blob: 3eaecd194164d52b7bd57fdcc05a1ac101e672ee [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package template
import (
"fmt"
"io"
"os"
"reflect"
"strings"
)
// state represents the state of an execution. It's not part of the
// template so that multiple executions of the same template
// can execute in parallel.
type state struct {
tmpl *Template
wr io.Writer
set *Set
line int // line number for errors
}
// errorf formats the error and terminates processing.
func (s *state) errorf(format string, args ...interface{}) {
format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.name, s.line, format)
panic(fmt.Errorf(format, args...))
}
// error terminates processing.
func (s *state) error(err os.Error) {
s.errorf("%s", err)
}
// Execute applies a parsed template to the specified data object,
// writing the output to wr.
func (t *Template) Execute(wr io.Writer, data interface{}) os.Error {
return t.ExecuteInSet(wr, data, nil)
}
// ExecuteInSet applies a parsed template to the specified data object,
// writing the output to wr. Nested template invocations will be resolved
// from the specified set.
func (t *Template) ExecuteInSet(wr io.Writer, data interface{}, set *Set) (err os.Error) {
defer t.recover(&err)
state := &state{
tmpl: t,
wr: wr,
set: set,
line: 1,
}
if t.root == nil {
state.errorf("must be parsed before execution")
}
state.walk(reflect.ValueOf(data), t.root)
return
}
// Walk functions step through the major pieces of the template structure,
// generating output as they go.
func (s *state) walk(data reflect.Value, n node) {
switch n := n.(type) {
case *actionNode:
s.line = n.line
s.printValue(n, s.evalPipeline(data, n.pipeline))
case *listNode:
for _, node := range n.nodes {
s.walk(data, node)
}
case *ifNode:
s.walkIfOrWith(nodeIf, data, n.pipeline, n.list, n.elseList)
case *rangeNode:
s.walkRange(data, n)
case *textNode:
if _, err := s.wr.Write(n.text); err != nil {
s.error(err)
}
case *templateNode:
s.walkTemplate(data, n)
case *withNode:
s.walkIfOrWith(nodeWith, data, n.pipeline, n.list, n.elseList)
default:
s.errorf("unknown node: %s", n)
}
}
// walkIfOrWith walks an 'if' or 'with' node. The two control structures
// are identical in behavior except that 'with' sets dot.
func (s *state) walkIfOrWith(typ nodeType, data reflect.Value, pipe []*commandNode, list, elseList *listNode) {
val := s.evalPipeline(data, pipe)
truth := false
switch val.Kind() {
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
truth = val.Len() > 0
case reflect.Bool:
truth = val.Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
truth = val.Int() != 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
truth = val.Uint() != 0
case reflect.Float32, reflect.Float64:
truth = val.Float() != 0
case reflect.Complex64, reflect.Complex128:
truth = val.Complex() != 0
case reflect.Chan, reflect.Func, reflect.Ptr:
truth = !val.IsNil()
default:
s.errorf("if/with can't use value of type %T", val.Interface())
}
if truth {
if typ == nodeWith {
data = val
}
s.walk(data, list)
} else if elseList != nil {
s.walk(data, elseList)
}
}
func (s *state) walkRange(data reflect.Value, r *rangeNode) {
val := s.evalPipeline(data, r.pipeline)
switch val.Kind() {
case reflect.Array, reflect.Slice:
if val.Len() == 0 {
break
}
for i := 0; i < val.Len(); i++ {
s.walk(val.Index(i), r.list)
}
return
case reflect.Map:
if val.Len() == 0 {
break
}
for _, key := range val.MapKeys() {
s.walk(val.MapIndex(key), r.list)
}
return
default:
s.errorf("range can't iterate over value of type %T", val.Interface())
}
if r.elseList != nil {
s.walk(data, r.elseList)
}
}
func (s *state) walkTemplate(data reflect.Value, t *templateNode) {
name := s.evalArg(data, reflect.TypeOf("string"), t.name).String()
if s.set == nil {
s.errorf("no set defined in which to invoke template named %q", name)
}
tmpl := s.set.tmpl[name]
if tmpl == nil {
s.errorf("template %q not in set", name)
}
data = s.evalPipeline(data, t.pipeline)
newState := *s
newState.tmpl = tmpl
newState.walk(data, tmpl.root)
}
// Eval functions evaluate pipelines, commands, and their elements and extract
// values from the data structure by examining fields, calling methods, and so on.
// The printing of those values happens only through walk functions.
func (s *state) evalPipeline(data reflect.Value, pipe []*commandNode) reflect.Value {
value := reflect.Value{}
for _, cmd := range pipe {
value = s.evalCommand(data, cmd, value) // previous value is this one's final arg.
}
return value
}
func (s *state) evalCommand(data reflect.Value, cmd *commandNode, final reflect.Value) reflect.Value {
firstWord := cmd.args[0]
if field, ok := firstWord.(*fieldNode); ok {
return s.evalFieldNode(data, field, cmd.args, final)
}
if len(cmd.args) > 1 || final.IsValid() {
// TODO: functions
s.errorf("can't give argument to non-method %s", cmd.args[0])
}
switch word := cmd.args[0].(type) {
case *dotNode:
return data
case *boolNode:
return reflect.ValueOf(word.true)
case *numberNode:
// These are ideal constants but we don't know the type
// and we have no context. (If it was a method argument,
// we'd know what we need.) The syntax guides us to some extent.
switch {
case word.isComplex:
return reflect.ValueOf(word.complex128) // incontrovertible.
case word.isFloat && strings.IndexAny(word.text, ".eE") >= 0:
return reflect.ValueOf(word.float64)
case word.isInt:
return reflect.ValueOf(word.int64)
case word.isUint:
return reflect.ValueOf(word.uint64)
}
case *stringNode:
return reflect.ValueOf(word.text)
default:
s.errorf("can't handle command %q", firstWord)
}
panic("not reached")
}
func (s *state) evalFieldNode(data reflect.Value, field *fieldNode, args []node, final reflect.Value) reflect.Value {
// Up to the last entry, it must be a field.
n := len(field.ident)
for i := 0; i < n-1; i++ {
data = s.evalField(data, field.ident[i])
}
// Now it can be a field or method and if a method, gets arguments.
return s.evalMethodOrField(data, field.ident[n-1], args, final)
}
func (s *state) evalField(data reflect.Value, fieldName string) reflect.Value {
for data.Kind() == reflect.Ptr {
data = reflect.Indirect(data)
}
switch data.Kind() {
case reflect.Struct:
// Is it a field?
field := data.FieldByName(fieldName)
// TODO: look higher up the tree if we can't find it here. Also unexported fields
// might succeed higher up, as map keys.
if field.IsValid() && field.Type().PkgPath() == "" { // valid and exported
return field
}
s.errorf("%s has no field %s", data.Type(), fieldName)
default:
s.errorf("can't evaluate field %s of type %s", fieldName, data.Type())
}
panic("not reached")
}
func (s *state) evalMethodOrField(data reflect.Value, fieldName string, args []node, final reflect.Value) reflect.Value {
ptr := data
for data.Kind() == reflect.Ptr {
ptr, data = data, reflect.Indirect(data)
}
// Is it a method? We use the pointer because it has value methods too.
if method, ok := ptr.Type().MethodByName(fieldName); ok {
return s.evalMethod(ptr, method, args, final)
}
if len(args) > 1 || final.IsValid() {
s.errorf("%s is not a method but has arguments", fieldName)
}
switch data.Kind() {
case reflect.Struct:
return s.evalField(data, fieldName)
default:
s.errorf("can't handle evaluation of field %s of type %s", fieldName, data.Type())
}
panic("not reached")
}
var (
osErrorType = reflect.TypeOf(new(os.Error)).Elem()
)
func (s *state) evalMethod(v reflect.Value, method reflect.Method, args []node, final reflect.Value) reflect.Value {
typ := method.Type
fun := method.Func
numIn := len(args)
if final.IsValid() {
numIn++
}
if !typ.IsVariadic() && numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
s.errorf("wrong number of args for %s: want %d got %d", method.Name, typ.NumIn(), len(args))
}
// We allow methods with 1 result or 2 results where the second is an os.Error.
switch {
case typ.NumOut() == 1:
case typ.NumOut() == 2 && typ.Out(1) == osErrorType:
default:
s.errorf("can't handle multiple results from method %q", method.Name)
}
// Build the arg list.
argv := make([]reflect.Value, numIn)
// First arg is the receiver.
argv[0] = v
// Others must be evaluated.
for i := 1; i < len(args); i++ {
argv[i] = s.evalArg(v, typ.In(i), args[i])
}
// Add final value if necessary.
if final.IsValid() {
argv[len(args)] = final
}
result := fun.Call(argv)
// If we have an os.Error that is not nil, stop execution and return that error to the caller.
if len(result) == 2 && !result[1].IsNil() {
s.error(result[1].Interface().(os.Error))
}
return result[0]
}
func (s *state) evalArg(data reflect.Value, typ reflect.Type, n node) reflect.Value {
if field, ok := n.(*fieldNode); ok {
value := s.evalFieldNode(data, field, []node{n}, reflect.Value{})
if !value.Type().AssignableTo(typ) {
s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
}
return value
}
switch typ.Kind() {
case reflect.Bool:
return s.evalBool(data, typ, n)
case reflect.String:
return s.evalString(data, typ, n)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return s.evalInteger(data, typ, n)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return s.evalUnsignedInteger(data, typ, n)
case reflect.Float32, reflect.Float64:
return s.evalFloat(data, typ, n)
case reflect.Complex64, reflect.Complex128:
return s.evalComplex(data, typ, n)
}
s.errorf("can't handle node %s for method arg of type %s", n, typ)
panic("not reached")
}
func (s *state) evalBool(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*boolNode); ok {
value := reflect.New(typ).Elem()
value.SetBool(n.true)
return value
}
s.errorf("expected bool; found %s", n)
panic("not reached")
}
func (s *state) evalString(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*stringNode); ok {
value := reflect.New(typ).Elem()
value.SetString(n.text)
return value
}
s.errorf("expected string; found %s", n)
panic("not reached")
}
func (s *state) evalInteger(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*numberNode); ok && n.isInt {
value := reflect.New(typ).Elem()
value.SetInt(n.int64)
return value
}
s.errorf("expected integer; found %s", n)
panic("not reached")
}
func (s *state) evalUnsignedInteger(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*numberNode); ok && n.isUint {
value := reflect.New(typ).Elem()
value.SetUint(n.uint64)
return value
}
s.errorf("expected unsigned integer; found %s", n)
panic("not reached")
}
func (s *state) evalFloat(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*numberNode); ok && n.isFloat {
value := reflect.New(typ).Elem()
value.SetFloat(n.float64)
return value
}
s.errorf("expected float; found %s", n)
panic("not reached")
}
func (s *state) evalComplex(v reflect.Value, typ reflect.Type, n node) reflect.Value {
if n, ok := n.(*numberNode); ok && n.isComplex {
value := reflect.New(typ).Elem()
value.SetComplex(n.complex128)
return value
}
s.errorf("expected complex; found %s", n)
panic("not reached")
}
// printValue writes the textual representation of the value to the output of
// the template.
func (s *state) printValue(n node, v reflect.Value) {
if !v.IsValid() {
return
}
switch v.Kind() {
case reflect.Ptr:
if v.IsNil() {
s.errorf("%s: nil value", n)
}
case reflect.Chan, reflect.Func, reflect.Interface:
s.errorf("can't print %s of type %s", n, v.Type())
}
fmt.Fprint(s.wr, v.Interface())
}