| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "bytes" |
| "cmd/internal/obj" |
| "crypto/md5" |
| "encoding/binary" |
| "fmt" |
| "os" |
| "sort" |
| "strings" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| type Error struct { |
| lineno int32 |
| msg string |
| } |
| |
| var errors []Error |
| |
| func errorexit() { |
| Flusherrors() |
| if outfile != "" { |
| os.Remove(outfile) |
| } |
| os.Exit(2) |
| } |
| |
| func adderrorname(n *Node) { |
| if n.Op != ODOT { |
| return |
| } |
| old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left) |
| if len(errors) > 0 && errors[len(errors)-1].lineno == n.Lineno && errors[len(errors)-1].msg == old { |
| errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n) |
| } |
| } |
| |
| func adderr(line int32, format string, args ...interface{}) { |
| errors = append(errors, Error{ |
| lineno: line, |
| msg: fmt.Sprintf("%v: %s\n", linestr(line), fmt.Sprintf(format, args...)), |
| }) |
| } |
| |
| // byLineno sorts errors by lineno. |
| type byLineno []Error |
| |
| func (x byLineno) Len() int { return len(x) } |
| func (x byLineno) Less(i, j int) bool { return x[i].lineno < x[j].lineno } |
| func (x byLineno) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| func Flusherrors() { |
| bstdout.Flush() |
| if len(errors) == 0 { |
| return |
| } |
| sort.Stable(byLineno(errors)) |
| for i := 0; i < len(errors); i++ { |
| if i == 0 || errors[i].msg != errors[i-1].msg { |
| fmt.Printf("%s", errors[i].msg) |
| } |
| } |
| errors = errors[:0] |
| } |
| |
| func hcrash() { |
| if Debug['h'] != 0 { |
| Flusherrors() |
| if outfile != "" { |
| os.Remove(outfile) |
| } |
| var x *int |
| *x = 0 |
| } |
| } |
| |
| func linestr(line int32) string { |
| return Ctxt.Line(int(line)) |
| } |
| |
| func yyerrorl(line int32, format string, args ...interface{}) { |
| adderr(line, format, args...) |
| |
| hcrash() |
| nerrors++ |
| if nsavederrors+nerrors >= 10 && Debug['e'] == 0 { |
| Flusherrors() |
| fmt.Printf("%v: too many errors\n", linestr(line)) |
| errorexit() |
| } |
| } |
| |
| var yyerror_lastsyntax int32 |
| |
| func Yyerror(format string, args ...interface{}) { |
| msg := fmt.Sprintf(format, args...) |
| if strings.HasPrefix(msg, "syntax error") { |
| nsyntaxerrors++ |
| |
| // only one syntax error per line |
| if yyerror_lastsyntax == lineno { |
| return |
| } |
| yyerror_lastsyntax = lineno |
| |
| yyerrorl(lineno, "%s", msg) |
| return |
| } |
| |
| adderr(lineno, "%s", msg) |
| |
| hcrash() |
| nerrors++ |
| if nsavederrors+nerrors >= 10 && Debug['e'] == 0 { |
| Flusherrors() |
| fmt.Printf("%v: too many errors\n", linestr(lineno)) |
| errorexit() |
| } |
| } |
| |
| func Warn(fmt_ string, args ...interface{}) { |
| adderr(lineno, fmt_, args...) |
| |
| hcrash() |
| } |
| |
| func Warnl(line int32, fmt_ string, args ...interface{}) { |
| adderr(line, fmt_, args...) |
| if Debug['m'] != 0 { |
| Flusherrors() |
| } |
| } |
| |
| func Fatalf(fmt_ string, args ...interface{}) { |
| Flusherrors() |
| |
| fmt.Printf("%v: internal compiler error: ", linestr(lineno)) |
| fmt.Printf(fmt_, args...) |
| fmt.Printf("\n") |
| |
| // If this is a released compiler version, ask for a bug report. |
| if strings.HasPrefix(obj.Getgoversion(), "release") { |
| fmt.Printf("\n") |
| fmt.Printf("Please file a bug report including a short program that triggers the error.\n") |
| fmt.Printf("https://golang.org/issue/new\n") |
| } |
| |
| hcrash() |
| errorexit() |
| } |
| |
| func linehistpragma(file string) { |
| if Debug['i'] != 0 { |
| fmt.Printf("pragma %s at line %v\n", file, linestr(lexlineno)) |
| } |
| Ctxt.AddImport(file) |
| } |
| |
| func linehistpush(file string) { |
| if Debug['i'] != 0 { |
| fmt.Printf("import %s at line %v\n", file, linestr(lexlineno)) |
| } |
| Ctxt.LineHist.Push(int(lexlineno), file) |
| } |
| |
| func linehistpop() { |
| if Debug['i'] != 0 { |
| fmt.Printf("end of import at line %v\n", linestr(lexlineno)) |
| } |
| Ctxt.LineHist.Pop(int(lexlineno)) |
| } |
| |
| func linehistupdate(file string, off int) { |
| if Debug['i'] != 0 { |
| fmt.Printf("line %s at line %v\n", file, linestr(lexlineno)) |
| } |
| Ctxt.LineHist.Update(int(lexlineno), file, off) |
| } |
| |
| func setlineno(n *Node) int32 { |
| lno := lineno |
| if n != nil { |
| switch n.Op { |
| case ONAME, OTYPE, OPACK: |
| break |
| |
| case OLITERAL: |
| if n.Sym != nil { |
| break |
| } |
| fallthrough |
| |
| default: |
| lineno = n.Lineno |
| if lineno == 0 { |
| if Debug['K'] != 0 { |
| Warn("setlineno: line 0") |
| } |
| lineno = lno |
| } |
| } |
| } |
| |
| return lno |
| } |
| |
| func Lookup(name string) *Sym { |
| return localpkg.Lookup(name) |
| } |
| |
| func Lookupf(format string, a ...interface{}) *Sym { |
| return Lookup(fmt.Sprintf(format, a...)) |
| } |
| |
| func LookupBytes(name []byte) *Sym { |
| return localpkg.LookupBytes(name) |
| } |
| |
| var initSyms []*Sym |
| |
| var nopkg = &Pkg{ |
| Syms: make(map[string]*Sym), |
| } |
| |
| func (pkg *Pkg) Lookup(name string) *Sym { |
| if pkg == nil { |
| pkg = nopkg |
| } |
| if s := pkg.Syms[name]; s != nil { |
| return s |
| } |
| |
| s := &Sym{ |
| Name: name, |
| Pkg: pkg, |
| } |
| if name == "init" { |
| initSyms = append(initSyms, s) |
| } |
| pkg.Syms[name] = s |
| return s |
| } |
| |
| func (pkg *Pkg) LookupBytes(name []byte) *Sym { |
| if pkg == nil { |
| pkg = nopkg |
| } |
| if s := pkg.Syms[string(name)]; s != nil { |
| return s |
| } |
| str := internString(name) |
| return pkg.Lookup(str) |
| } |
| |
| func Pkglookup(name string, pkg *Pkg) *Sym { |
| return pkg.Lookup(name) |
| } |
| |
| func restrictlookup(name string, pkg *Pkg) *Sym { |
| if !exportname(name) && pkg != localpkg { |
| Yyerror("cannot refer to unexported name %s.%s", pkg.Name, name) |
| } |
| return Pkglookup(name, pkg) |
| } |
| |
| // find all the exported symbols in package opkg |
| // and make them available in the current package |
| func importdot(opkg *Pkg, pack *Node) { |
| var s1 *Sym |
| var pkgerror string |
| |
| n := 0 |
| for _, s := range opkg.Syms { |
| if s.Def == nil { |
| continue |
| } |
| if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot |
| continue |
| } |
| s1 = Lookup(s.Name) |
| if s1.Def != nil { |
| pkgerror = fmt.Sprintf("during import %q", opkg.Path) |
| redeclare(s1, pkgerror) |
| continue |
| } |
| |
| s1.Def = s.Def |
| s1.Block = s.Block |
| if s1.Def.Name == nil { |
| Dump("s1def", s1.Def) |
| Fatalf("missing Name") |
| } |
| s1.Def.Name.Pack = pack |
| s1.Origpkg = opkg |
| n++ |
| } |
| |
| if n == 0 { |
| // can't possibly be used - there were no symbols |
| yyerrorl(pack.Lineno, "imported and not used: %q", opkg.Path) |
| } |
| } |
| |
| func Nod(op Op, nleft *Node, nright *Node) *Node { |
| n := new(Node) |
| n.Op = op |
| n.Left = nleft |
| n.Right = nright |
| n.Lineno = lineno |
| n.Xoffset = BADWIDTH |
| n.Orig = n |
| switch op { |
| case OCLOSURE, ODCLFUNC: |
| n.Func = new(Func) |
| n.Func.FCurfn = Curfn |
| case ONAME: |
| n.Name = new(Name) |
| n.Name.Param = new(Param) |
| case OLABEL, OPACK: |
| n.Name = new(Name) |
| case ODCLFIELD: |
| if nleft != nil { |
| n.Name = nleft.Name |
| } else { |
| n.Name = new(Name) |
| n.Name.Param = new(Param) |
| } |
| } |
| if n.Name != nil { |
| n.Name.Curfn = Curfn |
| } |
| return n |
| } |
| |
| func saveorignode(n *Node) { |
| if n.Orig != nil { |
| return |
| } |
| norig := Nod(n.Op, nil, nil) |
| *norig = *n |
| n.Orig = norig |
| } |
| |
| func maptype(key *Type, val *Type) *Type { |
| if key != nil { |
| var bad *Type |
| atype := algtype1(key, &bad) |
| var mtype EType |
| if bad == nil { |
| mtype = key.Etype |
| } else { |
| mtype = bad.Etype |
| } |
| switch mtype { |
| default: |
| if atype == ANOEQ { |
| Yyerror("invalid map key type %v", key) |
| } |
| |
| // will be resolved later. |
| case TANY: |
| break |
| |
| // map[key] used during definition of key. |
| // postpone check until key is fully defined. |
| // if there are multiple uses of map[key] |
| // before key is fully defined, the error |
| // will only be printed for the first one. |
| // good enough. |
| case TFORW: |
| if key.Maplineno == 0 { |
| key.Maplineno = lineno |
| } |
| } |
| } |
| |
| t := typ(TMAP) |
| t.Down = key |
| t.Type = val |
| return t |
| } |
| |
| // methcmp sorts by symbol, then by package path for unexported symbols. |
| type methcmp []*Type |
| |
| func (x methcmp) Len() int { return len(x) } |
| func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| func (x methcmp) Less(i, j int) bool { |
| a := x[i] |
| b := x[j] |
| if a.Sym == nil && b.Sym == nil { |
| return false |
| } |
| if a.Sym == nil { |
| return true |
| } |
| if b.Sym == nil { |
| return false |
| } |
| if a.Sym.Name != b.Sym.Name { |
| return a.Sym.Name < b.Sym.Name |
| } |
| if !exportname(a.Sym.Name) { |
| if a.Sym.Pkg.Path != b.Sym.Pkg.Path { |
| return a.Sym.Pkg.Path < b.Sym.Pkg.Path |
| } |
| } |
| |
| return false |
| } |
| |
| func sortinter(t *Type) *Type { |
| s := t.FieldSlice() |
| sort.Sort(methcmp(s)) |
| t.SetFields(s) |
| return t |
| } |
| |
| func Nodintconst(v int64) *Node { |
| c := Nod(OLITERAL, nil, nil) |
| c.Addable = true |
| c.SetVal(Val{new(Mpint)}) |
| Mpmovecfix(c.Val().U.(*Mpint), v) |
| c.Type = Types[TIDEAL] |
| ullmancalc(c) |
| return c |
| } |
| |
| func nodfltconst(v *Mpflt) *Node { |
| c := Nod(OLITERAL, nil, nil) |
| c.Addable = true |
| c.SetVal(Val{newMpflt()}) |
| mpmovefltflt(c.Val().U.(*Mpflt), v) |
| c.Type = Types[TIDEAL] |
| ullmancalc(c) |
| return c |
| } |
| |
| func Nodconst(n *Node, t *Type, v int64) { |
| *n = Node{} |
| n.Op = OLITERAL |
| n.Addable = true |
| ullmancalc(n) |
| n.SetVal(Val{new(Mpint)}) |
| Mpmovecfix(n.Val().U.(*Mpint), v) |
| n.Type = t |
| |
| if Isfloat[t.Etype] { |
| Fatalf("nodconst: bad type %v", t) |
| } |
| } |
| |
| func nodnil() *Node { |
| c := Nodintconst(0) |
| c.SetVal(Val{new(NilVal)}) |
| c.Type = Types[TNIL] |
| return c |
| } |
| |
| func Nodbool(b bool) *Node { |
| c := Nodintconst(0) |
| c.SetVal(Val{b}) |
| c.Type = idealbool |
| return c |
| } |
| |
| func aindex(b *Node, t *Type) *Type { |
| bound := int64(-1) // open bound |
| typecheck(&b, Erv) |
| if b != nil { |
| switch consttype(b) { |
| default: |
| Yyerror("array bound must be an integer expression") |
| |
| case CTINT, CTRUNE: |
| bound = Mpgetfix(b.Val().U.(*Mpint)) |
| if bound < 0 { |
| Yyerror("array bound must be non negative") |
| } |
| } |
| } |
| |
| // fixed array |
| r := typ(TARRAY) |
| |
| r.Type = t |
| r.Bound = bound |
| return r |
| } |
| |
| // treecopy recursively copies n, with the exception of |
| // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves. |
| // Copies of iota ONONAME nodes are assigned the current |
| // value of iota_. If lineno != 0, it sets the line number |
| // of newly allocated nodes to lineno. |
| func treecopy(n *Node, lineno int32) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| var m *Node |
| switch n.Op { |
| default: |
| m = Nod(OXXX, nil, nil) |
| *m = *n |
| m.Orig = m |
| m.Left = treecopy(n.Left, lineno) |
| m.Right = treecopy(n.Right, lineno) |
| m.List.Set(listtreecopy(n.List.Slice(), lineno)) |
| if lineno != 0 { |
| m.Lineno = lineno |
| } |
| if m.Name != nil && n.Op != ODCLFIELD { |
| Dump("treecopy", n) |
| Fatalf("treecopy Name") |
| } |
| |
| case ONONAME: |
| if n.Sym == Lookup("iota") { |
| // Not sure yet whether this is the real iota, |
| // but make a copy of the Node* just in case, |
| // so that all the copies of this const definition |
| // don't have the same iota value. |
| m = Nod(OXXX, nil, nil) |
| *m = *n |
| if lineno != 0 { |
| m.Lineno = lineno |
| } |
| m.Name = new(Name) |
| *m.Name = *n.Name |
| m.Name.Iota = iota_ |
| break |
| } |
| fallthrough |
| |
| case ONAME, OLITERAL, OTYPE: |
| m = n |
| } |
| |
| return m |
| } |
| |
| // isnil reports whether n represents the universal untyped zero value "nil". |
| func isnil(n *Node) bool { |
| // Check n.Orig because constant propagation may produce typed nil constants, |
| // which don't exist in the Go spec. |
| return Isconst(n.Orig, CTNIL) |
| } |
| |
| func isptrto(t *Type, et EType) bool { |
| if t == nil { |
| return false |
| } |
| if !Isptr[t.Etype] { |
| return false |
| } |
| t = t.Type |
| if t == nil { |
| return false |
| } |
| if t.Etype != et { |
| return false |
| } |
| return true |
| } |
| |
| func Istype(t *Type, et EType) bool { |
| return t != nil && t.Etype == et |
| } |
| |
| func Isfixedarray(t *Type) bool { |
| return t != nil && t.Etype == TARRAY && t.Bound >= 0 |
| } |
| |
| func Isslice(t *Type) bool { |
| return t != nil && t.Etype == TARRAY && t.Bound < 0 |
| } |
| |
| func isblank(n *Node) bool { |
| if n == nil { |
| return false |
| } |
| return isblanksym(n.Sym) |
| } |
| |
| func isblanksym(s *Sym) bool { |
| return s != nil && s.Name == "_" |
| } |
| |
| func Isinter(t *Type) bool { |
| return t != nil && t.Etype == TINTER |
| } |
| |
| func isnilinter(t *Type) bool { |
| if !Isinter(t) { |
| return false |
| } |
| if t.Type != nil { |
| return false |
| } |
| return true |
| } |
| |
| func isideal(t *Type) bool { |
| if t == nil { |
| return false |
| } |
| if t == idealstring || t == idealbool { |
| return true |
| } |
| switch t.Etype { |
| case TNIL, TIDEAL: |
| return true |
| } |
| |
| return false |
| } |
| |
| // given receiver of type t (t == r or t == *r) |
| // return type to hang methods off (r). |
| func methtype(t *Type, mustname int) *Type { |
| if t == nil { |
| return nil |
| } |
| |
| // strip away pointer if it's there |
| if Isptr[t.Etype] { |
| if t.Sym != nil { |
| return nil |
| } |
| t = t.Type |
| if t == nil { |
| return nil |
| } |
| } |
| |
| // need a type name |
| if t.Sym == nil && (mustname != 0 || t.Etype != TSTRUCT) { |
| return nil |
| } |
| |
| // check types |
| if !issimple[t.Etype] { |
| switch t.Etype { |
| default: |
| return nil |
| |
| case TSTRUCT, |
| TARRAY, |
| TMAP, |
| TCHAN, |
| TSTRING, |
| TFUNC: |
| break |
| } |
| } |
| |
| return t |
| } |
| |
| func cplxsubtype(et EType) EType { |
| switch et { |
| case TCOMPLEX64: |
| return TFLOAT32 |
| |
| case TCOMPLEX128: |
| return TFLOAT64 |
| } |
| |
| Fatalf("cplxsubtype: %v\n", Econv(et)) |
| return 0 |
| } |
| |
| func eqnote(a, b *string) bool { |
| return a == b || a != nil && b != nil && *a == *b |
| } |
| |
| // Eqtype reports whether t1 and t2 are identical, following the spec rules. |
| // |
| // Any cyclic type must go through a named type, and if one is |
| // named, it is only identical to the other if they are the same |
| // pointer (t1 == t2), so there's no chance of chasing cycles |
| // ad infinitum, so no need for a depth counter. |
| func Eqtype(t1, t2 *Type) bool { |
| return eqtype1(t1, t2, nil) |
| } |
| |
| type typePair struct { |
| t1 *Type |
| t2 *Type |
| } |
| |
| func eqtype1(t1, t2 *Type, assumedEqual map[typePair]struct{}) bool { |
| if t1 == t2 { |
| return true |
| } |
| if t1 == nil || t2 == nil || t1.Etype != t2.Etype { |
| return false |
| } |
| if t1.Sym != nil || t2.Sym != nil { |
| // Special case: we keep byte/uint8 and rune/int32 |
| // separate for error messages. Treat them as equal. |
| switch t1.Etype { |
| case TUINT8: |
| return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype) |
| case TINT32: |
| return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype) |
| default: |
| return false |
| } |
| } |
| |
| if assumedEqual == nil { |
| assumedEqual = make(map[typePair]struct{}) |
| } else if _, ok := assumedEqual[typePair{t1, t2}]; ok { |
| return true |
| } |
| assumedEqual[typePair{t1, t2}] = struct{}{} |
| |
| switch t1.Etype { |
| case TINTER, TSTRUCT: |
| t1, i1 := IterFields(t1) |
| t2, i2 := IterFields(t2) |
| for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() { |
| if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, assumedEqual) || !eqnote(t1.Note, t2.Note) { |
| return false |
| } |
| } |
| |
| if t1 == nil && t2 == nil { |
| return true |
| } |
| return false |
| |
| // Loop over structs: receiver, in, out. |
| case TFUNC: |
| for _, f := range recvsParamsResults { |
| // Loop over fields in structs, ignoring argument names. |
| ta, ia := IterFields(f(t1)) |
| tb, ib := IterFields(f(t2)) |
| for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() { |
| if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, assumedEqual) { |
| return false |
| } |
| } |
| if ta != nil || tb != nil { |
| return false |
| } |
| } |
| return true |
| |
| case TARRAY: |
| if t1.Bound != t2.Bound { |
| return false |
| } |
| |
| case TCHAN: |
| if t1.Chan != t2.Chan { |
| return false |
| } |
| |
| case TMAP: |
| if !eqtype1(t1.Key(), t2.Key(), assumedEqual) { |
| return false |
| } |
| } |
| |
| return eqtype1(t1.Type, t2.Type, assumedEqual) |
| } |
| |
| // Are t1 and t2 equal struct types when field names are ignored? |
| // For deciding whether the result struct from g can be copied |
| // directly when compiling f(g()). |
| func eqtypenoname(t1 *Type, t2 *Type) bool { |
| if t1 == nil || t2 == nil || t1.Etype != TSTRUCT || t2.Etype != TSTRUCT { |
| return false |
| } |
| |
| t1, i1 := IterFields(t1) |
| t2, i2 := IterFields(t2) |
| for { |
| if !Eqtype(t1, t2) { |
| return false |
| } |
| if t1 == nil { |
| return true |
| } |
| t1 = i1.Next() |
| t2 = i2.Next() |
| } |
| } |
| |
| // Is type src assignment compatible to type dst? |
| // If so, return op code to use in conversion. |
| // If not, return 0. |
| func assignop(src *Type, dst *Type, why *string) Op { |
| if why != nil { |
| *why = "" |
| } |
| |
| // TODO(rsc,lvd): This behaves poorly in the presence of inlining. |
| // https://golang.org/issue/2795 |
| if safemode != 0 && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR { |
| Yyerror("cannot use unsafe.Pointer") |
| errorexit() |
| } |
| |
| if src == dst { |
| return OCONVNOP |
| } |
| if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil { |
| return 0 |
| } |
| |
| // 1. src type is identical to dst. |
| if Eqtype(src, dst) { |
| return OCONVNOP |
| } |
| |
| // 2. src and dst have identical underlying types |
| // and either src or dst is not a named type or |
| // both are empty interface types. |
| // For assignable but different non-empty interface types, |
| // we want to recompute the itab. |
| if Eqtype(src.Orig, dst.Orig) && (src.Sym == nil || dst.Sym == nil || isnilinter(src)) { |
| return OCONVNOP |
| } |
| |
| // 3. dst is an interface type and src implements dst. |
| if dst.Etype == TINTER && src.Etype != TNIL { |
| var missing *Type |
| var ptr int |
| var have *Type |
| if implements(src, dst, &missing, &have, &ptr) { |
| return OCONVIFACE |
| } |
| |
| // we'll have complained about this method anyway, suppress spurious messages. |
| if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) { |
| return OCONVIFACE |
| } |
| |
| if why != nil { |
| if isptrto(src, TINTER) { |
| *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src) |
| } else if have != nil && have.Sym == missing.Sym && have.Nointerface { |
| *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym) |
| } else if have != nil && have.Sym == missing.Sym { |
| *why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, obj.FmtShort|obj.FmtByte), missing.Sym, Tconv(missing.Type, obj.FmtShort|obj.FmtByte)) |
| } else if ptr != 0 { |
| *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym) |
| } else if have != nil { |
| *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, obj.FmtShort|obj.FmtByte), missing.Sym, Tconv(missing.Type, obj.FmtShort|obj.FmtByte)) |
| } else { |
| *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym) |
| } |
| } |
| |
| return 0 |
| } |
| |
| if isptrto(dst, TINTER) { |
| if why != nil { |
| *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst) |
| } |
| return 0 |
| } |
| |
| if src.Etype == TINTER && dst.Etype != TBLANK { |
| var have *Type |
| var ptr int |
| var missing *Type |
| if why != nil && implements(dst, src, &missing, &have, &ptr) { |
| *why = ": need type assertion" |
| } |
| return 0 |
| } |
| |
| // 4. src is a bidirectional channel value, dst is a channel type, |
| // src and dst have identical element types, and |
| // either src or dst is not a named type. |
| if src.Etype == TCHAN && src.Chan == Cboth && dst.Etype == TCHAN { |
| if Eqtype(src.Type, dst.Type) && (src.Sym == nil || dst.Sym == nil) { |
| return OCONVNOP |
| } |
| } |
| |
| // 5. src is the predeclared identifier nil and dst is a nillable type. |
| if src.Etype == TNIL { |
| switch dst.Etype { |
| case TARRAY: |
| if dst.Bound != -100 { // not slice |
| break |
| } |
| fallthrough |
| |
| case TPTR32, |
| TPTR64, |
| TFUNC, |
| TMAP, |
| TCHAN, |
| TINTER: |
| return OCONVNOP |
| } |
| } |
| |
| // 6. rule about untyped constants - already converted by defaultlit. |
| |
| // 7. Any typed value can be assigned to the blank identifier. |
| if dst.Etype == TBLANK { |
| return OCONVNOP |
| } |
| |
| return 0 |
| } |
| |
| // Can we convert a value of type src to a value of type dst? |
| // If so, return op code to use in conversion (maybe OCONVNOP). |
| // If not, return 0. |
| func convertop(src *Type, dst *Type, why *string) Op { |
| if why != nil { |
| *why = "" |
| } |
| |
| if src == dst { |
| return OCONVNOP |
| } |
| if src == nil || dst == nil { |
| return 0 |
| } |
| |
| // 1. src can be assigned to dst. |
| op := assignop(src, dst, why) |
| if op != 0 { |
| return op |
| } |
| |
| // The rules for interfaces are no different in conversions |
| // than assignments. If interfaces are involved, stop now |
| // with the good message from assignop. |
| // Otherwise clear the error. |
| if src.Etype == TINTER || dst.Etype == TINTER { |
| return 0 |
| } |
| if why != nil { |
| *why = "" |
| } |
| |
| // 2. src and dst have identical underlying types. |
| if Eqtype(src.Orig, dst.Orig) { |
| return OCONVNOP |
| } |
| |
| // 3. src and dst are unnamed pointer types |
| // and their base types have identical underlying types. |
| if Isptr[src.Etype] && Isptr[dst.Etype] && src.Sym == nil && dst.Sym == nil { |
| if Eqtype(src.Type.Orig, dst.Type.Orig) { |
| return OCONVNOP |
| } |
| } |
| |
| // 4. src and dst are both integer or floating point types. |
| if (Isint[src.Etype] || Isfloat[src.Etype]) && (Isint[dst.Etype] || Isfloat[dst.Etype]) { |
| if Simtype[src.Etype] == Simtype[dst.Etype] { |
| return OCONVNOP |
| } |
| return OCONV |
| } |
| |
| // 5. src and dst are both complex types. |
| if Iscomplex[src.Etype] && Iscomplex[dst.Etype] { |
| if Simtype[src.Etype] == Simtype[dst.Etype] { |
| return OCONVNOP |
| } |
| return OCONV |
| } |
| |
| // 6. src is an integer or has type []byte or []rune |
| // and dst is a string type. |
| if Isint[src.Etype] && dst.Etype == TSTRING { |
| return ORUNESTR |
| } |
| |
| if Isslice(src) && dst.Etype == TSTRING { |
| if src.Type.Etype == bytetype.Etype { |
| return OARRAYBYTESTR |
| } |
| if src.Type.Etype == runetype.Etype { |
| return OARRAYRUNESTR |
| } |
| } |
| |
| // 7. src is a string and dst is []byte or []rune. |
| // String to slice. |
| if src.Etype == TSTRING && Isslice(dst) { |
| if dst.Type.Etype == bytetype.Etype { |
| return OSTRARRAYBYTE |
| } |
| if dst.Type.Etype == runetype.Etype { |
| return OSTRARRAYRUNE |
| } |
| } |
| |
| // 8. src is a pointer or uintptr and dst is unsafe.Pointer. |
| if (Isptr[src.Etype] || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR { |
| return OCONVNOP |
| } |
| |
| // 9. src is unsafe.Pointer and dst is a pointer or uintptr. |
| if src.Etype == TUNSAFEPTR && (Isptr[dst.Etype] || dst.Etype == TUINTPTR) { |
| return OCONVNOP |
| } |
| |
| return 0 |
| } |
| |
| func assignconv(n *Node, t *Type, context string) *Node { |
| return assignconvfn(n, t, func() string { return context }) |
| } |
| |
| // Convert node n for assignment to type t. |
| func assignconvfn(n *Node, t *Type, context func() string) *Node { |
| if n == nil || n.Type == nil || n.Type.Broke { |
| return n |
| } |
| |
| if t.Etype == TBLANK && n.Type.Etype == TNIL { |
| Yyerror("use of untyped nil") |
| } |
| |
| old := n |
| old.Diag++ // silence errors about n; we'll issue one below |
| defaultlit(&n, t) |
| old.Diag-- |
| if t.Etype == TBLANK { |
| return n |
| } |
| |
| // Convert ideal bool from comparison to plain bool |
| // if the next step is non-bool (like interface{}). |
| if n.Type == idealbool && t.Etype != TBOOL { |
| if n.Op == ONAME || n.Op == OLITERAL { |
| r := Nod(OCONVNOP, n, nil) |
| r.Type = Types[TBOOL] |
| r.Typecheck = 1 |
| r.Implicit = true |
| n = r |
| } |
| } |
| |
| if Eqtype(n.Type, t) { |
| return n |
| } |
| |
| var why string |
| op := assignop(n.Type, t, &why) |
| if op == 0 { |
| Yyerror("cannot use %v as type %v in %s%s", Nconv(n, obj.FmtLong), t, context(), why) |
| op = OCONV |
| } |
| |
| r := Nod(op, n, nil) |
| r.Type = t |
| r.Typecheck = 1 |
| r.Implicit = true |
| r.Orig = n.Orig |
| return r |
| } |
| |
| // substArgTypes substitutes the given list of types for |
| // successive occurrences of the "any" placeholder in the |
| // type syntax expression n.Type. |
| func substArgTypes(np **Node, types ...*Type) { |
| n := Nod(0, nil, nil) |
| *n = **np |
| *np = n |
| |
| for _, t := range types { |
| dowidth(t) |
| } |
| n.Type = deep(n.Type) |
| substAny(&n.Type, &types) |
| if len(types) > 0 { |
| Fatalf("substArgTypes: too many argument types") |
| } |
| } |
| |
| // substAny walks *tp, replacing instances of "any" with successive |
| // elements removed from types. |
| func substAny(tp **Type, types *[]*Type) { |
| for { |
| t := *tp |
| if t == nil { |
| return |
| } |
| if t.Etype == TANY && t.Copyany { |
| if len(*types) == 0 { |
| Fatalf("substArgTypes: not enough argument types") |
| } |
| *tp = (*types)[0] |
| *types = (*types)[1:] |
| } |
| |
| switch t.Etype { |
| case TPTR32, TPTR64, TCHAN, TARRAY: |
| tp = &t.Type |
| continue |
| |
| case TMAP: |
| substAny(&t.Down, types) |
| tp = &t.Type |
| continue |
| |
| case TFUNC: |
| substAny(t.RecvsP(), types) |
| substAny(t.ParamsP(), types) |
| substAny(t.ResultsP(), types) |
| |
| case TSTRUCT: |
| for t, it := IterFields(t); t != nil; t = it.Next() { |
| substAny(&t.Type, types) |
| } |
| } |
| return |
| } |
| } |
| |
| // Is this a 64-bit type? |
| func Is64(t *Type) bool { |
| if t == nil { |
| return false |
| } |
| switch Simtype[t.Etype] { |
| case TINT64, TUINT64, TPTR64: |
| return true |
| } |
| |
| return false |
| } |
| |
| // Is a conversion between t1 and t2 a no-op? |
| func Noconv(t1 *Type, t2 *Type) bool { |
| e1 := Simtype[t1.Etype] |
| e2 := Simtype[t2.Etype] |
| |
| switch e1 { |
| case TINT8, TUINT8: |
| return e2 == TINT8 || e2 == TUINT8 |
| |
| case TINT16, TUINT16: |
| return e2 == TINT16 || e2 == TUINT16 |
| |
| case TINT32, TUINT32, TPTR32: |
| return e2 == TINT32 || e2 == TUINT32 || e2 == TPTR32 |
| |
| case TINT64, TUINT64, TPTR64: |
| return e2 == TINT64 || e2 == TUINT64 || e2 == TPTR64 |
| |
| case TFLOAT32: |
| return e2 == TFLOAT32 |
| |
| case TFLOAT64: |
| return e2 == TFLOAT64 |
| } |
| |
| return false |
| } |
| |
| func deep(t *Type) *Type { |
| if t == nil { |
| return nil |
| } |
| |
| var nt *Type |
| switch t.Etype { |
| default: |
| nt = t // share from here down |
| |
| case TANY: |
| nt = t.Copy() |
| nt.Copyany = true |
| |
| case TPTR32, TPTR64, TCHAN, TARRAY: |
| nt = t.Copy() |
| nt.Type = deep(t.Type) |
| |
| case TMAP: |
| nt = t.Copy() |
| nt.Down = deep(t.Down) |
| nt.Type = deep(t.Type) |
| |
| case TFUNC: |
| nt = t.Copy() |
| *nt.RecvsP() = deep(t.Recvs()) |
| *nt.ResultsP() = deep(t.Results()) |
| *nt.ParamsP() = deep(t.Params()) |
| |
| case TSTRUCT: |
| nt = t.Copy() |
| nt.Type = t.Type.Copy() |
| xt := nt.Type |
| |
| for t, it := IterFields(t); t != nil; t = it.Next() { |
| xt.Type = deep(t.Type) |
| xt.Down = t.Down.Copy() |
| xt = xt.Down |
| } |
| } |
| |
| return nt |
| } |
| |
| func syslook(name string) *Node { |
| s := Pkglookup(name, Runtimepkg) |
| if s == nil || s.Def == nil { |
| Fatalf("syslook: can't find runtime.%s", name) |
| } |
| return s.Def |
| } |
| |
| // compute a hash value for type t. |
| // if t is a method type, ignore the receiver |
| // so that the hash can be used in interface checks. |
| // %T already contains |
| // all the necessary logic to generate a representation |
| // of the type that completely describes it. |
| // using smprint here avoids duplicating that code. |
| // using md5 here is overkill, but i got tired of |
| // accidental collisions making the runtime think |
| // two types are equal when they really aren't. |
| func typehash(t *Type) uint32 { |
| var p string |
| |
| if t.Thistuple != 0 { |
| // hide method receiver from Tpretty |
| t.Thistuple = 0 |
| |
| p = Tconv(t, obj.FmtLeft|obj.FmtUnsigned) |
| t.Thistuple = 1 |
| } else { |
| p = Tconv(t, obj.FmtLeft|obj.FmtUnsigned) |
| } |
| |
| //print("typehash: %s\n", p); |
| h := md5.Sum([]byte(p)) |
| return binary.LittleEndian.Uint32(h[:4]) |
| } |
| |
| var initPtrtoDone bool |
| |
| var ( |
| ptrToUint8 *Type |
| ptrToAny *Type |
| ptrToString *Type |
| ptrToBool *Type |
| ptrToInt32 *Type |
| ) |
| |
| func initPtrto() { |
| ptrToUint8 = ptrto1(Types[TUINT8]) |
| ptrToAny = ptrto1(Types[TANY]) |
| ptrToString = ptrto1(Types[TSTRING]) |
| ptrToBool = ptrto1(Types[TBOOL]) |
| ptrToInt32 = ptrto1(Types[TINT32]) |
| } |
| |
| func ptrto1(t *Type) *Type { |
| t1 := typ(Tptr) |
| t1.Type = t |
| t1.Width = int64(Widthptr) |
| t1.Align = uint8(Widthptr) |
| return t1 |
| } |
| |
| // Ptrto returns the Type *t. |
| // The returned struct must not be modified. |
| func Ptrto(t *Type) *Type { |
| if Tptr == 0 { |
| Fatalf("ptrto: no tptr") |
| } |
| // Reduce allocations by pre-creating common cases. |
| if !initPtrtoDone { |
| initPtrto() |
| initPtrtoDone = true |
| } |
| switch t { |
| case Types[TUINT8]: |
| return ptrToUint8 |
| case Types[TINT32]: |
| return ptrToInt32 |
| case Types[TANY]: |
| return ptrToAny |
| case Types[TSTRING]: |
| return ptrToString |
| case Types[TBOOL]: |
| return ptrToBool |
| } |
| return ptrto1(t) |
| } |
| |
| func frame(context int) { |
| if context != 0 { |
| fmt.Printf("--- external frame ---\n") |
| for _, n := range externdcl { |
| printframenode(n) |
| } |
| return |
| } |
| |
| if Curfn != nil { |
| fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym) |
| for _, ln := range Curfn.Func.Dcl { |
| printframenode(ln) |
| } |
| } |
| } |
| |
| func printframenode(n *Node) { |
| w := int64(-1) |
| if n.Type != nil { |
| w = n.Type.Width |
| } |
| switch n.Op { |
| case ONAME: |
| fmt.Printf("%v %v G%d %v width=%d\n", Oconv(n.Op, 0), n.Sym, n.Name.Vargen, n.Type, w) |
| case OTYPE: |
| fmt.Printf("%v %v width=%d\n", Oconv(n.Op, 0), n.Type, w) |
| } |
| } |
| |
| // calculate sethi/ullman number |
| // roughly how many registers needed to |
| // compile a node. used to compile the |
| // hardest side first to minimize registers. |
| func ullmancalc(n *Node) { |
| if n == nil { |
| return |
| } |
| |
| var ul int |
| var ur int |
| if n.Ninit.Len() != 0 { |
| ul = UINF |
| goto out |
| } |
| |
| switch n.Op { |
| case OREGISTER, OLITERAL, ONAME: |
| ul = 1 |
| if n.Class == PPARAMREF || (n.Class&PHEAP != 0) { |
| ul++ |
| } |
| goto out |
| |
| case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OASWB: |
| ul = UINF |
| goto out |
| |
| // hard with instrumented code |
| case OANDAND, OOROR: |
| if instrumenting { |
| ul = UINF |
| goto out |
| } |
| } |
| |
| ul = 1 |
| if n.Left != nil { |
| ul = int(n.Left.Ullman) |
| } |
| ur = 1 |
| if n.Right != nil { |
| ur = int(n.Right.Ullman) |
| } |
| if ul == ur { |
| ul += 1 |
| } |
| if ur > ul { |
| ul = ur |
| } |
| |
| out: |
| if ul > 200 { |
| ul = 200 // clamp to uchar with room to grow |
| } |
| n.Ullman = uint8(ul) |
| } |
| |
| func badtype(op Op, tl *Type, tr *Type) { |
| fmt_ := "" |
| if tl != nil { |
| fmt_ += fmt.Sprintf("\n\t%v", tl) |
| } |
| if tr != nil { |
| fmt_ += fmt.Sprintf("\n\t%v", tr) |
| } |
| |
| // common mistake: *struct and *interface. |
| if tl != nil && tr != nil && Isptr[tl.Etype] && Isptr[tr.Etype] { |
| if tl.Type.Etype == TSTRUCT && tr.Type.Etype == TINTER { |
| fmt_ += "\n\t(*struct vs *interface)" |
| } else if tl.Type.Etype == TINTER && tr.Type.Etype == TSTRUCT { |
| fmt_ += "\n\t(*interface vs *struct)" |
| } |
| } |
| |
| s := fmt_ |
| Yyerror("illegal types for operand: %v%s", Oconv(op, 0), s) |
| } |
| |
| // Brcom returns !(op). |
| // For example, Brcom(==) is !=. |
| func Brcom(op Op) Op { |
| switch op { |
| case OEQ: |
| return ONE |
| case ONE: |
| return OEQ |
| case OLT: |
| return OGE |
| case OGT: |
| return OLE |
| case OLE: |
| return OGT |
| case OGE: |
| return OLT |
| } |
| Fatalf("brcom: no com for %v\n", Oconv(op, 0)) |
| return op |
| } |
| |
| // Brrev returns reverse(op). |
| // For example, Brrev(<) is >. |
| func Brrev(op Op) Op { |
| switch op { |
| case OEQ: |
| return OEQ |
| case ONE: |
| return ONE |
| case OLT: |
| return OGT |
| case OGT: |
| return OLT |
| case OLE: |
| return OGE |
| case OGE: |
| return OLE |
| } |
| Fatalf("brrev: no rev for %v\n", Oconv(op, 0)) |
| return op |
| } |
| |
| // return side effect-free n, appending side effects to init. |
| // result is assignable if n is. |
| func safeexpr(n *Node, init *Nodes) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| if n.Ninit.Len() != 0 { |
| walkstmtlist(n.Ninit.Slice()) |
| init.AppendNodes(&n.Ninit) |
| } |
| |
| switch n.Op { |
| case ONAME, OLITERAL: |
| return n |
| |
| case ODOT, OLEN, OCAP: |
| l := safeexpr(n.Left, init) |
| if l == n.Left { |
| return n |
| } |
| r := Nod(OXXX, nil, nil) |
| *r = *n |
| r.Left = l |
| typecheck(&r, Erv) |
| walkexpr(&r, init) |
| return r |
| |
| case ODOTPTR, OIND: |
| l := safeexpr(n.Left, init) |
| if l == n.Left { |
| return n |
| } |
| a := Nod(OXXX, nil, nil) |
| *a = *n |
| a.Left = l |
| walkexpr(&a, init) |
| return a |
| |
| case OINDEX, OINDEXMAP: |
| l := safeexpr(n.Left, init) |
| r := safeexpr(n.Right, init) |
| if l == n.Left && r == n.Right { |
| return n |
| } |
| a := Nod(OXXX, nil, nil) |
| *a = *n |
| a.Left = l |
| a.Right = r |
| walkexpr(&a, init) |
| return a |
| } |
| |
| // make a copy; must not be used as an lvalue |
| if islvalue(n) { |
| Fatalf("missing lvalue case in safeexpr: %v", n) |
| } |
| return cheapexpr(n, init) |
| } |
| |
| func copyexpr(n *Node, t *Type, init *Nodes) *Node { |
| l := temp(t) |
| a := Nod(OAS, l, n) |
| typecheck(&a, Etop) |
| walkexpr(&a, init) |
| init.Append(a) |
| return l |
| } |
| |
| // return side-effect free and cheap n, appending side effects to init. |
| // result may not be assignable. |
| func cheapexpr(n *Node, init *Nodes) *Node { |
| switch n.Op { |
| case ONAME, OLITERAL: |
| return n |
| } |
| |
| return copyexpr(n, n.Type, init) |
| } |
| |
| func Setmaxarg(t *Type, extra int32) { |
| dowidth(t) |
| w := t.Argwid |
| if w >= Thearch.MAXWIDTH { |
| Fatalf("bad argwid %v", t) |
| } |
| w += int64(extra) |
| if w >= Thearch.MAXWIDTH { |
| Fatalf("bad argwid %d + %v", extra, t) |
| } |
| if w > Maxarg { |
| Maxarg = w |
| } |
| } |
| |
| // Code to resolve elided DOTs in embedded types. |
| |
| // A Dlist stores a pointer to a TFIELD Type embedded within |
| // a TSTRUCT or TINTER Type. |
| type Dlist struct { |
| field *Type |
| } |
| |
| // dotlist is used by adddot1 to record the path of embedded fields |
| // used to access a target field or method. |
| // Must be non-nil so that dotpath returns a non-nil slice even if d is zero. |
| var dotlist = make([]Dlist, 10) |
| |
| // lookdot0 returns the number of fields or methods named s associated |
| // with Type t. If exactly one exists, it will be returned in *save |
| // (if save is not nil). |
| func lookdot0(s *Sym, t *Type, save **Type, ignorecase bool) int { |
| u := t |
| if Isptr[u.Etype] { |
| u = u.Type |
| } |
| |
| c := 0 |
| if u.Etype == TSTRUCT || u.Etype == TINTER { |
| for f, it := IterFields(u); f != nil; f = it.Next() { |
| if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Thistuple > 0 && strings.EqualFold(f.Sym.Name, s.Name)) { |
| if save != nil { |
| *save = f |
| } |
| c++ |
| } |
| } |
| } |
| |
| u = methtype(t, 0) |
| if u != nil { |
| for f, it := IterMethods(u); f != nil; f = it.Next() { |
| if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) { |
| if save != nil { |
| *save = f |
| } |
| c++ |
| } |
| } |
| } |
| |
| return c |
| } |
| |
| // adddot1 returns the number of fields or methods named s at depth d in Type t. |
| // If exactly one exists, it will be returned in *save (if save is not nil), |
| // and dotlist will contain the path of embedded fields traversed to find it, |
| // in reverse order. If none exist, more will indicate whether t contains any |
| // embedded fields at depth d, so callers can decide whether to retry at |
| // a greater depth. |
| func adddot1(s *Sym, t *Type, d int, save **Type, ignorecase bool) (c int, more bool) { |
| if t.Trecur != 0 { |
| return |
| } |
| t.Trecur = 1 |
| |
| var u *Type |
| d-- |
| if d < 0 { |
| // We've reached our target depth. If t has any fields/methods |
| // named s, then we're done. Otherwise, we still need to check |
| // below for embedded fields. |
| c = lookdot0(s, t, save, ignorecase) |
| if c != 0 { |
| goto out |
| } |
| } |
| |
| u = t |
| if Isptr[u.Etype] { |
| u = u.Type |
| } |
| if u.Etype != TSTRUCT && u.Etype != TINTER { |
| goto out |
| } |
| |
| for f, it := IterFields(u); f != nil; f = it.Next() { |
| if f.Embedded == 0 || f.Sym == nil { |
| continue |
| } |
| if d < 0 { |
| // Found an embedded field at target depth. |
| more = true |
| goto out |
| } |
| a, more1 := adddot1(s, f.Type, d, save, ignorecase) |
| if a != 0 && c == 0 { |
| dotlist[d].field = f |
| } |
| c += a |
| if more1 { |
| more = true |
| } |
| } |
| |
| out: |
| t.Trecur = 0 |
| return c, more |
| } |
| |
| // dotpath computes the unique shortest explicit selector path to fully qualify |
| // a selection expression x.f, where x is of type t and f is the symbol s. |
| // If no such path exists, dotpath returns nil. |
| // If there are multiple shortest paths to the same depth, ambig is true. |
| func dotpath(s *Sym, t *Type, save **Type, ignorecase bool) (path []Dlist, ambig bool) { |
| // The embedding of types within structs imposes a tree structure onto |
| // types: structs parent the types they embed, and types parent their |
| // fields or methods. Our goal here is to find the shortest path to |
| // a field or method named s in the subtree rooted at t. To accomplish |
| // that, we iteratively perform depth-first searches of increasing depth |
| // until we either find the named field/method or exhaust the tree. |
| for d := 0; ; d++ { |
| if d > len(dotlist) { |
| dotlist = append(dotlist, Dlist{}) |
| } |
| if c, more := adddot1(s, t, d, save, ignorecase); c == 1 { |
| return dotlist[:d], false |
| } else if c > 1 { |
| return nil, true |
| } else if !more { |
| return nil, false |
| } |
| } |
| } |
| |
| // in T.field |
| // find missing fields that |
| // will give shortest unique addressing. |
| // modify the tree with missing type names. |
| func adddot(n *Node) *Node { |
| typecheck(&n.Left, Etype|Erv) |
| n.Diag |= n.Left.Diag |
| t := n.Left.Type |
| if t == nil { |
| return n |
| } |
| |
| if n.Left.Op == OTYPE { |
| return n |
| } |
| |
| if n.Right.Op != ONAME { |
| return n |
| } |
| s := n.Right.Sym |
| if s == nil { |
| return n |
| } |
| |
| switch path, ambig := dotpath(s, t, nil, false); { |
| case path != nil: |
| // rebuild elided dots |
| for c := len(path) - 1; c >= 0; c-- { |
| n.Left = Nod(ODOT, n.Left, newname(path[c].field.Sym)) |
| n.Left.Implicit = true |
| } |
| case ambig: |
| Yyerror("ambiguous selector %v", n) |
| n.Left = nil |
| } |
| |
| return n |
| } |
| |
| // code to help generate trampoline |
| // functions for methods on embedded |
| // subtypes. |
| // these are approx the same as |
| // the corresponding adddot routines |
| // except that they expect to be called |
| // with unique tasks and they return |
| // the actual methods. |
| type Symlink struct { |
| field *Type |
| link *Symlink |
| good bool |
| followptr bool |
| } |
| |
| var slist *Symlink |
| |
| func expand0(t *Type, followptr bool) { |
| u := t |
| if Isptr[u.Etype] { |
| followptr = true |
| u = u.Type |
| } |
| |
| if u.Etype == TINTER { |
| var sl *Symlink |
| for f, it := IterFields(u); f != nil; f = it.Next() { |
| if f.Sym.Flags&SymUniq != 0 { |
| continue |
| } |
| f.Sym.Flags |= SymUniq |
| sl = new(Symlink) |
| sl.field = f |
| sl.link = slist |
| sl.followptr = followptr |
| slist = sl |
| } |
| |
| return |
| } |
| |
| u = methtype(t, 0) |
| if u != nil { |
| var sl *Symlink |
| for f, it := IterMethods(u); f != nil; f = it.Next() { |
| if f.Sym.Flags&SymUniq != 0 { |
| continue |
| } |
| f.Sym.Flags |= SymUniq |
| sl = new(Symlink) |
| sl.field = f |
| sl.link = slist |
| sl.followptr = followptr |
| slist = sl |
| } |
| } |
| } |
| |
| func expand1(t *Type, top, followptr bool) { |
| if t.Trecur != 0 { |
| return |
| } |
| t.Trecur = 1 |
| |
| if !top { |
| expand0(t, followptr) |
| } |
| |
| u := t |
| if Isptr[u.Etype] { |
| followptr = true |
| u = u.Type |
| } |
| |
| if u.Etype != TSTRUCT && u.Etype != TINTER { |
| goto out |
| } |
| |
| for f, it := IterFields(u); f != nil; f = it.Next() { |
| if f.Embedded == 0 { |
| continue |
| } |
| if f.Sym == nil { |
| continue |
| } |
| expand1(f.Type, false, followptr) |
| } |
| |
| out: |
| t.Trecur = 0 |
| } |
| |
| func expandmeth(t *Type) { |
| if t == nil || t.Xmethod != nil { |
| return |
| } |
| |
| // mark top-level method symbols |
| // so that expand1 doesn't consider them. |
| var f *Type |
| for f, it := IterMethods(t); f != nil; f = it.Next() { |
| f.Sym.Flags |= SymUniq |
| } |
| |
| // generate all reachable methods |
| slist = nil |
| |
| expand1(t, true, false) |
| |
| // check each method to be uniquely reachable |
| for sl := slist; sl != nil; sl = sl.link { |
| sl.field.Sym.Flags &^= SymUniq |
| if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil { |
| continue |
| } |
| // dotpath may have dug out arbitrary fields, we only want methods. |
| if f.Type.Etype == TFUNC && f.Type.Thistuple > 0 { |
| sl.good = true |
| sl.field = f |
| } |
| } |
| |
| for f, it := IterMethods(t); f != nil; f = it.Next() { |
| f.Sym.Flags &^= SymUniq |
| } |
| |
| t.Xmethod = t.Method |
| for sl := slist; sl != nil; sl = sl.link { |
| if sl.good { |
| // add it to the base type method list |
| f := sl.field.Copy() |
| f.Embedded = 1 // needs a trampoline |
| if sl.followptr { |
| f.Embedded = 2 |
| } |
| f.Down = t.Xmethod |
| t.Xmethod = f |
| } |
| } |
| } |
| |
| // Given funarg struct list, return list of ODCLFIELD Node fn args. |
| func structargs(tl *Type, mustname bool) []*Node { |
| var args []*Node |
| gen := 0 |
| for t, it := IterFields(tl); t != nil; t = it.Next() { |
| var n *Node |
| if mustname && (t.Sym == nil || t.Sym.Name == "_") { |
| // invent a name so that we can refer to it in the trampoline |
| buf := fmt.Sprintf(".anon%d", gen) |
| gen++ |
| n = newname(Lookup(buf)) |
| } else if t.Sym != nil { |
| n = newname(t.Sym) |
| } |
| a := Nod(ODCLFIELD, n, typenod(t.Type)) |
| a.Isddd = t.Isddd |
| if n != nil { |
| n.Isddd = t.Isddd |
| } |
| args = append(args, a) |
| } |
| |
| return args |
| } |
| |
| // Generate a wrapper function to convert from |
| // a receiver of type T to a receiver of type U. |
| // That is, |
| // |
| // func (t T) M() { |
| // ... |
| // } |
| // |
| // already exists; this function generates |
| // |
| // func (u U) M() { |
| // u.M() |
| // } |
| // |
| // where the types T and U are such that u.M() is valid |
| // and calls the T.M method. |
| // The resulting function is for use in method tables. |
| // |
| // rcvr - U |
| // method - M func (t T)(), a TFIELD type struct |
| // newnam - the eventual mangled name of this function |
| |
| var genwrapper_linehistdone int = 0 |
| |
| func genwrapper(rcvr *Type, method *Type, newnam *Sym, iface int) { |
| if false && Debug['r'] != 0 { |
| fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam) |
| } |
| |
| lexlineno++ |
| lineno = lexlineno |
| if genwrapper_linehistdone == 0 { |
| // All the wrappers can share the same linehist entry. |
| linehistpush("<autogenerated>") |
| |
| genwrapper_linehistdone = 1 |
| } |
| |
| dclcontext = PEXTERN |
| markdcl() |
| |
| this := Nod(ODCLFIELD, newname(Lookup(".this")), typenod(rcvr)) |
| this.Left.Name.Param.Ntype = this.Right |
| in := structargs(method.Type.Params(), true) |
| out := structargs(method.Type.Results(), false) |
| |
| t := Nod(OTFUNC, nil, nil) |
| l := []*Node{this} |
| if iface != 0 && rcvr.Width < Types[Tptr].Width { |
| // Building method for interface table and receiver |
| // is smaller than the single pointer-sized word |
| // that the interface call will pass in. |
| // Add a dummy padding argument after the |
| // receiver to make up the difference. |
| tpad := typ(TARRAY) |
| |
| tpad.Type = Types[TUINT8] |
| tpad.Bound = Types[Tptr].Width - rcvr.Width |
| pad := Nod(ODCLFIELD, newname(Lookup(".pad")), typenod(tpad)) |
| l = append(l, pad) |
| } |
| |
| t.List.Set(append(l, in...)) |
| t.Rlist.Set(out) |
| |
| fn := Nod(ODCLFUNC, nil, nil) |
| fn.Func.Nname = newname(newnam) |
| fn.Func.Nname.Name.Defn = fn |
| fn.Func.Nname.Name.Param.Ntype = t |
| declare(fn.Func.Nname, PFUNC) |
| funchdr(fn) |
| |
| // arg list |
| var args []*Node |
| |
| isddd := false |
| for _, n := range in { |
| args = append(args, n.Left) |
| isddd = n.Left.Isddd |
| } |
| |
| methodrcvr := method.Type.Recv().Type |
| |
| // generate nil pointer check for better error |
| if Isptr[rcvr.Etype] && rcvr.Type == methodrcvr { |
| // generating wrapper from *T to T. |
| n := Nod(OIF, nil, nil) |
| |
| n.Left = Nod(OEQ, this.Left, nodnil()) |
| |
| // these strings are already in the reflect tables, |
| // so no space cost to use them here. |
| var l []*Node |
| |
| var v Val |
| v.U = rcvr.Type.Sym.Pkg.Name // package name |
| l = append(l, nodlit(v)) |
| v.U = rcvr.Type.Sym.Name // type name |
| l = append(l, nodlit(v)) |
| v.U = method.Sym.Name |
| l = append(l, nodlit(v)) // method name |
| call := Nod(OCALL, syslook("panicwrap"), nil) |
| call.List.Set(l) |
| n.Nbody.Set1(call) |
| fn.Nbody.Append(n) |
| } |
| |
| dot := adddot(Nod(OXDOT, this.Left, newname(method.Sym))) |
| |
| // generate call |
| if !instrumenting && Isptr[rcvr.Etype] && Isptr[methodrcvr.Etype] && method.Embedded != 0 && !isifacemethod(method.Type) { |
| // generate tail call: adjust pointer receiver and jump to embedded method. |
| dot = dot.Left // skip final .M |
| // TODO(mdempsky): Remove dependency on dotlist. |
| if !Isptr[dotlist[0].field.Type.Etype] { |
| dot = Nod(OADDR, dot, nil) |
| } |
| as := Nod(OAS, this.Left, Nod(OCONVNOP, dot, nil)) |
| as.Right.Type = rcvr |
| fn.Nbody.Append(as) |
| n := Nod(ORETJMP, nil, nil) |
| n.Left = newname(methodsym(method.Sym, methodrcvr, 0)) |
| fn.Nbody.Append(n) |
| } else { |
| fn.Func.Wrapper = true // ignore frame for panic+recover matching |
| call := Nod(OCALL, dot, nil) |
| call.List.Set(args) |
| call.Isddd = isddd |
| if method.Type.Outtuple > 0 { |
| n := Nod(ORETURN, nil, nil) |
| n.List.Set1(call) |
| call = n |
| } |
| |
| fn.Nbody.Append(call) |
| } |
| |
| if false && Debug['r'] != 0 { |
| dumplist("genwrapper body", fn.Nbody) |
| } |
| |
| funcbody(fn) |
| Curfn = fn |
| popdcl() |
| testdclstack() |
| |
| // wrappers where T is anonymous (struct or interface) can be duplicated. |
| if rcvr.Etype == TSTRUCT || rcvr.Etype == TINTER || Isptr[rcvr.Etype] && rcvr.Type.Etype == TSTRUCT { |
| fn.Func.Dupok = true |
| } |
| typecheck(&fn, Etop) |
| typechecklist(fn.Nbody.Slice(), Etop) |
| |
| inlcalls(fn) |
| escAnalyze([]*Node{fn}, false) |
| |
| Curfn = nil |
| funccompile(fn) |
| } |
| |
| func hashmem(t *Type) *Node { |
| sym := Pkglookup("memhash", Runtimepkg) |
| |
| n := newname(sym) |
| n.Class = PFUNC |
| tfn := Nod(OTFUNC, nil, nil) |
| tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Ptrto(t)))) |
| tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) |
| tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) |
| tfn.Rlist.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) |
| typecheck(&tfn, Etype) |
| n.Type = tfn.Type |
| return n |
| } |
| |
| func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Type { |
| *followptr = false |
| |
| if t == nil { |
| return nil |
| } |
| |
| var m *Type |
| path, ambig := dotpath(s, t, &m, ignorecase) |
| if path == nil { |
| if ambig { |
| Yyerror("%v.%v is ambiguous", t, s) |
| } |
| return nil |
| } |
| |
| for _, d := range path { |
| if Isptr[d.field.Type.Etype] { |
| *followptr = true |
| break |
| } |
| } |
| |
| if m.Type.Etype != TFUNC || m.Type.Thistuple == 0 { |
| Yyerror("%v.%v is a field, not a method", t, s) |
| return nil |
| } |
| |
| return m |
| } |
| |
| func implements(t *Type, iface *Type, m **Type, samename **Type, ptr *int) bool { |
| t0 := t |
| if t == nil { |
| return false |
| } |
| |
| // if this is too slow, |
| // could sort these first |
| // and then do one loop. |
| |
| if t.Etype == TINTER { |
| for im, it := IterFields(iface); im != nil; im = it.Next() { |
| for tm, it2 := IterFields(t); tm != nil; tm = it2.Next() { |
| if tm.Sym == im.Sym { |
| if Eqtype(tm.Type, im.Type) { |
| goto found |
| } |
| *m = im |
| *samename = tm |
| *ptr = 0 |
| return false |
| } |
| } |
| |
| *m = im |
| *samename = nil |
| *ptr = 0 |
| return false |
| found: |
| } |
| |
| return true |
| } |
| |
| t = methtype(t, 0) |
| if t != nil { |
| expandmeth(t) |
| } |
| var tm *Type |
| var imtype *Type |
| var followptr bool |
| var rcvr *Type |
| for im, it := IterFields(iface); im != nil; im = it.Next() { |
| if im.Broke { |
| continue |
| } |
| imtype = methodfunc(im.Type, nil) |
| tm = ifacelookdot(im.Sym, t, &followptr, false) |
| if tm == nil || tm.Nointerface || !Eqtype(methodfunc(tm.Type, nil), imtype) { |
| if tm == nil { |
| tm = ifacelookdot(im.Sym, t, &followptr, true) |
| } |
| *m = im |
| *samename = tm |
| *ptr = 0 |
| return false |
| } |
| |
| // if pointer receiver in method, |
| // the method does not exist for value types. |
| rcvr = tm.Type.Recv().Type |
| |
| if Isptr[rcvr.Etype] && !Isptr[t0.Etype] && !followptr && !isifacemethod(tm.Type) { |
| if false && Debug['r'] != 0 { |
| Yyerror("interface pointer mismatch") |
| } |
| |
| *m = im |
| *samename = nil |
| *ptr = 1 |
| return false |
| } |
| } |
| |
| return true |
| } |
| |
| // even simpler simtype; get rid of ptr, bool. |
| // assuming that the front end has rejected |
| // all the invalid conversions (like ptr -> bool) |
| func Simsimtype(t *Type) EType { |
| if t == nil { |
| return 0 |
| } |
| |
| et := Simtype[t.Etype] |
| switch et { |
| case TPTR32: |
| et = TUINT32 |
| |
| case TPTR64: |
| et = TUINT64 |
| |
| case TBOOL: |
| et = TUINT8 |
| } |
| |
| return et |
| } |
| |
| func listtreecopy(l []*Node, lineno int32) []*Node { |
| var out []*Node |
| for _, n := range l { |
| out = append(out, treecopy(n, lineno)) |
| } |
| return out |
| } |
| |
| func liststmt(l []*Node) *Node { |
| n := Nod(OBLOCK, nil, nil) |
| n.List.Set(l) |
| if len(l) != 0 { |
| n.Lineno = l[0].Lineno |
| } |
| return n |
| } |
| |
| // return nelem of list |
| func structcount(t *Type) int { |
| v := 0 |
| for t, it := IterFields(t); t != nil; t = it.Next() { |
| v++ |
| } |
| return v |
| } |
| |
| // return power of 2 of the constant |
| // operand. -1 if it is not a power of 2. |
| // 1000+ if it is a -(power of 2) |
| func powtwo(n *Node) int { |
| if n == nil || n.Op != OLITERAL || n.Type == nil { |
| return -1 |
| } |
| if !Isint[n.Type.Etype] { |
| return -1 |
| } |
| |
| v := uint64(Mpgetfix(n.Val().U.(*Mpint))) |
| b := uint64(1) |
| for i := 0; i < 64; i++ { |
| if b == v { |
| return i |
| } |
| b = b << 1 |
| } |
| |
| if !Issigned[n.Type.Etype] { |
| return -1 |
| } |
| |
| v = -v |
| b = 1 |
| for i := 0; i < 64; i++ { |
| if b == v { |
| return i + 1000 |
| } |
| b = b << 1 |
| } |
| |
| return -1 |
| } |
| |
| // return the unsigned type for |
| // a signed integer type. |
| // returns T if input is not a |
| // signed integer type. |
| func tounsigned(t *Type) *Type { |
| // this is types[et+1], but not sure |
| // that this relation is immutable |
| switch t.Etype { |
| default: |
| fmt.Printf("tounsigned: unknown type %v\n", t) |
| t = nil |
| |
| case TINT: |
| t = Types[TUINT] |
| |
| case TINT8: |
| t = Types[TUINT8] |
| |
| case TINT16: |
| t = Types[TUINT16] |
| |
| case TINT32: |
| t = Types[TUINT32] |
| |
| case TINT64: |
| t = Types[TUINT64] |
| } |
| |
| return t |
| } |
| |
| // magic number for signed division |
| // see hacker's delight chapter 10 |
| func Smagic(m *Magic) { |
| var mask uint64 |
| |
| m.Bad = 0 |
| switch m.W { |
| default: |
| m.Bad = 1 |
| return |
| |
| case 8: |
| mask = 0xff |
| |
| case 16: |
| mask = 0xffff |
| |
| case 32: |
| mask = 0xffffffff |
| |
| case 64: |
| mask = 0xffffffffffffffff |
| } |
| |
| two31 := mask ^ (mask >> 1) |
| |
| p := m.W - 1 |
| ad := uint64(m.Sd) |
| if m.Sd < 0 { |
| ad = -uint64(m.Sd) |
| } |
| |
| // bad denominators |
| if ad == 0 || ad == 1 || ad == two31 { |
| m.Bad = 1 |
| return |
| } |
| |
| t := two31 |
| ad &= mask |
| |
| anc := t - 1 - t%ad |
| anc &= mask |
| |
| q1 := two31 / anc |
| r1 := two31 - q1*anc |
| q1 &= mask |
| r1 &= mask |
| |
| q2 := two31 / ad |
| r2 := two31 - q2*ad |
| q2 &= mask |
| r2 &= mask |
| |
| var delta uint64 |
| for { |
| p++ |
| q1 <<= 1 |
| r1 <<= 1 |
| q1 &= mask |
| r1 &= mask |
| if r1 >= anc { |
| q1++ |
| r1 -= anc |
| q1 &= mask |
| r1 &= mask |
| } |
| |
| q2 <<= 1 |
| r2 <<= 1 |
| q2 &= mask |
| r2 &= mask |
| if r2 >= ad { |
| q2++ |
| r2 -= ad |
| q2 &= mask |
| r2 &= mask |
| } |
| |
| delta = ad - r2 |
| delta &= mask |
| if q1 < delta || (q1 == delta && r1 == 0) { |
| continue |
| } |
| |
| break |
| } |
| |
| m.Sm = int64(q2 + 1) |
| if uint64(m.Sm)&two31 != 0 { |
| m.Sm |= ^int64(mask) |
| } |
| m.S = p - m.W |
| } |
| |
| // magic number for unsigned division |
| // see hacker's delight chapter 10 |
| func Umagic(m *Magic) { |
| var mask uint64 |
| |
| m.Bad = 0 |
| m.Ua = 0 |
| |
| switch m.W { |
| default: |
| m.Bad = 1 |
| return |
| |
| case 8: |
| mask = 0xff |
| |
| case 16: |
| mask = 0xffff |
| |
| case 32: |
| mask = 0xffffffff |
| |
| case 64: |
| mask = 0xffffffffffffffff |
| } |
| |
| two31 := mask ^ (mask >> 1) |
| |
| m.Ud &= mask |
| if m.Ud == 0 || m.Ud == two31 { |
| m.Bad = 1 |
| return |
| } |
| |
| nc := mask - (-m.Ud&mask)%m.Ud |
| p := m.W - 1 |
| |
| q1 := two31 / nc |
| r1 := two31 - q1*nc |
| q1 &= mask |
| r1 &= mask |
| |
| q2 := (two31 - 1) / m.Ud |
| r2 := (two31 - 1) - q2*m.Ud |
| q2 &= mask |
| r2 &= mask |
| |
| var delta uint64 |
| for { |
| p++ |
| if r1 >= nc-r1 { |
| q1 <<= 1 |
| q1++ |
| r1 <<= 1 |
| r1 -= nc |
| } else { |
| q1 <<= 1 |
| r1 <<= 1 |
| } |
| |
| q1 &= mask |
| r1 &= mask |
| if r2+1 >= m.Ud-r2 { |
| if q2 >= two31-1 { |
| m.Ua = 1 |
| } |
| |
| q2 <<= 1 |
| q2++ |
| r2 <<= 1 |
| r2++ |
| r2 -= m.Ud |
| } else { |
| if q2 >= two31 { |
| m.Ua = 1 |
| } |
| |
| q2 <<= 1 |
| r2 <<= 1 |
| r2++ |
| } |
| |
| q2 &= mask |
| r2 &= mask |
| |
| delta = m.Ud - 1 - r2 |
| delta &= mask |
| |
| if p < m.W+m.W { |
| if q1 < delta || (q1 == delta && r1 == 0) { |
| continue |
| } |
| } |
| |
| break |
| } |
| |
| m.Um = q2 + 1 |
| m.S = p - m.W |
| } |
| |
| func ngotype(n *Node) *Sym { |
| if n.Type != nil { |
| return typenamesym(n.Type) |
| } |
| return nil |
| } |
| |
| // Convert raw string to the prefix that will be used in the symbol |
| // table. All control characters, space, '%' and '"', as well as |
| // non-7-bit clean bytes turn into %xx. The period needs escaping |
| // only in the last segment of the path, and it makes for happier |
| // users if we escape that as little as possible. |
| // |
| // If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too. |
| func pathtoprefix(s string) string { |
| slash := strings.LastIndex(s, "/") |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F { |
| var buf bytes.Buffer |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F { |
| fmt.Fprintf(&buf, "%%%02x", c) |
| continue |
| } |
| buf.WriteByte(c) |
| } |
| return buf.String() |
| } |
| } |
| return s |
| } |
| |
| var pkgMap = make(map[string]*Pkg) |
| var pkgs []*Pkg |
| |
| func mkpkg(path string) *Pkg { |
| if p := pkgMap[path]; p != nil { |
| return p |
| } |
| |
| p := new(Pkg) |
| p.Path = path |
| p.Prefix = pathtoprefix(path) |
| p.Syms = make(map[string]*Sym) |
| pkgMap[path] = p |
| pkgs = append(pkgs, p) |
| return p |
| } |
| |
| func addinit(np **Node, init []*Node) { |
| if len(init) == 0 { |
| return |
| } |
| |
| n := *np |
| switch n.Op { |
| // There may be multiple refs to this node; |
| // introduce OCONVNOP to hold init list. |
| case ONAME, OLITERAL: |
| n = Nod(OCONVNOP, n, nil) |
| |
| n.Type = n.Left.Type |
| n.Typecheck = 1 |
| *np = n |
| } |
| |
| n.Ninit.Set(append(init, n.Ninit.Slice()...)) |
| n.Ullman = UINF |
| } |
| |
| var reservedimports = []string{ |
| "go", |
| "type", |
| } |
| |
| func isbadimport(path string) bool { |
| if strings.Contains(path, "\x00") { |
| Yyerror("import path contains NUL") |
| return true |
| } |
| |
| for _, ri := range reservedimports { |
| if path == ri { |
| Yyerror("import path %q is reserved and cannot be used", path) |
| return true |
| } |
| } |
| |
| for _, r := range path { |
| if r == utf8.RuneError { |
| Yyerror("import path contains invalid UTF-8 sequence: %q", path) |
| return true |
| } |
| |
| if r < 0x20 || r == 0x7f { |
| Yyerror("import path contains control character: %q", path) |
| return true |
| } |
| |
| if r == '\\' { |
| Yyerror("import path contains backslash; use slash: %q", path) |
| return true |
| } |
| |
| if unicode.IsSpace(r) { |
| Yyerror("import path contains space character: %q", path) |
| return true |
| } |
| |
| if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) { |
| Yyerror("import path contains invalid character '%c': %q", r, path) |
| return true |
| } |
| } |
| |
| return false |
| } |
| |
| func checknil(x *Node, init *Nodes) { |
| if Isinter(x.Type) { |
| x = Nod(OITAB, x, nil) |
| typecheck(&x, Erv) |
| } |
| |
| n := Nod(OCHECKNIL, x, nil) |
| n.Typecheck = 1 |
| init.Append(n) |
| } |
| |
| // Can this type be stored directly in an interface word? |
| // Yes, if the representation is a single pointer. |
| func isdirectiface(t *Type) bool { |
| switch t.Etype { |
| case TPTR32, |
| TPTR64, |
| TCHAN, |
| TMAP, |
| TFUNC, |
| TUNSAFEPTR: |
| return true |
| |
| case TARRAY: |
| // Array of 1 direct iface type can be direct. |
| return t.Bound == 1 && isdirectiface(t.Type) |
| |
| case TSTRUCT: |
| // Struct with 1 field of direct iface type can be direct. |
| return countfield(t) == 1 && isdirectiface(t.Field(0).Type) |
| } |
| |
| return false |
| } |
| |
| // iet returns 'T' if t is a concrete type, |
| // 'I' if t is an interface type, and 'E' if t is an empty interface type. |
| // It is used to build calls to the conv* and assert* runtime routines. |
| func (t *Type) iet() byte { |
| if isnilinter(t) { |
| return 'E' |
| } |
| if Isinter(t) { |
| return 'I' |
| } |
| return 'T' |
| } |