| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "os_GOOS.h" |
| #include "signal_unix.h" |
| #include "stack.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| extern SigTab runtime·sigtab[]; |
| |
| static Sigset sigset_none; |
| static Sigset sigset_all = { ~(uint32)0, ~(uint32)0 }; |
| |
| // Linux futex. |
| // |
| // futexsleep(uint32 *addr, uint32 val) |
| // futexwakeup(uint32 *addr) |
| // |
| // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. |
| // Futexwakeup wakes up threads sleeping on addr. |
| // Futexsleep is allowed to wake up spuriously. |
| |
| enum |
| { |
| FUTEX_WAIT = 0, |
| FUTEX_WAKE = 1, |
| }; |
| |
| // Atomically, |
| // if(*addr == val) sleep |
| // Might be woken up spuriously; that's allowed. |
| // Don't sleep longer than ns; ns < 0 means forever. |
| #pragma textflag NOSPLIT |
| void |
| runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) |
| { |
| Timespec ts; |
| |
| // Some Linux kernels have a bug where futex of |
| // FUTEX_WAIT returns an internal error code |
| // as an errno. Libpthread ignores the return value |
| // here, and so can we: as it says a few lines up, |
| // spurious wakeups are allowed. |
| |
| if(ns < 0) { |
| runtime·futex(addr, FUTEX_WAIT, val, nil, nil, 0); |
| return; |
| } |
| // NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system. |
| ts.tv_nsec = 0; |
| ts.tv_sec = runtime·timediv(ns, 1000000000LL, (int32*)&ts.tv_nsec); |
| runtime·futex(addr, FUTEX_WAIT, val, &ts, nil, 0); |
| } |
| |
| // If any procs are sleeping on addr, wake up at most cnt. |
| void |
| runtime·futexwakeup(uint32 *addr, uint32 cnt) |
| { |
| int64 ret; |
| |
| ret = runtime·futex(addr, FUTEX_WAKE, cnt, nil, nil, 0); |
| |
| if(ret >= 0) |
| return; |
| |
| // I don't know that futex wakeup can return |
| // EAGAIN or EINTR, but if it does, it would be |
| // safe to loop and call futex again. |
| runtime·printf("futexwakeup addr=%p returned %D\n", addr, ret); |
| *(int32*)0x1006 = 0x1006; |
| } |
| |
| extern runtime·sched_getaffinity(uintptr pid, uintptr len, uintptr *buf); |
| static int32 |
| getproccount(void) |
| { |
| uintptr buf[16], t; |
| int32 r, cnt, i; |
| |
| cnt = 0; |
| r = runtime·sched_getaffinity(0, sizeof(buf), buf); |
| if(r > 0) |
| for(i = 0; i < r/sizeof(buf[0]); i++) { |
| t = buf[i]; |
| t = t - ((t >> 1) & 0x5555555555555555ULL); |
| t = (t & 0x3333333333333333ULL) + ((t >> 2) & 0x3333333333333333ULL); |
| cnt += (int32)((((t + (t >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56); |
| } |
| |
| return cnt ? cnt : 1; |
| } |
| |
| // Clone, the Linux rfork. |
| enum |
| { |
| CLONE_VM = 0x100, |
| CLONE_FS = 0x200, |
| CLONE_FILES = 0x400, |
| CLONE_SIGHAND = 0x800, |
| CLONE_PTRACE = 0x2000, |
| CLONE_VFORK = 0x4000, |
| CLONE_PARENT = 0x8000, |
| CLONE_THREAD = 0x10000, |
| CLONE_NEWNS = 0x20000, |
| CLONE_SYSVSEM = 0x40000, |
| CLONE_SETTLS = 0x80000, |
| CLONE_PARENT_SETTID = 0x100000, |
| CLONE_CHILD_CLEARTID = 0x200000, |
| CLONE_UNTRACED = 0x800000, |
| CLONE_CHILD_SETTID = 0x1000000, |
| CLONE_STOPPED = 0x2000000, |
| CLONE_NEWUTS = 0x4000000, |
| CLONE_NEWIPC = 0x8000000, |
| }; |
| |
| void |
| runtime·newosproc(M *mp, void *stk) |
| { |
| int32 ret; |
| int32 flags; |
| Sigset oset; |
| |
| /* |
| * note: strace gets confused if we use CLONE_PTRACE here. |
| */ |
| flags = CLONE_VM /* share memory */ |
| | CLONE_FS /* share cwd, etc */ |
| | CLONE_FILES /* share fd table */ |
| | CLONE_SIGHAND /* share sig handler table */ |
| | CLONE_THREAD /* revisit - okay for now */ |
| ; |
| |
| mp->tls[0] = mp->id; // so 386 asm can find it |
| if(0){ |
| runtime·printf("newosproc stk=%p m=%p g=%p clone=%p id=%d/%d ostk=%p\n", |
| stk, mp, mp->g0, runtime·clone, mp->id, (int32)mp->tls[0], &mp); |
| } |
| |
| // Disable signals during clone, so that the new thread starts |
| // with signals disabled. It will enable them in minit. |
| runtime·rtsigprocmask(SIG_SETMASK, &sigset_all, &oset, sizeof oset); |
| ret = runtime·clone(flags, stk, mp, mp->g0, runtime·mstart); |
| runtime·rtsigprocmask(SIG_SETMASK, &oset, nil, sizeof oset); |
| |
| if(ret < 0) { |
| runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -ret); |
| runtime·throw("runtime.newosproc"); |
| } |
| } |
| |
| void |
| runtime·osinit(void) |
| { |
| runtime·ncpu = getproccount(); |
| } |
| |
| // Random bytes initialized at startup. These come |
| // from the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.c). |
| byte* runtime·startup_random_data; |
| uint32 runtime·startup_random_data_len; |
| |
| void |
| runtime·get_random_data(byte **rnd, int32 *rnd_len) |
| { |
| if(runtime·startup_random_data != nil) { |
| *rnd = runtime·startup_random_data; |
| *rnd_len = runtime·startup_random_data_len; |
| } else { |
| #pragma dataflag NOPTR |
| static byte urandom_data[HashRandomBytes]; |
| int32 fd; |
| fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); |
| if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { |
| *rnd = urandom_data; |
| *rnd_len = HashRandomBytes; |
| } else { |
| *rnd = nil; |
| *rnd_len = 0; |
| } |
| runtime·close(fd); |
| } |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| void |
| runtime·mpreinit(M *mp) |
| { |
| mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, can not allocate memory. |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling. |
| runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); |
| runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof(Sigset)); |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| void |
| runtime·unminit(void) |
| { |
| runtime·signalstack(nil, 0); |
| } |
| |
| void |
| runtime·sigpanic(void) |
| { |
| if(!runtime·canpanic(g)) |
| runtime·throw("unexpected signal during runtime execution"); |
| |
| switch(g->sig) { |
| case SIGBUS: |
| if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000 || g->paniconfault) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGSEGV: |
| if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000 || g->paniconfault) { |
| if(g->sigpc == 0) |
| runtime·panicstring("call of nil func value"); |
| runtime·panicstring("invalid memory address or nil pointer dereference"); |
| } |
| runtime·printf("unexpected fault address %p\n", g->sigcode1); |
| runtime·throw("fault"); |
| case SIGFPE: |
| switch(g->sigcode0) { |
| case FPE_INTDIV: |
| runtime·panicstring("integer divide by zero"); |
| case FPE_INTOVF: |
| runtime·panicstring("integer overflow"); |
| } |
| runtime·panicstring("floating point error"); |
| } |
| runtime·panicstring(runtime·sigtab[g->sig].name); |
| } |
| |
| uintptr |
| runtime·memlimit(void) |
| { |
| Rlimit rl; |
| extern byte text[], end[]; |
| uintptr used; |
| |
| if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) |
| return 0; |
| if(rl.rlim_cur >= 0x7fffffff) |
| return 0; |
| |
| // Estimate our VM footprint excluding the heap. |
| // Not an exact science: use size of binary plus |
| // some room for thread stacks. |
| used = end - text + (64<<20); |
| if(used >= rl.rlim_cur) |
| return 0; |
| |
| // If there's not at least 16 MB left, we're probably |
| // not going to be able to do much. Treat as no limit. |
| rl.rlim_cur -= used; |
| if(rl.rlim_cur < (16<<20)) |
| return 0; |
| |
| return rl.rlim_cur - used; |
| } |
| |
| #ifdef GOARCH_386 |
| #define sa_handler k_sa_handler |
| #endif |
| |
| /* |
| * This assembler routine takes the args from registers, puts them on the stack, |
| * and calls sighandler(). |
| */ |
| extern void runtime·sigtramp(void); |
| extern void runtime·sigreturn(void); // calls runtime·sigreturn |
| |
| void |
| runtime·setsig(int32 i, GoSighandler *fn, bool restart) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask = ~0ULL; |
| // TODO(adonovan): Linux manpage says "sa_restorer element is |
| // obsolete and should not be used". Avoid it here, and test. |
| sa.sa_restorer = (void*)runtime·sigreturn; |
| if(fn == runtime·sighandler) |
| fn = (void*)runtime·sigtramp; |
| sa.sa_handler = fn; |
| if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0) |
| runtime·throw("rt_sigaction failure"); |
| } |
| |
| GoSighandler* |
| runtime·getsig(int32 i) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0) |
| runtime·throw("rt_sigaction read failure"); |
| if((void*)sa.sa_handler == runtime·sigtramp) |
| return runtime·sighandler; |
| return (void*)sa.sa_handler; |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| Sigaltstack st; |
| |
| st.ss_sp = p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| if(p == nil) |
| st.ss_flags = SS_DISABLE; |
| runtime·sigaltstack(&st, nil); |
| } |
| |
| void |
| runtime·unblocksignals(void) |
| { |
| runtime·rtsigprocmask(SIG_SETMASK, &sigset_none, nil, sizeof sigset_none); |
| } |