| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package big |
| |
| import ( |
| "math" |
| "testing" |
| ) |
| |
| func TestZeroRat(t *testing.T) { |
| var x, y, z Rat |
| y.SetFrac64(0, 42) |
| |
| if x.Cmp(&y) != 0 { |
| t.Errorf("x and y should be both equal and zero") |
| } |
| |
| if s := x.String(); s != "0/1" { |
| t.Errorf("got x = %s, want 0/1", s) |
| } |
| |
| if s := x.RatString(); s != "0" { |
| t.Errorf("got x = %s, want 0", s) |
| } |
| |
| z.Add(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x+y = %s, want 0", s) |
| } |
| |
| z.Sub(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x-y = %s, want 0", s) |
| } |
| |
| z.Mul(&x, &y) |
| if s := z.RatString(); s != "0" { |
| t.Errorf("got x*y = %s, want 0", s) |
| } |
| |
| // check for division by zero |
| defer func() { |
| if s := recover(); s == nil || s.(string) != "division by zero" { |
| panic(s) |
| } |
| }() |
| z.Quo(&x, &y) |
| } |
| |
| func TestRatSign(t *testing.T) { |
| zero := NewRat(0, 1) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| s := x.Sign() |
| e := x.Cmp(zero) |
| if s != e { |
| t.Errorf("got %d; want %d for z = %v", s, e, &x) |
| } |
| } |
| } |
| |
| var ratCmpTests = []struct { |
| rat1, rat2 string |
| out int |
| }{ |
| {"0", "0/1", 0}, |
| {"1/1", "1", 0}, |
| {"-1", "-2/2", 0}, |
| {"1", "0", 1}, |
| {"0/1", "1/1", -1}, |
| {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, |
| {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, |
| {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, |
| {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, |
| } |
| |
| func TestRatCmp(t *testing.T) { |
| for i, test := range ratCmpTests { |
| x, _ := new(Rat).SetString(test.rat1) |
| y, _ := new(Rat).SetString(test.rat2) |
| |
| out := x.Cmp(y) |
| if out != test.out { |
| t.Errorf("#%d got out = %v; want %v", i, out, test.out) |
| } |
| } |
| } |
| |
| func TestIsInt(t *testing.T) { |
| one := NewInt(1) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| i := x.IsInt() |
| e := x.Denom().Cmp(one) == 0 |
| if i != e { |
| t.Errorf("got IsInt(%v) == %v; want %v", x, i, e) |
| } |
| } |
| } |
| |
| func TestRatAbs(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| e := new(Rat).Set(x) |
| if e.Cmp(zero) < 0 { |
| e.Sub(zero, e) |
| } |
| z := new(Rat).Abs(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Abs(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| func TestRatNeg(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| e := new(Rat).Sub(zero, x) |
| z := new(Rat).Neg(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Neg(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| func TestRatInv(t *testing.T) { |
| zero := new(Rat) |
| for _, a := range setStringTests { |
| x, ok := new(Rat).SetString(a.in) |
| if !ok { |
| continue |
| } |
| if x.Cmp(zero) == 0 { |
| continue // avoid division by zero |
| } |
| e := new(Rat).SetFrac(x.Denom(), x.Num()) |
| z := new(Rat).Inv(x) |
| if z.Cmp(e) != 0 { |
| t.Errorf("got Inv(%v) = %v; want %v", x, z, e) |
| } |
| } |
| } |
| |
| type ratBinFun func(z, x, y *Rat) *Rat |
| type ratBinArg struct { |
| x, y, z string |
| } |
| |
| func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { |
| x, _ := new(Rat).SetString(a.x) |
| y, _ := new(Rat).SetString(a.y) |
| z, _ := new(Rat).SetString(a.z) |
| out := f(new(Rat), x, y) |
| |
| if out.Cmp(z) != 0 { |
| t.Errorf("%s #%d got %s want %s", name, i, out, z) |
| } |
| } |
| |
| var ratBinTests = []struct { |
| x, y string |
| sum, prod string |
| }{ |
| {"0", "0", "0", "0"}, |
| {"0", "1", "1", "0"}, |
| {"-1", "0", "-1", "0"}, |
| {"-1", "1", "0", "-1"}, |
| {"1", "1", "2", "1"}, |
| {"1/2", "1/2", "1", "1/4"}, |
| {"1/4", "1/3", "7/12", "1/12"}, |
| {"2/5", "-14/3", "-64/15", "-28/15"}, |
| {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, |
| {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, |
| {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, |
| {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, |
| {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, |
| {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, |
| {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, |
| {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, |
| {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, |
| {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, |
| } |
| |
| func TestRatBin(t *testing.T) { |
| for i, test := range ratBinTests { |
| arg := ratBinArg{test.x, test.y, test.sum} |
| testRatBin(t, i, "Add", (*Rat).Add, arg) |
| |
| arg = ratBinArg{test.y, test.x, test.sum} |
| testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) |
| |
| arg = ratBinArg{test.sum, test.x, test.y} |
| testRatBin(t, i, "Sub", (*Rat).Sub, arg) |
| |
| arg = ratBinArg{test.sum, test.y, test.x} |
| testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) |
| |
| arg = ratBinArg{test.x, test.y, test.prod} |
| testRatBin(t, i, "Mul", (*Rat).Mul, arg) |
| |
| arg = ratBinArg{test.y, test.x, test.prod} |
| testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) |
| |
| if test.x != "0" { |
| arg = ratBinArg{test.prod, test.x, test.y} |
| testRatBin(t, i, "Quo", (*Rat).Quo, arg) |
| } |
| |
| if test.y != "0" { |
| arg = ratBinArg{test.prod, test.y, test.x} |
| testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) |
| } |
| } |
| } |
| |
| func TestIssue820(t *testing.T) { |
| x := NewRat(3, 1) |
| y := NewRat(2, 1) |
| z := y.Quo(x, y) |
| q := NewRat(3, 2) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| |
| y = NewRat(3, 1) |
| x = NewRat(2, 1) |
| z = y.Quo(x, y) |
| q = NewRat(2, 3) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| |
| x = NewRat(3, 1) |
| z = x.Quo(x, x) |
| q = NewRat(3, 3) |
| if z.Cmp(q) != 0 { |
| t.Errorf("got %s want %s", z, q) |
| } |
| } |
| |
| var setFrac64Tests = []struct { |
| a, b int64 |
| out string |
| }{ |
| {0, 1, "0"}, |
| {0, -1, "0"}, |
| {1, 1, "1"}, |
| {-1, 1, "-1"}, |
| {1, -1, "-1"}, |
| {-1, -1, "1"}, |
| {-9223372036854775808, -9223372036854775808, "1"}, |
| } |
| |
| func TestRatSetFrac64Rat(t *testing.T) { |
| for i, test := range setFrac64Tests { |
| x := new(Rat).SetFrac64(test.a, test.b) |
| if x.RatString() != test.out { |
| t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) |
| } |
| } |
| } |
| |
| func TestIssue2379(t *testing.T) { |
| // 1) no aliasing |
| q := NewRat(3, 2) |
| x := new(Rat) |
| x.SetFrac(NewInt(3), NewInt(2)) |
| if x.Cmp(q) != 0 { |
| t.Errorf("1) got %s want %s", x, q) |
| } |
| |
| // 2) aliasing of numerator |
| x = NewRat(2, 3) |
| x.SetFrac(NewInt(3), x.Num()) |
| if x.Cmp(q) != 0 { |
| t.Errorf("2) got %s want %s", x, q) |
| } |
| |
| // 3) aliasing of denominator |
| x = NewRat(2, 3) |
| x.SetFrac(x.Denom(), NewInt(2)) |
| if x.Cmp(q) != 0 { |
| t.Errorf("3) got %s want %s", x, q) |
| } |
| |
| // 4) aliasing of numerator and denominator |
| x = NewRat(2, 3) |
| x.SetFrac(x.Denom(), x.Num()) |
| if x.Cmp(q) != 0 { |
| t.Errorf("4) got %s want %s", x, q) |
| } |
| |
| // 5) numerator and denominator are the same |
| q = NewRat(1, 1) |
| x = new(Rat) |
| n := NewInt(7) |
| x.SetFrac(n, n) |
| if x.Cmp(q) != 0 { |
| t.Errorf("5) got %s want %s", x, q) |
| } |
| } |
| |
| func TestIssue3521(t *testing.T) { |
| a := new(Int) |
| b := new(Int) |
| a.SetString("64375784358435883458348587", 0) |
| b.SetString("4789759874531", 0) |
| |
| // 0) a raw zero value has 1 as denominator |
| zero := new(Rat) |
| one := NewInt(1) |
| if zero.Denom().Cmp(one) != 0 { |
| t.Errorf("0) got %s want %s", zero.Denom(), one) |
| } |
| |
| // 1a) the denominator of an (uninitialized) zero value is not shared with the value |
| s := &zero.b |
| d := zero.Denom() |
| if d == s { |
| t.Errorf("1a) got %s (%p) == %s (%p) want different *Int values", d, d, s, s) |
| } |
| |
| // 1b) the denominator of an (uninitialized) value is a new 1 each time |
| d1 := zero.Denom() |
| d2 := zero.Denom() |
| if d1 == d2 { |
| t.Errorf("1b) got %s (%p) == %s (%p) want different *Int values", d1, d1, d2, d2) |
| } |
| |
| // 1c) the denominator of an initialized zero value is shared with the value |
| x := new(Rat) |
| x.Set(x) // initialize x (any operation that sets x explicitly will do) |
| s = &x.b |
| d = x.Denom() |
| if d != s { |
| t.Errorf("1c) got %s (%p) != %s (%p) want identical *Int values", d, d, s, s) |
| } |
| |
| // 1d) a zero value remains zero independent of denominator |
| x.Denom().Set(new(Int).Neg(b)) |
| if x.Cmp(zero) != 0 { |
| t.Errorf("1d) got %s want %s", x, zero) |
| } |
| |
| // 1e) a zero value may have a denominator != 0 and != 1 |
| x.Num().Set(a) |
| qab := new(Rat).SetFrac(a, b) |
| if x.Cmp(qab) != 0 { |
| t.Errorf("1e) got %s want %s", x, qab) |
| } |
| |
| // 2a) an integral value becomes a fraction depending on denominator |
| x.SetFrac64(10, 2) |
| x.Denom().SetInt64(3) |
| q53 := NewRat(5, 3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("2a) got %s want %s", x, q53) |
| } |
| |
| // 2b) an integral value becomes a fraction depending on denominator |
| x = NewRat(10, 2) |
| x.Denom().SetInt64(3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("2b) got %s want %s", x, q53) |
| } |
| |
| // 3) changing the numerator/denominator of a Rat changes the Rat |
| x.SetFrac(a, b) |
| a = x.Num() |
| b = x.Denom() |
| a.SetInt64(5) |
| b.SetInt64(3) |
| if x.Cmp(q53) != 0 { |
| t.Errorf("3) got %s want %s", x, q53) |
| } |
| } |
| |
| func TestFloat32Distribution(t *testing.T) { |
| // Generate a distribution of (sign, mantissa, exp) values |
| // broader than the float32 range, and check Rat.Float32() |
| // always picks the closest float32 approximation. |
| var add = []int64{ |
| 0, |
| 1, |
| 3, |
| 5, |
| 7, |
| 9, |
| 11, |
| } |
| var winc, einc = uint64(5), 15 // quick test (~60ms on x86-64) |
| if *long { |
| winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) |
| } |
| |
| for _, sign := range "+-" { |
| for _, a := range add { |
| for wid := uint64(0); wid < 30; wid += winc { |
| b := 1<<wid + a |
| if sign == '-' { |
| b = -b |
| } |
| for exp := -150; exp < 150; exp += einc { |
| num, den := NewInt(b), NewInt(1) |
| if exp > 0 { |
| num.Lsh(num, uint(exp)) |
| } else { |
| den.Lsh(den, uint(-exp)) |
| } |
| r := new(Rat).SetFrac(num, den) |
| f, _ := r.Float32() |
| |
| if !checkIsBestApprox32(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", |
| b, exp, f, f, math.Ldexp(float64(b), exp), r) |
| } |
| |
| checkNonLossyRoundtrip32(t, f) |
| } |
| } |
| } |
| } |
| } |
| |
| func TestFloat64Distribution(t *testing.T) { |
| // Generate a distribution of (sign, mantissa, exp) values |
| // broader than the float64 range, and check Rat.Float64() |
| // always picks the closest float64 approximation. |
| var add = []int64{ |
| 0, |
| 1, |
| 3, |
| 5, |
| 7, |
| 9, |
| 11, |
| } |
| var winc, einc = uint64(10), 500 // quick test (~12ms on x86-64) |
| if *long { |
| winc, einc = uint64(1), 1 // soak test (~75s on x86-64) |
| } |
| |
| for _, sign := range "+-" { |
| for _, a := range add { |
| for wid := uint64(0); wid < 60; wid += winc { |
| b := 1<<wid + a |
| if sign == '-' { |
| b = -b |
| } |
| for exp := -1100; exp < 1100; exp += einc { |
| num, den := NewInt(b), NewInt(1) |
| if exp > 0 { |
| num.Lsh(num, uint(exp)) |
| } else { |
| den.Lsh(den, uint(-exp)) |
| } |
| r := new(Rat).SetFrac(num, den) |
| f, _ := r.Float64() |
| |
| if !checkIsBestApprox64(t, f, r) { |
| // Append context information. |
| t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", |
| b, exp, f, f, math.Ldexp(float64(b), exp), r) |
| } |
| |
| checkNonLossyRoundtrip64(t, f) |
| } |
| } |
| } |
| } |
| } |
| |
| // TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value |
| // returns nil. |
| func TestSetFloat64NonFinite(t *testing.T) { |
| for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { |
| var r Rat |
| if r2 := r.SetFloat64(f); r2 != nil { |
| t.Errorf("SetFloat64(%g) was %v, want nil", f, r2) |
| } |
| } |
| } |
| |
| // checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is |
| // non-lossy for finite f. |
| func checkNonLossyRoundtrip32(t *testing.T, f float32) { |
| if !isFinite(float64(f)) { |
| return |
| } |
| r := new(Rat).SetFloat64(float64(f)) |
| if r == nil { |
| t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) |
| return |
| } |
| f2, exact := r.Float32() |
| if f != f2 || !exact { |
| t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", |
| f, f2, f2, exact, f, f, true, f2-f) |
| } |
| } |
| |
| // checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is |
| // non-lossy for finite f. |
| func checkNonLossyRoundtrip64(t *testing.T, f float64) { |
| if !isFinite(f) { |
| return |
| } |
| r := new(Rat).SetFloat64(f) |
| if r == nil { |
| t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f) |
| return |
| } |
| f2, exact := r.Float64() |
| if f != f2 || !exact { |
| t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b", |
| f, f2, f2, exact, f, f, true, f2-f) |
| } |
| } |
| |
| // delta returns the absolute difference between r and f. |
| func delta(r *Rat, f float64) *Rat { |
| d := new(Rat).Sub(r, new(Rat).SetFloat64(f)) |
| return d.Abs(d) |
| } |
| |
| // checkIsBestApprox32 checks that f is the best possible float32 |
| // approximation of r. |
| // Returns true on success. |
| func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { |
| if math.Abs(float64(f)) >= math.MaxFloat32 { |
| // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). |
| // But we have tests for these special cases. |
| return true |
| } |
| |
| // r must be strictly between f0 and f1, the floats bracketing f. |
| f0 := math.Nextafter32(f, float32(math.Inf(-1))) |
| f1 := math.Nextafter32(f, float32(math.Inf(+1))) |
| |
| // For f to be correct, r must be closer to f than to f0 or f1. |
| df := delta(r, float64(f)) |
| df0 := delta(r, float64(f0)) |
| df1 := delta(r, float64(f1)) |
| if df.Cmp(df0) > 0 { |
| t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) > 0 { |
| t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) |
| return false |
| } |
| if df.Cmp(df0) == 0 && !isEven32(f) { |
| t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) == 0 && !isEven32(f) { |
| t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) |
| return false |
| } |
| return true |
| } |
| |
| // checkIsBestApprox64 checks that f is the best possible float64 |
| // approximation of r. |
| // Returns true on success. |
| func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { |
| if math.Abs(f) >= math.MaxFloat64 { |
| // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). |
| // But we have tests for these special cases. |
| return true |
| } |
| |
| // r must be strictly between f0 and f1, the floats bracketing f. |
| f0 := math.Nextafter(f, math.Inf(-1)) |
| f1 := math.Nextafter(f, math.Inf(+1)) |
| |
| // For f to be correct, r must be closer to f than to f0 or f1. |
| df := delta(r, f) |
| df0 := delta(r, f0) |
| df1 := delta(r, f1) |
| if df.Cmp(df0) > 0 { |
| t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) > 0 { |
| t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) |
| return false |
| } |
| if df.Cmp(df0) == 0 && !isEven64(f) { |
| t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) |
| return false |
| } |
| if df.Cmp(df1) == 0 && !isEven64(f) { |
| t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) |
| return false |
| } |
| return true |
| } |
| |
| func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } |
| func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } |
| |
| func TestIsFinite(t *testing.T) { |
| finites := []float64{ |
| 1.0 / 3, |
| 4891559871276714924261e+222, |
| math.MaxFloat64, |
| math.SmallestNonzeroFloat64, |
| -math.MaxFloat64, |
| -math.SmallestNonzeroFloat64, |
| } |
| for _, f := range finites { |
| if !isFinite(f) { |
| t.Errorf("!IsFinite(%g (%b))", f, f) |
| } |
| } |
| nonfinites := []float64{ |
| math.NaN(), |
| math.Inf(-1), |
| math.Inf(+1), |
| } |
| for _, f := range nonfinites { |
| if isFinite(f) { |
| t.Errorf("IsFinite(%g, (%b))", f, f) |
| } |
| } |
| } |
| |
| func TestRatSetInt64(t *testing.T) { |
| var testCases = []int64{ |
| 0, |
| 1, |
| -1, |
| 12345, |
| -98765, |
| math.MaxInt64, |
| math.MinInt64, |
| } |
| var r = new(Rat) |
| for i, want := range testCases { |
| r.SetInt64(want) |
| if !r.IsInt() { |
| t.Errorf("#%d: Rat.SetInt64(%d) is not an integer", i, want) |
| } |
| num := r.Num() |
| if !num.IsInt64() { |
| t.Errorf("#%d: Rat.SetInt64(%d) numerator is not an int64", i, want) |
| } |
| got := num.Int64() |
| if got != want { |
| t.Errorf("#%d: Rat.SetInt64(%d) = %d, but expected %d", i, want, got, want) |
| } |
| } |
| } |
| |
| func TestRatSetUint64(t *testing.T) { |
| var testCases = []uint64{ |
| 0, |
| 1, |
| 12345, |
| ^uint64(0), |
| } |
| var r = new(Rat) |
| for i, want := range testCases { |
| r.SetUint64(want) |
| if !r.IsInt() { |
| t.Errorf("#%d: Rat.SetUint64(%d) is not an integer", i, want) |
| } |
| num := r.Num() |
| if !num.IsUint64() { |
| t.Errorf("#%d: Rat.SetUint64(%d) numerator is not a uint64", i, want) |
| } |
| got := num.Uint64() |
| if got != want { |
| t.Errorf("#%d: Rat.SetUint64(%d) = %d, but expected %d", i, want, got, want) |
| } |
| } |
| } |
| |
| func BenchmarkRatCmp(b *testing.B) { |
| x, y := NewRat(4, 1), NewRat(7, 2) |
| for i := 0; i < b.N; i++ { |
| x.Cmp(y) |
| } |
| } |
| |
| // TestIssue34919 verifies that a Rat's denominator is not modified |
| // when simply accessing the Rat value. |
| func TestIssue34919(t *testing.T) { |
| for _, acc := range []struct { |
| name string |
| f func(*Rat) |
| }{ |
| {"Float32", func(x *Rat) { x.Float32() }}, |
| {"Float64", func(x *Rat) { x.Float64() }}, |
| {"Inv", func(x *Rat) { new(Rat).Inv(x) }}, |
| {"Sign", func(x *Rat) { x.Sign() }}, |
| {"IsInt", func(x *Rat) { x.IsInt() }}, |
| {"Num", func(x *Rat) { x.Num() }}, |
| // {"Denom", func(x *Rat) { x.Denom() }}, TODO(gri) should we change the API? See issue #33792. |
| } { |
| // A denominator of length 0 is interpreted as 1. Make sure that |
| // "materialization" of the denominator doesn't lead to setting |
| // the underlying array element 0 to 1. |
| r := &Rat{Int{abs: nat{991}}, Int{abs: make(nat, 0, 1)}} |
| acc.f(r) |
| if d := r.b.abs[:1][0]; d != 0 { |
| t.Errorf("%s modified denominator: got %d, want 0", acc.name, d) |
| } |
| } |
| } |