitsPerPointer & 31) & 3) {
case BitsDead:
if(runtime·debug.gcdead)
scanp[i] = (byte*)PoisonStack;
break;
case BitsScalar:
break;
case BitsPointer:
p = scanp[i];
if(f != nil && (byte*)0 < p && (p < (byte*)PageSize || (uintptr)p == PoisonGC || (uintptr)p == PoisonStack)) {
// Looks like a junk value in a pointer slot.
// Live analysis wrong?
g->m->traceback = 2;
runtime·printf("runtime: bad pointer in frame %s at %p: %p\n", runtime·funcname(f), &scanp[i], p);
runtime·throw("bad pointer!");
}
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust ptr %p %s\n", p, runtime·funcname(f));
scanp[i] = p + delta;
}
break;
case BitsMultiWord:
switch(bv->data[(i+1) / (32 / BitsPerPointer)] >> ((i+1) * BitsPerPointer & 31) & 3) {
default:
runtime·throw("unexpected garbage collection bits");
case BitsEface:
t = (Type*)scanp[i];
if(t != nil && ((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0)) {
p = scanp[i+1];
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust eface %p\n", p);
if(t->size > PtrSize) // currently we always allocate such objects on the heap
runtime·throw("large interface value found on stack");
scanp[i+1] = p + delta;
}
}
i++;
break;
case BitsIface:
tab = (Itab*)scanp[i];
if(tab != nil) {
t = tab->type;
//runtime·printf(" type=%p\n", t);
if((t->kind & KindDirectIface) == 0 || (t->kind & KindNoPointers) == 0) {
p = scanp[i+1];
if(minp <= p && p < maxp) {
if(StackDebug >= 3)
runtime·printf("adjust iface %p\n", p);
if(t->size > PtrSize) // currently we always allocate such objects on the heap
runtime·throw("large interface value found on stack");
scanp[i+1] = p + delta;
}
}
}
i++;
break;
}
break;
}
}
}
// Note: the argument/return area is adjusted by the callee.
static bool
adjustframe(Stkframe *frame, void *arg)
{
AdjustInfo *adjinfo;
Func *f;
StackMap *stackmap;
int32 pcdata;
BitVector bv;
uintptr targetpc;
adjinfo = arg;
f = frame->fn;
if(StackDebug >= 2)
runtime·printf(" adjusting %s frame=[%p,%p] pc=%p continpc=%p\n", runtime·funcname(f), frame->sp, frame->fp, frame->pc, frame->continpc);
if(f->entry == (uintptr)runtime·switchtoM)
return true;
targetpc = frame->continpc;
if(targetpc == 0) {
// Frame is dead.
return true;
}
if(targetpc != f->entry)
targetpc--;
pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
if(pcdata == -1)
pcdata = 0; // in prologue
// adjust local pointers
if((byte*)frame->varp != (byte*)frame->sp) {
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil)
runtime·throw("no locals info");
if(stackmap->n <= 0)
runtime·throw("locals size info only");
bv = runtime·stackmapdata(stackmap, pcdata);
if(StackDebug >= 3)
runtime·printf(" locals\n");
adjustpointers((byte**)frame->varp - bv.n / BitsPerPointer, &bv, adjinfo, f);
}
// adjust inargs and outargs
if(frame->arglen != 0) {
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap == nil) {
runtime·printf("size %d\n", (int32)frame->arglen);
runtime·throw("no arg info");
}
bv = runtime·stackmapdata(stackmap, pcdata);
if(StackDebug >= 3)
runtime·printf(" args\n");
adjustpointers((byte**)frame->argp, &bv, adjinfo, nil);
}
return true;
}
static void
adjustctxt(G *gp, AdjustInfo *adjinfo)
{
if(adjinfo->old.lo <= (uintptr)gp->sched.ctxt && (uintptr)gp->sched.ctxt < adjinfo->old.hi)
gp->sched.ctxt = (byte*)gp->sched.ctxt + adjinfo->delta;
}
static void
adjustdefers(G *gp, AdjustInfo *adjinfo)
{
Defer *d, **dp;
Func *f;
FuncVal *fn;
StackMap *stackmap;
BitVector bv;
for(dp = &gp->defer, d = *dp; d != nil; dp = &d->link, d = *dp) {
if(adjinfo->old.lo <= (uintptr)d && (uintptr)d < adjinfo->old.hi) {
// The Defer record is on the stack. Its fields will
// get adjusted appropriately.
// This only happens for runtime.main and runtime.gopanic now,
// but a compiler optimization could do more of this.
// If such an optimization were introduced, Defer.argp should
// change to have pointer type so that it will be updated by
// the stack copying. Today both of those on-stack defers
// set argp = NoArgs, so no adjustment is necessary.
*dp = (Defer*)((byte*)d + adjinfo->delta);
continue;
}
if(d->argp == NoArgs)
continue;
if(d->argp < adjinfo->old.lo || adjinfo->old.hi <= d->argp) {
runtime·printf("runtime: adjustdefers argp=%p stk=%p %p\n", d->argp, adjinfo->old.lo, adjinfo->old.hi);
runtime·throw("adjustdefers: unexpected argp");
}
fn = d->fn;
if(fn == nil) {
// Defer of nil function. It will panic when run, and there
// aren't any args to adjust. See issue 8047.
d->argp += adjinfo->delta;
continue;
}
f = runtime·findfunc((uintptr)fn->fn);
if(f == nil)
runtime·throw("can't adjust unknown defer");
if(StackDebug >= 4)
runtime·printf(" checking defer %s\n", runtime·funcname(f));
// Defer's FuncVal might be on the stack
if(adjinfo->old.lo <= (uintptr)fn && (uintptr)fn < adjinfo->old.hi) {
if(StackDebug >= 3)
runtime·printf(" adjust defer fn %s\n", runtime·funcname(f));
d->fn = (FuncVal*)((byte*)fn + adjinfo->delta);
} else {
// deferred function's args might point into the stack.
if(StackDebug >= 3)
runtime·printf(" adjust deferred args for %s\n", runtime·funcname(f));
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap == nil)
runtime·throw("runtime: deferred function has no arg ptr map");
bv = runtime·stackmapdata(stackmap, 0);
adjustpointers(d->args, &bv, adjinfo, f);
}
d->argp += adjinfo->delta;
}
}
static void
adjustpanics(G *gp, AdjustInfo *adjinfo)
{
// Panic structs are all on the stack
// and are adjusted by stack copying.
// The only pointer we need to update is gp->panic, the head of the list.
if(adjinfo->old.lo <= (uintptr)gp->panic && (uintptr)gp->panic < adjinfo->old.hi)
gp->panic = (Panic*)((byte*)gp->panic + adjinfo->delta);
}
static void
adjustsudogs(G *gp, AdjustInfo *adjinfo)
{
SudoG *s;
byte *e;
// the data elements pointed to by a SudoG structure
// might be in the stack.
for(s = gp->waiting; s != nil; s = s->waitlink) {
e = s->elem;
if(adjinfo->old.lo <= (uintptr)e && (uintptr)e < adjinfo->old.hi)
s->elem = e + adjinfo->delta;
e = (byte*)s->selectdone;
if(adjinfo->old.lo <= (uintptr)e && (uintptr)e < adjinfo->old.hi)
s->selectdone = (uint32*)(e + adjinfo->delta);
}
}
// Copies the top stack segment of gp to a new stack segment of a
// different size. The top segment must contain nframes frames.
static void
copystack(G *gp, uintptr nframes, uintptr newsize)
{
Stack old, new;
uintptr used;
AdjustInfo adjinfo;
uint32 oldstatus;
bool (*cb)(Stkframe*, void*);
if(gp->syscallsp != 0)
runtime·throw("stack growth not allowed in system call");
old = gp->stack;
if(old.lo == 0)
runtime·throw("nil stackbase");
used = old.hi - gp->sched.sp;
// allocate new stack
new = runtime·stackalloc(newsize);
if(StackDebug >= 1)
runtime·printf("copystack gp=%p [%p %p %p]/%d -> [%p %p %p]/%d\n", gp, old.lo, old.hi-used, old.hi, (int32)(old.hi-old.lo), new.lo, new.hi-used, new.hi, (int32)newsize);
// adjust pointers in the to-be-copied frames
adjinfo.old = old;
adjinfo.delta = new.hi - old.hi;
cb = adjustframe;
runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, nframes, &cb, &adjinfo, false);
// adjust other miscellaneous things that have pointers into stacks.
adjustctxt(gp, &adjinfo);
adjustdefers(gp, &adjinfo);
adjustpanics(gp, &adjinfo);
adjustsudogs(gp, &adjinfo);
// copy the stack to the new location
runtime·memmove((byte*)new.hi - used, (byte*)old.hi - used, used);
oldstatus = runtime·readgstatus(gp);
oldstatus &= ~Gscan;
if(oldstatus == Gwaiting || oldstatus == Grunnable)
runtime·casgstatus(gp, oldstatus, Gcopystack); // oldstatus is Gwaiting or Grunnable
else
runtime·throw("copystack: bad status, not Gwaiting or Grunnable");
// Swap out old stack for new one
gp->stack = new;
gp->stackguard0 = new.lo + StackGuard; // NOTE: might clobber a preempt request
gp->sched.sp = new.hi - used;
runtime·casgstatus(gp, Gcopystack, oldstatus); // oldstatus is Gwaiting or Grunnable
// free old stack
runtime·stackfree(old);
}
// round x up to a power of 2.
int32
runtime·round2(int32 x)
{
int32 s;
s = 0;
while((1 << s) < x)
s++;
return 1 << s;
}
// Called from runtime·morestack when more stack is needed.
// Allocate larger stack and relocate to new stack.
// Stack growth is multiplicative, for constant amortized cost.
//
// g->atomicstatus will be Grunning or Gscanrunning upon entry.
// If the GC is trying to stop this g then it will set preemptscan to true.
void
runtime·newstack(void)
{
int32 oldsize, newsize, nframes;
uintptr sp;
G *gp;
Gobuf morebuf;
if(g->m->morebuf.g->stackguard0 == (uintptr)StackFork)
runtime·throw("stack growth after fork");
if(g->m->morebuf.g != g->m->curg) {
runtime·printf("runtime: newstack called from g=%p\n"
"\tm=%p m->curg=%p m->g0=%p m->gsignal=%p\n",
g->m->morebuf.g, g->m, g->m->curg, g->m->g0, g->m->gsignal);
morebuf = g->m->morebuf;
runtime·traceback(morebuf.pc, morebuf.sp, morebuf.lr, morebuf.g);
runtime·throw("runtime: wrong goroutine in newstack");
}
if(g->throwsplit)
runtime·throw("runtime: stack split at bad time");
// The goroutine must be executing in order to call newstack,
// so it must be Grunning or Gscanrunning.
gp = g->m->curg;
morebuf = g->m->morebuf;
g->m->morebuf.pc = (uintptr)nil;
g->m->morebuf.lr = (uintptr)nil;
g->m->morebuf.sp = (uintptr)nil;
runtime·casgstatus(gp, Grunning, Gwaiting);
gp->waitreason = runtime·gostringnocopy((byte*)"stack growth");
runtime·rewindmorestack(&gp->sched);
if(gp->stack.lo == 0)
runtime·throw("missing stack in newstack");
sp = gp->sched.sp;
if(thechar == '6' || thechar == '8') {
// The call to morestack cost a word.
sp -= sizeof(uintreg);
}
if(StackDebug >= 1 || sp < gp->stack.lo) {
runtime·printf("runtime: newstack sp=%p stack=[%p, %p]\n"
"\tmorebuf={pc:%p sp:%p lr:%p}\n"
"\tsched={pc:%p sp:%p lr:%p ctxt:%p}\n",
sp, gp->stack.lo, gp->stack.hi,
g->m->morebuf.pc, g->m->morebuf.sp, g->m->morebuf.lr,
gp->sched.pc, gp->sched.sp, gp->sched.lr, gp->sched.ctxt);
}
if(sp < gp->stack.lo) {
runtime·printf("runtime: gp=%p, gp->status=%d\n ", (void*)gp, runtime·readgstatus(gp));
runtime·printf("runtime: split stack overflow: %p < %p\n", sp, gp->stack.lo);
runtime·throw("runtime: split stack overflow");
}
if(gp->stackguard0 == (uintptr)StackPreempt) {
if(gp == g->m->g0)
runtime·throw("runtime: preempt g0");
if(g->m->p == nil && g->m->locks == 0)
runtime·throw("runtime: g is running but p is not");
if(gp->preemptscan) {
runtime·gcphasework(gp);
runtime·casgstatus(gp, Gwaiting, Grunning);
gp->stackguard0 = gp->stack.lo + StackGuard;
gp->preempt = false;
gp->preemptscan = false; // Tells the GC premption was successful.
runtime·gogo(&gp->sched); // never return
}
// Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code.
if(g->m->locks || g->m->mallocing || g->m->gcing || g->m->p->status != Prunning) {
// Let the goroutine keep running for now.
// gp->preempt is set, so it will be preempted next time.
gp->stackguard0 = gp->stack.lo + StackGuard;
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gogo(&gp->sched); // never return
}
// Act like goroutine called runtime.Gosched.
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gosched_m(gp); // never return
}
// Allocate a bigger segment and move the stack.
nframes = copyabletopsegment(gp);
if(nframes == -1)
runtime·throw("unable to grow stack");
oldsize = gp->stack.hi - gp->stack.lo;
newsize = oldsize * 2;
if(newsize > runtime·maxstacksize) {
runtime·printf("runtime: goroutine stack exceeds %D-byte limit\n", (uint64)runtime·maxstacksize);
runtime·throw("stack overflow");
}
// Note that the concurrent GC might be scanning the stack as we try to replace it.
// copystack takes care of the appropriate coordination with the stack scanner.
copystack(gp, nframes, newsize);
if(StackDebug >= 1)
runtime·printf("stack grow done\n");
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gogo(&gp->sched);
}
#pragma textflag NOSPLIT
void
runtime·nilfunc(void)
{
*(byte*)0 = 0;
}
// adjust Gobuf as if it executed a call to fn
// and then did an immediate gosave.
void
runtime·gostartcallfn(Gobuf *gobuf, FuncVal *fv)
{
void *fn;
if(fv != nil)
fn = fv->fn;
else
fn = runtime·nilfunc;
runtime·gostartcall(gobuf, fn, fv);
}
// Maybe shrink the stack being used by gp.
// Called at garbage collection time.
void
runtime·shrinkstack(G *gp)
{
int32 nframes;
uintptr used, oldsize, newsize;
if(runtime·readgstatus(gp) == Gdead)
return;
if(gp->stack.lo == 0)
runtime·throw("missing stack in shrinkstack");
//return; // TODO: why does this happen?
oldsize = gp->stack.hi - gp->stack.lo;
newsize = oldsize / 2;
if(newsize < FixedStack)
return; // don't shrink below the minimum-sized stack
used = gp->stack.hi - gp->sched.sp;
if(used >= oldsize / 4)
return; // still using at least 1/4 of the segment.
if(gp->syscallsp != 0) // TODO: can we handle this case?
return;
#ifdef GOOS_windows
if(gp->m != nil && gp->m->libcallsp != 0)
return;
#endif
if(StackDebug > 0)
runtime·printf("shrinking stack %D->%D\n", (uint64)oldsize, (uint64)newsize);
nframes = copyabletopsegment(gp);
if(nframes == -1)
return;
copystack(gp, nframes, newsize);
}
static void badc(void);
#pragma textflag NOSPLIT
void
runtime·morestackc(void)
{
void (*fn)(void);
fn = badc;
runtime·onM(&fn);
}
static void
badc(void)
{
runtime·throw("attempt to execute C code on Go stack");
}