| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package time_test |
| |
| import ( |
| "fmt" |
| "time" |
| ) |
| |
| func expensiveCall() {} |
| |
| func ExampleDuration() { |
| t0 := time.Now() |
| expensiveCall() |
| t1 := time.Now() |
| fmt.Printf("The call took %v to run.\n", t1.Sub(t0)) |
| } |
| |
| func ExampleDuration_Round() { |
| d, err := time.ParseDuration("1h15m30.918273645s") |
| if err != nil { |
| panic(err) |
| } |
| |
| round := []time.Duration{ |
| time.Nanosecond, |
| time.Microsecond, |
| time.Millisecond, |
| time.Second, |
| 2 * time.Second, |
| time.Minute, |
| 10 * time.Minute, |
| time.Hour, |
| } |
| |
| for _, r := range round { |
| fmt.Printf("d.Round(%6s) = %s\n", r, d.Round(r).String()) |
| } |
| // Output: |
| // d.Round( 1ns) = 1h15m30.918273645s |
| // d.Round( 1µs) = 1h15m30.918274s |
| // d.Round( 1ms) = 1h15m30.918s |
| // d.Round( 1s) = 1h15m31s |
| // d.Round( 2s) = 1h15m30s |
| // d.Round( 1m0s) = 1h16m0s |
| // d.Round( 10m0s) = 1h20m0s |
| // d.Round(1h0m0s) = 1h0m0s |
| } |
| |
| func ExampleDuration_String() { |
| fmt.Println(1*time.Hour + 2*time.Minute + 300*time.Millisecond) |
| fmt.Println(300 * time.Millisecond) |
| // Output: |
| // 1h2m0.3s |
| // 300ms |
| } |
| |
| func ExampleDuration_Truncate() { |
| d, err := time.ParseDuration("1h15m30.918273645s") |
| if err != nil { |
| panic(err) |
| } |
| |
| trunc := []time.Duration{ |
| time.Nanosecond, |
| time.Microsecond, |
| time.Millisecond, |
| time.Second, |
| 2 * time.Second, |
| time.Minute, |
| 10 * time.Minute, |
| time.Hour, |
| } |
| |
| for _, t := range trunc { |
| fmt.Printf("d.Truncate(%6s) = %s\n", t, d.Truncate(t).String()) |
| } |
| // Output: |
| // d.Truncate( 1ns) = 1h15m30.918273645s |
| // d.Truncate( 1µs) = 1h15m30.918273s |
| // d.Truncate( 1ms) = 1h15m30.918s |
| // d.Truncate( 1s) = 1h15m30s |
| // d.Truncate( 2s) = 1h15m30s |
| // d.Truncate( 1m0s) = 1h15m0s |
| // d.Truncate( 10m0s) = 1h10m0s |
| // d.Truncate(1h0m0s) = 1h0m0s |
| } |
| |
| func ExampleParseDuration() { |
| hours, _ := time.ParseDuration("10h") |
| complex, _ := time.ParseDuration("1h10m10s") |
| micro, _ := time.ParseDuration("1µs") |
| // The package also accepts the incorrect but common prefix u for micro. |
| micro2, _ := time.ParseDuration("1us") |
| |
| fmt.Println(hours) |
| fmt.Println(complex) |
| fmt.Printf("There are %.0f seconds in %v.\n", complex.Seconds(), complex) |
| fmt.Printf("There are %d nanoseconds in %v.\n", micro.Nanoseconds(), micro) |
| fmt.Printf("There are %6.2e seconds in %v.\n", micro2.Seconds(), micro) |
| // Output: |
| // 10h0m0s |
| // 1h10m10s |
| // There are 4210 seconds in 1h10m10s. |
| // There are 1000 nanoseconds in 1µs. |
| // There are 1.00e-06 seconds in 1µs. |
| } |
| |
| func ExampleDuration_Hours() { |
| h, _ := time.ParseDuration("4h30m") |
| fmt.Printf("I've got %.1f hours of work left.", h.Hours()) |
| // Output: I've got 4.5 hours of work left. |
| } |
| |
| func ExampleDuration_Microseconds() { |
| u, _ := time.ParseDuration("1s") |
| fmt.Printf("One second is %d microseconds.\n", u.Microseconds()) |
| // Output: |
| // One second is 1000000 microseconds. |
| } |
| |
| func ExampleDuration_Milliseconds() { |
| u, _ := time.ParseDuration("1s") |
| fmt.Printf("One second is %d milliseconds.\n", u.Milliseconds()) |
| // Output: |
| // One second is 1000 milliseconds. |
| } |
| |
| func ExampleDuration_Minutes() { |
| m, _ := time.ParseDuration("1h30m") |
| fmt.Printf("The movie is %.0f minutes long.", m.Minutes()) |
| // Output: The movie is 90 minutes long. |
| } |
| |
| func ExampleDuration_Nanoseconds() { |
| u, _ := time.ParseDuration("1µs") |
| fmt.Printf("One microsecond is %d nanoseconds.\n", u.Nanoseconds()) |
| // Output: |
| // One microsecond is 1000 nanoseconds. |
| } |
| |
| func ExampleDuration_Seconds() { |
| m, _ := time.ParseDuration("1m30s") |
| fmt.Printf("Take off in t-%.0f seconds.", m.Seconds()) |
| // Output: Take off in t-90 seconds. |
| } |
| |
| var c chan int |
| |
| func handle(int) {} |
| |
| func ExampleAfter() { |
| select { |
| case m := <-c: |
| handle(m) |
| case <-time.After(10 * time.Second): |
| fmt.Println("timed out") |
| } |
| } |
| |
| func ExampleSleep() { |
| time.Sleep(100 * time.Millisecond) |
| } |
| |
| func statusUpdate() string { return "" } |
| |
| func ExampleTick() { |
| c := time.Tick(5 * time.Second) |
| for next := range c { |
| fmt.Printf("%v %s\n", next, statusUpdate()) |
| } |
| } |
| |
| func ExampleMonth() { |
| _, month, day := time.Now().Date() |
| if month == time.November && day == 10 { |
| fmt.Println("Happy Go day!") |
| } |
| } |
| |
| func ExampleDate() { |
| t := time.Date(2009, time.November, 10, 23, 0, 0, 0, time.UTC) |
| fmt.Printf("Go launched at %s\n", t.Local()) |
| // Output: Go launched at 2009-11-10 15:00:00 -0800 PST |
| } |
| |
| func ExampleNewTicker() { |
| ticker := time.NewTicker(time.Second) |
| defer ticker.Stop() |
| done := make(chan bool) |
| go func() { |
| time.Sleep(10 * time.Second) |
| done <- true |
| }() |
| for { |
| select { |
| case <-done: |
| fmt.Println("Done!") |
| return |
| case t := <-ticker.C: |
| fmt.Println("Current time: ", t) |
| } |
| } |
| } |
| |
| func ExampleTime_Format() { |
| // Parse a time value from a string in the standard Unix format. |
| t, err := time.Parse(time.UnixDate, "Wed Feb 25 11:06:39 PST 2015") |
| if err != nil { // Always check errors even if they should not happen. |
| panic(err) |
| } |
| |
| // time.Time's Stringer method is useful without any format. |
| fmt.Println("default format:", t) |
| |
| // Predefined constants in the package implement common layouts. |
| fmt.Println("Unix format:", t.Format(time.UnixDate)) |
| |
| // The time zone attached to the time value affects its output. |
| fmt.Println("Same, in UTC:", t.UTC().Format(time.UnixDate)) |
| |
| // The rest of this function demonstrates the properties of the |
| // layout string used in the format. |
| |
| // The layout string used by the Parse function and Format method |
| // shows by example how the reference time should be represented. |
| // We stress that one must show how the reference time is formatted, |
| // not a time of the user's choosing. Thus each layout string is a |
| // representation of the time stamp, |
| // Jan 2 15:04:05 2006 MST |
| // An easy way to remember this value is that it holds, when presented |
| // in this order, the values (lined up with the elements above): |
| // 1 2 3 4 5 6 -7 |
| // There are some wrinkles illustrated below. |
| |
| // Most uses of Format and Parse use constant layout strings such as |
| // the ones defined in this package, but the interface is flexible, |
| // as these examples show. |
| |
| // Define a helper function to make the examples' output look nice. |
| do := func(name, layout, want string) { |
| got := t.Format(layout) |
| if want != got { |
| fmt.Printf("error: for %q got %q; expected %q\n", layout, got, want) |
| return |
| } |
| fmt.Printf("%-16s %q gives %q\n", name, layout, got) |
| } |
| |
| // Print a header in our output. |
| fmt.Printf("\nFormats:\n\n") |
| |
| // Simple starter examples. |
| do("Basic full date", "Mon Jan 2 15:04:05 MST 2006", "Wed Feb 25 11:06:39 PST 2015") |
| do("Basic short date", "2006/01/02", "2015/02/25") |
| |
| // The hour of the reference time is 15, or 3PM. The layout can express |
| // it either way, and since our value is the morning we should see it as |
| // an AM time. We show both in one format string. Lower case too. |
| do("AM/PM", "3PM==3pm==15h", "11AM==11am==11h") |
| |
| // When parsing, if the seconds value is followed by a decimal point |
| // and some digits, that is taken as a fraction of a second even if |
| // the layout string does not represent the fractional second. |
| // Here we add a fractional second to our time value used above. |
| t, err = time.Parse(time.UnixDate, "Wed Feb 25 11:06:39.1234 PST 2015") |
| if err != nil { |
| panic(err) |
| } |
| // It does not appear in the output if the layout string does not contain |
| // a representation of the fractional second. |
| do("No fraction", time.UnixDate, "Wed Feb 25 11:06:39 PST 2015") |
| |
| // Fractional seconds can be printed by adding a run of 0s or 9s after |
| // a decimal point in the seconds value in the layout string. |
| // If the layout digits are 0s, the fractional second is of the specified |
| // width. Note that the output has a trailing zero. |
| do("0s for fraction", "15:04:05.00000", "11:06:39.12340") |
| |
| // If the fraction in the layout is 9s, trailing zeros are dropped. |
| do("9s for fraction", "15:04:05.99999999", "11:06:39.1234") |
| |
| // Output: |
| // default format: 2015-02-25 11:06:39 -0800 PST |
| // Unix format: Wed Feb 25 11:06:39 PST 2015 |
| // Same, in UTC: Wed Feb 25 19:06:39 UTC 2015 |
| // |
| // Formats: |
| // |
| // Basic full date "Mon Jan 2 15:04:05 MST 2006" gives "Wed Feb 25 11:06:39 PST 2015" |
| // Basic short date "2006/01/02" gives "2015/02/25" |
| // AM/PM "3PM==3pm==15h" gives "11AM==11am==11h" |
| // No fraction "Mon Jan _2 15:04:05 MST 2006" gives "Wed Feb 25 11:06:39 PST 2015" |
| // 0s for fraction "15:04:05.00000" gives "11:06:39.12340" |
| // 9s for fraction "15:04:05.99999999" gives "11:06:39.1234" |
| |
| } |
| |
| func ExampleTime_Format_pad() { |
| // Parse a time value from a string in the standard Unix format. |
| t, err := time.Parse(time.UnixDate, "Sat Mar 7 11:06:39 PST 2015") |
| if err != nil { // Always check errors even if they should not happen. |
| panic(err) |
| } |
| |
| // Define a helper function to make the examples' output look nice. |
| do := func(name, layout, want string) { |
| got := t.Format(layout) |
| if want != got { |
| fmt.Printf("error: for %q got %q; expected %q\n", layout, got, want) |
| return |
| } |
| fmt.Printf("%-16s %q gives %q\n", name, layout, got) |
| } |
| |
| // The predefined constant Unix uses an underscore to pad the day. |
| do("Unix", time.UnixDate, "Sat Mar 7 11:06:39 PST 2015") |
| |
| // For fixed-width printing of values, such as the date, that may be one or |
| // two characters (7 vs. 07), use an _ instead of a space in the layout string. |
| // Here we print just the day, which is 2 in our layout string and 7 in our |
| // value. |
| do("No pad", "<2>", "<7>") |
| |
| // An underscore represents a space pad, if the date only has one digit. |
| do("Spaces", "<_2>", "< 7>") |
| |
| // A "0" indicates zero padding for single-digit values. |
| do("Zeros", "<02>", "<07>") |
| |
| // If the value is already the right width, padding is not used. |
| // For instance, the second (05 in the reference time) in our value is 39, |
| // so it doesn't need padding, but the minutes (04, 06) does. |
| do("Suppressed pad", "04:05", "06:39") |
| |
| // Output: |
| // Unix "Mon Jan _2 15:04:05 MST 2006" gives "Sat Mar 7 11:06:39 PST 2015" |
| // No pad "<2>" gives "<7>" |
| // Spaces "<_2>" gives "< 7>" |
| // Zeros "<02>" gives "<07>" |
| // Suppressed pad "04:05" gives "06:39" |
| |
| } |
| |
| func ExampleParse() { |
| // See the example for Time.Format for a thorough description of how |
| // to define the layout string to parse a time.Time value; Parse and |
| // Format use the same model to describe their input and output. |
| |
| // longForm shows by example how the reference time would be represented in |
| // the desired layout. |
| const longForm = "Jan 2, 2006 at 3:04pm (MST)" |
| t, _ := time.Parse(longForm, "Feb 3, 2013 at 7:54pm (PST)") |
| fmt.Println(t) |
| |
| // shortForm is another way the reference time would be represented |
| // in the desired layout; it has no time zone present. |
| // Note: without explicit zone, returns time in UTC. |
| const shortForm = "2006-Jan-02" |
| t, _ = time.Parse(shortForm, "2013-Feb-03") |
| fmt.Println(t) |
| |
| // Some valid layouts are invalid time values, due to format specifiers |
| // such as _ for space padding and Z for zone information. |
| // For example the RFC3339 layout 2006-01-02T15:04:05Z07:00 |
| // contains both Z and a time zone offset in order to handle both valid options: |
| // 2006-01-02T15:04:05Z |
| // 2006-01-02T15:04:05+07:00 |
| t, _ = time.Parse(time.RFC3339, "2006-01-02T15:04:05Z") |
| fmt.Println(t) |
| t, _ = time.Parse(time.RFC3339, "2006-01-02T15:04:05+07:00") |
| fmt.Println(t) |
| _, err := time.Parse(time.RFC3339, time.RFC3339) |
| fmt.Println("error", err) // Returns an error as the layout is not a valid time value |
| |
| // Output: |
| // 2013-02-03 19:54:00 -0800 PST |
| // 2013-02-03 00:00:00 +0000 UTC |
| // 2006-01-02 15:04:05 +0000 UTC |
| // 2006-01-02 15:04:05 +0700 +0700 |
| // error parsing time "2006-01-02T15:04:05Z07:00": extra text: "07:00" |
| } |
| |
| func ExampleParseInLocation() { |
| loc, _ := time.LoadLocation("Europe/Berlin") |
| |
| // This will look for the name CEST in the Europe/Berlin time zone. |
| const longForm = "Jan 2, 2006 at 3:04pm (MST)" |
| t, _ := time.ParseInLocation(longForm, "Jul 9, 2012 at 5:02am (CEST)", loc) |
| fmt.Println(t) |
| |
| // Note: without explicit zone, returns time in given location. |
| const shortForm = "2006-Jan-02" |
| t, _ = time.ParseInLocation(shortForm, "2012-Jul-09", loc) |
| fmt.Println(t) |
| |
| // Output: |
| // 2012-07-09 05:02:00 +0200 CEST |
| // 2012-07-09 00:00:00 +0200 CEST |
| } |
| |
| func ExampleTime_Unix() { |
| // 1 billion seconds of Unix, three ways. |
| fmt.Println(time.Unix(1e9, 0).UTC()) // 1e9 seconds |
| fmt.Println(time.Unix(0, 1e18).UTC()) // 1e18 nanoseconds |
| fmt.Println(time.Unix(2e9, -1e18).UTC()) // 2e9 seconds - 1e18 nanoseconds |
| |
| t := time.Date(2001, time.September, 9, 1, 46, 40, 0, time.UTC) |
| fmt.Println(t.Unix()) // seconds since 1970 |
| fmt.Println(t.UnixNano()) // nanoseconds since 1970 |
| |
| // Output: |
| // 2001-09-09 01:46:40 +0000 UTC |
| // 2001-09-09 01:46:40 +0000 UTC |
| // 2001-09-09 01:46:40 +0000 UTC |
| // 1000000000 |
| // 1000000000000000000 |
| } |
| |
| func ExampleTime_Round() { |
| t := time.Date(0, 0, 0, 12, 15, 30, 918273645, time.UTC) |
| round := []time.Duration{ |
| time.Nanosecond, |
| time.Microsecond, |
| time.Millisecond, |
| time.Second, |
| 2 * time.Second, |
| time.Minute, |
| 10 * time.Minute, |
| time.Hour, |
| } |
| |
| for _, d := range round { |
| fmt.Printf("t.Round(%6s) = %s\n", d, t.Round(d).Format("15:04:05.999999999")) |
| } |
| // Output: |
| // t.Round( 1ns) = 12:15:30.918273645 |
| // t.Round( 1µs) = 12:15:30.918274 |
| // t.Round( 1ms) = 12:15:30.918 |
| // t.Round( 1s) = 12:15:31 |
| // t.Round( 2s) = 12:15:30 |
| // t.Round( 1m0s) = 12:16:00 |
| // t.Round( 10m0s) = 12:20:00 |
| // t.Round(1h0m0s) = 12:00:00 |
| } |
| |
| func ExampleTime_Truncate() { |
| t, _ := time.Parse("2006 Jan 02 15:04:05", "2012 Dec 07 12:15:30.918273645") |
| trunc := []time.Duration{ |
| time.Nanosecond, |
| time.Microsecond, |
| time.Millisecond, |
| time.Second, |
| 2 * time.Second, |
| time.Minute, |
| 10 * time.Minute, |
| } |
| |
| for _, d := range trunc { |
| fmt.Printf("t.Truncate(%5s) = %s\n", d, t.Truncate(d).Format("15:04:05.999999999")) |
| } |
| // To round to the last midnight in the local timezone, create a new Date. |
| midnight := time.Date(t.Year(), t.Month(), t.Day(), 0, 0, 0, 0, time.Local) |
| _ = midnight |
| |
| // Output: |
| // t.Truncate( 1ns) = 12:15:30.918273645 |
| // t.Truncate( 1µs) = 12:15:30.918273 |
| // t.Truncate( 1ms) = 12:15:30.918 |
| // t.Truncate( 1s) = 12:15:30 |
| // t.Truncate( 2s) = 12:15:30 |
| // t.Truncate( 1m0s) = 12:15:00 |
| // t.Truncate(10m0s) = 12:10:00 |
| } |
| |
| func ExampleLoadLocation() { |
| location, err := time.LoadLocation("America/Los_Angeles") |
| if err != nil { |
| panic(err) |
| } |
| |
| timeInUTC := time.Date(2018, 8, 30, 12, 0, 0, 0, time.UTC) |
| fmt.Println(timeInUTC.In(location)) |
| // Output: 2018-08-30 05:00:00 -0700 PDT |
| } |
| |
| func ExampleLocation() { |
| // China doesn't have daylight saving. It uses a fixed 8 hour offset from UTC. |
| secondsEastOfUTC := int((8 * time.Hour).Seconds()) |
| beijing := time.FixedZone("Beijing Time", secondsEastOfUTC) |
| |
| // If the system has a timezone database present, it's possible to load a location |
| // from that, e.g.: |
| // newYork, err := time.LoadLocation("America/New_York") |
| |
| // Creating a time requires a location. Common locations are time.Local and time.UTC. |
| timeInUTC := time.Date(2009, 1, 1, 12, 0, 0, 0, time.UTC) |
| sameTimeInBeijing := time.Date(2009, 1, 1, 20, 0, 0, 0, beijing) |
| |
| // Although the UTC clock time is 1200 and the Beijing clock time is 2000, Beijing is |
| // 8 hours ahead so the two dates actually represent the same instant. |
| timesAreEqual := timeInUTC.Equal(sameTimeInBeijing) |
| fmt.Println(timesAreEqual) |
| |
| // Output: |
| // true |
| } |
| |
| func ExampleTime_Add() { |
| start := time.Date(2009, 1, 1, 12, 0, 0, 0, time.UTC) |
| afterTenSeconds := start.Add(time.Second * 10) |
| afterTenMinutes := start.Add(time.Minute * 10) |
| afterTenHours := start.Add(time.Hour * 10) |
| afterTenDays := start.Add(time.Hour * 24 * 10) |
| |
| fmt.Printf("start = %v\n", start) |
| fmt.Printf("start.Add(time.Second * 10) = %v\n", afterTenSeconds) |
| fmt.Printf("start.Add(time.Minute * 10) = %v\n", afterTenMinutes) |
| fmt.Printf("start.Add(time.Hour * 10) = %v\n", afterTenHours) |
| fmt.Printf("start.Add(time.Hour * 24 * 10) = %v\n", afterTenDays) |
| |
| // Output: |
| // start = 2009-01-01 12:00:00 +0000 UTC |
| // start.Add(time.Second * 10) = 2009-01-01 12:00:10 +0000 UTC |
| // start.Add(time.Minute * 10) = 2009-01-01 12:10:00 +0000 UTC |
| // start.Add(time.Hour * 10) = 2009-01-01 22:00:00 +0000 UTC |
| // start.Add(time.Hour * 24 * 10) = 2009-01-11 12:00:00 +0000 UTC |
| } |
| |
| func ExampleTime_AddDate() { |
| start := time.Date(2009, 1, 1, 0, 0, 0, 0, time.UTC) |
| oneDayLater := start.AddDate(0, 0, 1) |
| oneMonthLater := start.AddDate(0, 1, 0) |
| oneYearLater := start.AddDate(1, 0, 0) |
| |
| fmt.Printf("oneDayLater: start.AddDate(0, 0, 1) = %v\n", oneDayLater) |
| fmt.Printf("oneMonthLater: start.AddDate(0, 1, 0) = %v\n", oneMonthLater) |
| fmt.Printf("oneYearLater: start.AddDate(1, 0, 0) = %v\n", oneYearLater) |
| |
| // Output: |
| // oneDayLater: start.AddDate(0, 0, 1) = 2009-01-02 00:00:00 +0000 UTC |
| // oneMonthLater: start.AddDate(0, 1, 0) = 2009-02-01 00:00:00 +0000 UTC |
| // oneYearLater: start.AddDate(1, 0, 0) = 2010-01-01 00:00:00 +0000 UTC |
| } |
| |
| func ExampleTime_After() { |
| year2000 := time.Date(2000, 1, 1, 0, 0, 0, 0, time.UTC) |
| year3000 := time.Date(3000, 1, 1, 0, 0, 0, 0, time.UTC) |
| |
| isYear3000AfterYear2000 := year3000.After(year2000) // True |
| isYear2000AfterYear3000 := year2000.After(year3000) // False |
| |
| fmt.Printf("year3000.After(year2000) = %v\n", isYear3000AfterYear2000) |
| fmt.Printf("year2000.After(year3000) = %v\n", isYear2000AfterYear3000) |
| |
| // Output: |
| // year3000.After(year2000) = true |
| // year2000.After(year3000) = false |
| } |
| |
| func ExampleTime_Before() { |
| year2000 := time.Date(2000, 1, 1, 0, 0, 0, 0, time.UTC) |
| year3000 := time.Date(3000, 1, 1, 0, 0, 0, 0, time.UTC) |
| |
| isYear2000BeforeYear3000 := year2000.Before(year3000) // True |
| isYear3000BeforeYear2000 := year3000.Before(year2000) // False |
| |
| fmt.Printf("year2000.Before(year3000) = %v\n", isYear2000BeforeYear3000) |
| fmt.Printf("year3000.Before(year2000) = %v\n", isYear3000BeforeYear2000) |
| |
| // Output: |
| // year2000.Before(year3000) = true |
| // year3000.Before(year2000) = false |
| } |
| |
| func ExampleTime_Date() { |
| d := time.Date(2000, 2, 1, 12, 30, 0, 0, time.UTC) |
| year, month, day := d.Date() |
| |
| fmt.Printf("year = %v\n", year) |
| fmt.Printf("month = %v\n", month) |
| fmt.Printf("day = %v\n", day) |
| |
| // Output: |
| // year = 2000 |
| // month = February |
| // day = 1 |
| } |
| |
| func ExampleTime_Day() { |
| d := time.Date(2000, 2, 1, 12, 30, 0, 0, time.UTC) |
| day := d.Day() |
| |
| fmt.Printf("day = %v\n", day) |
| |
| // Output: |
| // day = 1 |
| } |
| |
| func ExampleTime_Equal() { |
| secondsEastOfUTC := int((8 * time.Hour).Seconds()) |
| beijing := time.FixedZone("Beijing Time", secondsEastOfUTC) |
| |
| // Unlike the equal operator, Equal is aware that d1 and d2 are the |
| // same instant but in different time zones. |
| d1 := time.Date(2000, 2, 1, 12, 30, 0, 0, time.UTC) |
| d2 := time.Date(2000, 2, 1, 20, 30, 0, 0, beijing) |
| |
| datesEqualUsingEqualOperator := d1 == d2 |
| datesEqualUsingFunction := d1.Equal(d2) |
| |
| fmt.Printf("datesEqualUsingEqualOperator = %v\n", datesEqualUsingEqualOperator) |
| fmt.Printf("datesEqualUsingFunction = %v\n", datesEqualUsingFunction) |
| |
| // Output: |
| // datesEqualUsingEqualOperator = false |
| // datesEqualUsingFunction = true |
| } |
| |
| func ExampleTime_String() { |
| timeWithNanoseconds := time.Date(2000, 2, 1, 12, 13, 14, 15, time.UTC) |
| withNanoseconds := timeWithNanoseconds.String() |
| |
| timeWithoutNanoseconds := time.Date(2000, 2, 1, 12, 13, 14, 0, time.UTC) |
| withoutNanoseconds := timeWithoutNanoseconds.String() |
| |
| fmt.Printf("withNanoseconds = %v\n", string(withNanoseconds)) |
| fmt.Printf("withoutNanoseconds = %v\n", string(withoutNanoseconds)) |
| |
| // Output: |
| // withNanoseconds = 2000-02-01 12:13:14.000000015 +0000 UTC |
| // withoutNanoseconds = 2000-02-01 12:13:14 +0000 UTC |
| } |
| |
| func ExampleTime_Sub() { |
| start := time.Date(2000, 1, 1, 0, 0, 0, 0, time.UTC) |
| end := time.Date(2000, 1, 1, 12, 0, 0, 0, time.UTC) |
| |
| difference := end.Sub(start) |
| fmt.Printf("difference = %v\n", difference) |
| |
| // Output: |
| // difference = 12h0m0s |
| } |
| |
| func ExampleTime_AppendFormat() { |
| t := time.Date(2017, time.November, 4, 11, 0, 0, 0, time.UTC) |
| text := []byte("Time: ") |
| |
| text = t.AppendFormat(text, time.Kitchen) |
| fmt.Println(string(text)) |
| |
| // Output: |
| // Time: 11:00AM |
| } |
| |
| func ExampleFixedZone() { |
| loc := time.FixedZone("UTC-8", -8*60*60) |
| t := time.Date(2009, time.November, 10, 23, 0, 0, 0, loc) |
| fmt.Println("The time is:", t.Format(time.RFC822)) |
| // Output: The time is: 10 Nov 09 23:00 UTC-8 |
| } |