| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements unsigned multi-precision integers (natural |
| // numbers). They are the building blocks for the implementation |
| // of signed integers, rationals, and floating-point numbers. |
| // |
| // Caution: This implementation relies on the function "alias" |
| // which assumes that (nat) slice capacities are never |
| // changed (no 3-operand slice expressions). If that |
| // changes, alias needs to be updated for correctness. |
| |
| package big |
| |
| import ( |
| "encoding/binary" |
| "math/bits" |
| "math/rand" |
| "sync" |
| ) |
| |
| // An unsigned integer x of the form |
| // |
| // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] |
| // |
| // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, |
| // with the digits x[i] as the slice elements. |
| // |
| // A number is normalized if the slice contains no leading 0 digits. |
| // During arithmetic operations, denormalized values may occur but are |
| // always normalized before returning the final result. The normalized |
| // representation of 0 is the empty or nil slice (length = 0). |
| // |
| type nat []Word |
| |
| var ( |
| natOne = nat{1} |
| natTwo = nat{2} |
| natFive = nat{5} |
| natTen = nat{10} |
| ) |
| |
| func (z nat) clear() { |
| for i := range z { |
| z[i] = 0 |
| } |
| } |
| |
| func (z nat) norm() nat { |
| i := len(z) |
| for i > 0 && z[i-1] == 0 { |
| i-- |
| } |
| return z[0:i] |
| } |
| |
| func (z nat) make(n int) nat { |
| if n <= cap(z) { |
| return z[:n] // reuse z |
| } |
| if n == 1 { |
| // Most nats start small and stay that way; don't over-allocate. |
| return make(nat, 1) |
| } |
| // Choosing a good value for e has significant performance impact |
| // because it increases the chance that a value can be reused. |
| const e = 4 // extra capacity |
| return make(nat, n, n+e) |
| } |
| |
| func (z nat) setWord(x Word) nat { |
| if x == 0 { |
| return z[:0] |
| } |
| z = z.make(1) |
| z[0] = x |
| return z |
| } |
| |
| func (z nat) setUint64(x uint64) nat { |
| // single-word value |
| if w := Word(x); uint64(w) == x { |
| return z.setWord(w) |
| } |
| // 2-word value |
| z = z.make(2) |
| z[1] = Word(x >> 32) |
| z[0] = Word(x) |
| return z |
| } |
| |
| func (z nat) set(x nat) nat { |
| z = z.make(len(x)) |
| copy(z, x) |
| return z |
| } |
| |
| func (z nat) add(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| return z.add(y, x) |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z[:0] |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m + 1) |
| c := addVV(z[0:n], x, y) |
| if m > n { |
| c = addVW(z[n:m], x[n:], c) |
| } |
| z[m] = c |
| |
| return z.norm() |
| } |
| |
| func (z nat) sub(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| panic("underflow") |
| case m == 0: |
| // n == 0 because m >= n; result is 0 |
| return z[:0] |
| case n == 0: |
| // result is x |
| return z.set(x) |
| } |
| // m > 0 |
| |
| z = z.make(m) |
| c := subVV(z[0:n], x, y) |
| if m > n { |
| c = subVW(z[n:], x[n:], c) |
| } |
| if c != 0 { |
| panic("underflow") |
| } |
| |
| return z.norm() |
| } |
| |
| func (x nat) cmp(y nat) (r int) { |
| m := len(x) |
| n := len(y) |
| if m != n || m == 0 { |
| switch { |
| case m < n: |
| r = -1 |
| case m > n: |
| r = 1 |
| } |
| return |
| } |
| |
| i := m - 1 |
| for i > 0 && x[i] == y[i] { |
| i-- |
| } |
| |
| switch { |
| case x[i] < y[i]: |
| r = -1 |
| case x[i] > y[i]: |
| r = 1 |
| } |
| return |
| } |
| |
| func (z nat) mulAddWW(x nat, y, r Word) nat { |
| m := len(x) |
| if m == 0 || y == 0 { |
| return z.setWord(r) // result is r |
| } |
| // m > 0 |
| |
| z = z.make(m + 1) |
| z[m] = mulAddVWW(z[0:m], x, y, r) |
| |
| return z.norm() |
| } |
| |
| // basicMul multiplies x and y and leaves the result in z. |
| // The (non-normalized) result is placed in z[0 : len(x) + len(y)]. |
| func basicMul(z, x, y nat) { |
| z[0 : len(x)+len(y)].clear() // initialize z |
| for i, d := range y { |
| if d != 0 { |
| z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) |
| } |
| } |
| } |
| |
| // montgomery computes z mod m = x*y*2**(-n*_W) mod m, |
| // assuming k = -1/m mod 2**_W. |
| // z is used for storing the result which is returned; |
| // z must not alias x, y or m. |
| // See Gueron, "Efficient Software Implementations of Modular Exponentiation". |
| // https://eprint.iacr.org/2011/239.pdf |
| // In the terminology of that paper, this is an "Almost Montgomery Multiplication": |
| // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result |
| // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. |
| func (z nat) montgomery(x, y, m nat, k Word, n int) nat { |
| // This code assumes x, y, m are all the same length, n. |
| // (required by addMulVVW and the for loop). |
| // It also assumes that x, y are already reduced mod m, |
| // or else the result will not be properly reduced. |
| if len(x) != n || len(y) != n || len(m) != n { |
| panic("math/big: mismatched montgomery number lengths") |
| } |
| z = z.make(n * 2) |
| z.clear() |
| var c Word |
| for i := 0; i < n; i++ { |
| d := y[i] |
| c2 := addMulVVW(z[i:n+i], x, d) |
| t := z[i] * k |
| c3 := addMulVVW(z[i:n+i], m, t) |
| cx := c + c2 |
| cy := cx + c3 |
| z[n+i] = cy |
| if cx < c2 || cy < c3 { |
| c = 1 |
| } else { |
| c = 0 |
| } |
| } |
| if c != 0 { |
| subVV(z[:n], z[n:], m) |
| } else { |
| copy(z[:n], z[n:]) |
| } |
| return z[:n] |
| } |
| |
| // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. |
| // Factored out for readability - do not use outside karatsuba. |
| func karatsubaAdd(z, x nat, n int) { |
| if c := addVV(z[0:n], z, x); c != 0 { |
| addVW(z[n:n+n>>1], z[n:], c) |
| } |
| } |
| |
| // Like karatsubaAdd, but does subtract. |
| func karatsubaSub(z, x nat, n int) { |
| if c := subVV(z[0:n], z, x); c != 0 { |
| subVW(z[n:n+n>>1], z[n:], c) |
| } |
| } |
| |
| // Operands that are shorter than karatsubaThreshold are multiplied using |
| // "grade school" multiplication; for longer operands the Karatsuba algorithm |
| // is used. |
| var karatsubaThreshold = 40 // computed by calibrate_test.go |
| |
| // karatsuba multiplies x and y and leaves the result in z. |
| // Both x and y must have the same length n and n must be a |
| // power of 2. The result vector z must have len(z) >= 6*n. |
| // The (non-normalized) result is placed in z[0 : 2*n]. |
| func karatsuba(z, x, y nat) { |
| n := len(y) |
| |
| // Switch to basic multiplication if numbers are odd or small. |
| // (n is always even if karatsubaThreshold is even, but be |
| // conservative) |
| if n&1 != 0 || n < karatsubaThreshold || n < 2 { |
| basicMul(z, x, y) |
| return |
| } |
| // n&1 == 0 && n >= karatsubaThreshold && n >= 2 |
| |
| // Karatsuba multiplication is based on the observation that |
| // for two numbers x and y with: |
| // |
| // x = x1*b + x0 |
| // y = y1*b + y0 |
| // |
| // the product x*y can be obtained with 3 products z2, z1, z0 |
| // instead of 4: |
| // |
| // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 |
| // = z2*b*b + z1*b + z0 |
| // |
| // with: |
| // |
| // xd = x1 - x0 |
| // yd = y0 - y1 |
| // |
| // z1 = xd*yd + z2 + z0 |
| // = (x1-x0)*(y0 - y1) + z2 + z0 |
| // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 |
| // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 |
| // = x1*y0 + x0*y1 |
| |
| // split x, y into "digits" |
| n2 := n >> 1 // n2 >= 1 |
| x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 |
| y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 |
| |
| // z is used for the result and temporary storage: |
| // |
| // 6*n 5*n 4*n 3*n 2*n 1*n 0*n |
| // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] |
| // |
| // For each recursive call of karatsuba, an unused slice of |
| // z is passed in that has (at least) half the length of the |
| // caller's z. |
| |
| // compute z0 and z2 with the result "in place" in z |
| karatsuba(z, x0, y0) // z0 = x0*y0 |
| karatsuba(z[n:], x1, y1) // z2 = x1*y1 |
| |
| // compute xd (or the negative value if underflow occurs) |
| s := 1 // sign of product xd*yd |
| xd := z[2*n : 2*n+n2] |
| if subVV(xd, x1, x0) != 0 { // x1-x0 |
| s = -s |
| subVV(xd, x0, x1) // x0-x1 |
| } |
| |
| // compute yd (or the negative value if underflow occurs) |
| yd := z[2*n+n2 : 3*n] |
| if subVV(yd, y0, y1) != 0 { // y0-y1 |
| s = -s |
| subVV(yd, y1, y0) // y1-y0 |
| } |
| |
| // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 |
| // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 |
| p := z[n*3:] |
| karatsuba(p, xd, yd) |
| |
| // save original z2:z0 |
| // (ok to use upper half of z since we're done recursing) |
| r := z[n*4:] |
| copy(r, z[:n*2]) |
| |
| // add up all partial products |
| // |
| // 2*n n 0 |
| // z = [ z2 | z0 ] |
| // + [ z0 ] |
| // + [ z2 ] |
| // + [ p ] |
| // |
| karatsubaAdd(z[n2:], r, n) |
| karatsubaAdd(z[n2:], r[n:], n) |
| if s > 0 { |
| karatsubaAdd(z[n2:], p, n) |
| } else { |
| karatsubaSub(z[n2:], p, n) |
| } |
| } |
| |
| // alias reports whether x and y share the same base array. |
| // Note: alias assumes that the capacity of underlying arrays |
| // is never changed for nat values; i.e. that there are |
| // no 3-operand slice expressions in this code (or worse, |
| // reflect-based operations to the same effect). |
| func alias(x, y nat) bool { |
| return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] |
| } |
| |
| // addAt implements z += x<<(_W*i); z must be long enough. |
| // (we don't use nat.add because we need z to stay the same |
| // slice, and we don't need to normalize z after each addition) |
| func addAt(z, x nat, i int) { |
| if n := len(x); n > 0 { |
| if c := addVV(z[i:i+n], z[i:], x); c != 0 { |
| j := i + n |
| if j < len(z) { |
| addVW(z[j:], z[j:], c) |
| } |
| } |
| } |
| } |
| |
| func max(x, y int) int { |
| if x > y { |
| return x |
| } |
| return y |
| } |
| |
| // karatsubaLen computes an approximation to the maximum k <= n such that |
| // k = p<<i for a number p <= threshold and an i >= 0. Thus, the |
| // result is the largest number that can be divided repeatedly by 2 before |
| // becoming about the value of threshold. |
| func karatsubaLen(n, threshold int) int { |
| i := uint(0) |
| for n > threshold { |
| n >>= 1 |
| i++ |
| } |
| return n << i |
| } |
| |
| func (z nat) mul(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| |
| switch { |
| case m < n: |
| return z.mul(y, x) |
| case m == 0 || n == 0: |
| return z[:0] |
| case n == 1: |
| return z.mulAddWW(x, y[0], 0) |
| } |
| // m >= n > 1 |
| |
| // determine if z can be reused |
| if alias(z, x) || alias(z, y) { |
| z = nil // z is an alias for x or y - cannot reuse |
| } |
| |
| // use basic multiplication if the numbers are small |
| if n < karatsubaThreshold { |
| z = z.make(m + n) |
| basicMul(z, x, y) |
| return z.norm() |
| } |
| // m >= n && n >= karatsubaThreshold && n >= 2 |
| |
| // determine Karatsuba length k such that |
| // |
| // x = xh*b + x0 (0 <= x0 < b) |
| // y = yh*b + y0 (0 <= y0 < b) |
| // b = 1<<(_W*k) ("base" of digits xi, yi) |
| // |
| k := karatsubaLen(n, karatsubaThreshold) |
| // k <= n |
| |
| // multiply x0 and y0 via Karatsuba |
| x0 := x[0:k] // x0 is not normalized |
| y0 := y[0:k] // y0 is not normalized |
| z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y |
| karatsuba(z, x0, y0) |
| z = z[0 : m+n] // z has final length but may be incomplete |
| z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) |
| |
| // If xh != 0 or yh != 0, add the missing terms to z. For |
| // |
| // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) |
| // yh = y1*b (0 <= y1 < b) |
| // |
| // the missing terms are |
| // |
| // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 |
| // |
| // since all the yi for i > 1 are 0 by choice of k: If any of them |
| // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would |
| // be a larger valid threshold contradicting the assumption about k. |
| // |
| if k < n || m != n { |
| tp := getNat(3 * k) |
| t := *tp |
| |
| // add x0*y1*b |
| x0 := x0.norm() |
| y1 := y[k:] // y1 is normalized because y is |
| t = t.mul(x0, y1) // update t so we don't lose t's underlying array |
| addAt(z, t, k) |
| |
| // add xi*y0<<i, xi*y1*b<<(i+k) |
| y0 := y0.norm() |
| for i := k; i < len(x); i += k { |
| xi := x[i:] |
| if len(xi) > k { |
| xi = xi[:k] |
| } |
| xi = xi.norm() |
| t = t.mul(xi, y0) |
| addAt(z, t, i) |
| t = t.mul(xi, y1) |
| addAt(z, t, i+k) |
| } |
| |
| putNat(tp) |
| } |
| |
| return z.norm() |
| } |
| |
| // basicSqr sets z = x*x and is asymptotically faster than basicMul |
| // by about a factor of 2, but slower for small arguments due to overhead. |
| // Requirements: len(x) > 0, len(z) == 2*len(x) |
| // The (non-normalized) result is placed in z. |
| func basicSqr(z, x nat) { |
| n := len(x) |
| tp := getNat(2 * n) |
| t := *tp // temporary variable to hold the products |
| t.clear() |
| z[1], z[0] = mulWW(x[0], x[0]) // the initial square |
| for i := 1; i < n; i++ { |
| d := x[i] |
| // z collects the squares x[i] * x[i] |
| z[2*i+1], z[2*i] = mulWW(d, d) |
| // t collects the products x[i] * x[j] where j < i |
| t[2*i] = addMulVVW(t[i:2*i], x[0:i], d) |
| } |
| t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products |
| addVV(z, z, t) // combine the result |
| putNat(tp) |
| } |
| |
| // karatsubaSqr squares x and leaves the result in z. |
| // len(x) must be a power of 2 and len(z) >= 6*len(x). |
| // The (non-normalized) result is placed in z[0 : 2*len(x)]. |
| // |
| // The algorithm and the layout of z are the same as for karatsuba. |
| func karatsubaSqr(z, x nat) { |
| n := len(x) |
| |
| if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 { |
| basicSqr(z[:2*n], x) |
| return |
| } |
| |
| n2 := n >> 1 |
| x1, x0 := x[n2:], x[0:n2] |
| |
| karatsubaSqr(z, x0) |
| karatsubaSqr(z[n:], x1) |
| |
| // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0 |
| xd := z[2*n : 2*n+n2] |
| if subVV(xd, x1, x0) != 0 { |
| subVV(xd, x0, x1) |
| } |
| |
| p := z[n*3:] |
| karatsubaSqr(p, xd) |
| |
| r := z[n*4:] |
| copy(r, z[:n*2]) |
| |
| karatsubaAdd(z[n2:], r, n) |
| karatsubaAdd(z[n2:], r[n:], n) |
| karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0 |
| } |
| |
| // Operands that are shorter than basicSqrThreshold are squared using |
| // "grade school" multiplication; for operands longer than karatsubaSqrThreshold |
| // we use the Karatsuba algorithm optimized for x == y. |
| var basicSqrThreshold = 20 // computed by calibrate_test.go |
| var karatsubaSqrThreshold = 260 // computed by calibrate_test.go |
| |
| // z = x*x |
| func (z nat) sqr(x nat) nat { |
| n := len(x) |
| switch { |
| case n == 0: |
| return z[:0] |
| case n == 1: |
| d := x[0] |
| z = z.make(2) |
| z[1], z[0] = mulWW(d, d) |
| return z.norm() |
| } |
| |
| if alias(z, x) { |
| z = nil // z is an alias for x - cannot reuse |
| } |
| |
| if n < basicSqrThreshold { |
| z = z.make(2 * n) |
| basicMul(z, x, x) |
| return z.norm() |
| } |
| if n < karatsubaSqrThreshold { |
| z = z.make(2 * n) |
| basicSqr(z, x) |
| return z.norm() |
| } |
| |
| // Use Karatsuba multiplication optimized for x == y. |
| // The algorithm and layout of z are the same as for mul. |
| |
| // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2 |
| |
| k := karatsubaLen(n, karatsubaSqrThreshold) |
| |
| x0 := x[0:k] |
| z = z.make(max(6*k, 2*n)) |
| karatsubaSqr(z, x0) // z = x0^2 |
| z = z[0 : 2*n] |
| z[2*k:].clear() |
| |
| if k < n { |
| tp := getNat(2 * k) |
| t := *tp |
| x0 := x0.norm() |
| x1 := x[k:] |
| t = t.mul(x0, x1) |
| addAt(z, t, k) |
| addAt(z, t, k) // z = 2*x1*x0*b + x0^2 |
| t = t.sqr(x1) |
| addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2 |
| putNat(tp) |
| } |
| |
| return z.norm() |
| } |
| |
| // mulRange computes the product of all the unsigned integers in the |
| // range [a, b] inclusively. If a > b (empty range), the result is 1. |
| func (z nat) mulRange(a, b uint64) nat { |
| switch { |
| case a == 0: |
| // cut long ranges short (optimization) |
| return z.setUint64(0) |
| case a > b: |
| return z.setUint64(1) |
| case a == b: |
| return z.setUint64(a) |
| case a+1 == b: |
| return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) |
| } |
| m := (a + b) / 2 |
| return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) |
| } |
| |
| // q = (x-r)/y, with 0 <= r < y |
| func (z nat) divW(x nat, y Word) (q nat, r Word) { |
| m := len(x) |
| switch { |
| case y == 0: |
| panic("division by zero") |
| case y == 1: |
| q = z.set(x) // result is x |
| return |
| case m == 0: |
| q = z[:0] // result is 0 |
| return |
| } |
| // m > 0 |
| z = z.make(m) |
| r = divWVW(z, 0, x, y) |
| q = z.norm() |
| return |
| } |
| |
| func (z nat) div(z2, u, v nat) (q, r nat) { |
| if len(v) == 0 { |
| panic("division by zero") |
| } |
| |
| if u.cmp(v) < 0 { |
| q = z[:0] |
| r = z2.set(u) |
| return |
| } |
| |
| if len(v) == 1 { |
| var r2 Word |
| q, r2 = z.divW(u, v[0]) |
| r = z2.setWord(r2) |
| return |
| } |
| |
| q, r = z.divLarge(z2, u, v) |
| return |
| } |
| |
| // getNat returns a *nat of len n. The contents may not be zero. |
| // The pool holds *nat to avoid allocation when converting to interface{}. |
| func getNat(n int) *nat { |
| var z *nat |
| if v := natPool.Get(); v != nil { |
| z = v.(*nat) |
| } |
| if z == nil { |
| z = new(nat) |
| } |
| *z = z.make(n) |
| return z |
| } |
| |
| func putNat(x *nat) { |
| natPool.Put(x) |
| } |
| |
| var natPool sync.Pool |
| |
| // q = (uIn-r)/vIn, with 0 <= r < vIn |
| // Uses z as storage for q, and u as storage for r if possible. |
| // See Knuth, Volume 2, section 4.3.1, Algorithm D. |
| // Preconditions: |
| // len(vIn) >= 2 |
| // len(uIn) >= len(vIn) |
| // u must not alias z |
| func (z nat) divLarge(u, uIn, vIn nat) (q, r nat) { |
| n := len(vIn) |
| m := len(uIn) - n |
| |
| // D1. |
| shift := nlz(vIn[n-1]) |
| // do not modify vIn, it may be used by another goroutine simultaneously |
| vp := getNat(n) |
| v := *vp |
| shlVU(v, vIn, shift) |
| |
| // u may safely alias uIn or vIn, the value of uIn is used to set u and vIn was already used |
| u = u.make(len(uIn) + 1) |
| u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift) |
| |
| // z may safely alias uIn or vIn, both values were used already |
| if alias(z, u) { |
| z = nil // z is an alias for u - cannot reuse |
| } |
| q = z.make(m + 1) |
| |
| if n < divRecursiveThreshold { |
| q.divBasic(u, v) |
| } else { |
| q.divRecursive(u, v) |
| } |
| putNat(vp) |
| |
| q = q.norm() |
| shrVU(u, u, shift) |
| r = u.norm() |
| |
| return q, r |
| } |
| |
| // divBasic performs word-by-word division of u by v. |
| // The quotient is written in pre-allocated q. |
| // The remainder overwrites input u. |
| // |
| // Precondition: |
| // - q is large enough to hold the quotient u / v |
| // which has a maximum length of len(u)-len(v)+1. |
| func (q nat) divBasic(u, v nat) { |
| n := len(v) |
| m := len(u) - n |
| |
| qhatvp := getNat(n + 1) |
| qhatv := *qhatvp |
| |
| // D2. |
| vn1 := v[n-1] |
| rec := reciprocalWord(vn1) |
| for j := m; j >= 0; j-- { |
| // D3. |
| qhat := Word(_M) |
| var ujn Word |
| if j+n < len(u) { |
| ujn = u[j+n] |
| } |
| if ujn != vn1 { |
| var rhat Word |
| qhat, rhat = divWW(ujn, u[j+n-1], vn1, rec) |
| |
| // x1 | x2 = q̂v_{n-2} |
| vn2 := v[n-2] |
| x1, x2 := mulWW(qhat, vn2) |
| // test if q̂v_{n-2} > br̂ + u_{j+n-2} |
| ujn2 := u[j+n-2] |
| for greaterThan(x1, x2, rhat, ujn2) { |
| qhat-- |
| prevRhat := rhat |
| rhat += vn1 |
| // v[n-1] >= 0, so this tests for overflow. |
| if rhat < prevRhat { |
| break |
| } |
| x1, x2 = mulWW(qhat, vn2) |
| } |
| } |
| |
| // D4. |
| // Compute the remainder u - (q̂*v) << (_W*j). |
| // The subtraction may overflow if q̂ estimate was off by one. |
| qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0) |
| qhl := len(qhatv) |
| if j+qhl > len(u) && qhatv[n] == 0 { |
| qhl-- |
| } |
| c := subVV(u[j:j+qhl], u[j:], qhatv) |
| if c != 0 { |
| c := addVV(u[j:j+n], u[j:], v) |
| // If n == qhl, the carry from subVV and the carry from addVV |
| // cancel out and don't affect u[j+n]. |
| if n < qhl { |
| u[j+n] += c |
| } |
| qhat-- |
| } |
| |
| if j == m && m == len(q) && qhat == 0 { |
| continue |
| } |
| q[j] = qhat |
| } |
| |
| putNat(qhatvp) |
| } |
| |
| const divRecursiveThreshold = 100 |
| |
| // divRecursive performs word-by-word division of u by v. |
| // The quotient is written in pre-allocated z. |
| // The remainder overwrites input u. |
| // |
| // Precondition: |
| // - len(z) >= len(u)-len(v) |
| // |
| // See Burnikel, Ziegler, "Fast Recursive Division", Algorithm 1 and 2. |
| func (z nat) divRecursive(u, v nat) { |
| // Recursion depth is less than 2 log2(len(v)) |
| // Allocate a slice of temporaries to be reused across recursion. |
| recDepth := 2 * bits.Len(uint(len(v))) |
| // large enough to perform Karatsuba on operands as large as v |
| tmp := getNat(3 * len(v)) |
| temps := make([]*nat, recDepth) |
| z.clear() |
| z.divRecursiveStep(u, v, 0, tmp, temps) |
| for _, n := range temps { |
| if n != nil { |
| putNat(n) |
| } |
| } |
| putNat(tmp) |
| } |
| |
| // divRecursiveStep computes the division of u by v. |
| // - z must be large enough to hold the quotient |
| // - the quotient will overwrite z |
| // - the remainder will overwrite u |
| func (z nat) divRecursiveStep(u, v nat, depth int, tmp *nat, temps []*nat) { |
| u = u.norm() |
| v = v.norm() |
| |
| if len(u) == 0 { |
| z.clear() |
| return |
| } |
| n := len(v) |
| if n < divRecursiveThreshold { |
| z.divBasic(u, v) |
| return |
| } |
| m := len(u) - n |
| if m < 0 { |
| return |
| } |
| |
| // Produce the quotient by blocks of B words. |
| // Division by v (length n) is done using a length n/2 division |
| // and a length n/2 multiplication for each block. The final |
| // complexity is driven by multiplication complexity. |
| B := n / 2 |
| |
| // Allocate a nat for qhat below. |
| if temps[depth] == nil { |
| temps[depth] = getNat(n) |
| } else { |
| *temps[depth] = temps[depth].make(B + 1) |
| } |
| |
| j := m |
| for j > B { |
| // Divide u[j-B:j+n] by vIn. Keep remainder in u |
| // for next block. |
| // |
| // The following property will be used (Lemma 2): |
| // if u = u1 << s + u0 |
| // v = v1 << s + v0 |
| // then floor(u1/v1) >= floor(u/v) |
| // |
| // Moreover, the difference is at most 2 if len(v1) >= len(u/v) |
| // We choose s = B-1 since len(v)-B >= B+1 >= len(u/v) |
| s := (B - 1) |
| // Except for the first step, the top bits are always |
| // a division remainder, so the quotient length is <= n. |
| uu := u[j-B:] |
| |
| qhat := *temps[depth] |
| qhat.clear() |
| qhat.divRecursiveStep(uu[s:B+n], v[s:], depth+1, tmp, temps) |
| qhat = qhat.norm() |
| // Adjust the quotient: |
| // u = u_h << s + u_l |
| // v = v_h << s + v_l |
| // u_h = q̂ v_h + rh |
| // u = q̂ (v - v_l) + rh << s + u_l |
| // After the above step, u contains a remainder: |
| // u = rh << s + u_l |
| // and we need to subtract q̂ v_l |
| // |
| // But it may be a bit too large, in which case q̂ needs to be smaller. |
| qhatv := tmp.make(3 * n) |
| qhatv.clear() |
| qhatv = qhatv.mul(qhat, v[:s]) |
| for i := 0; i < 2; i++ { |
| e := qhatv.cmp(uu.norm()) |
| if e <= 0 { |
| break |
| } |
| subVW(qhat, qhat, 1) |
| c := subVV(qhatv[:s], qhatv[:s], v[:s]) |
| if len(qhatv) > s { |
| subVW(qhatv[s:], qhatv[s:], c) |
| } |
| addAt(uu[s:], v[s:], 0) |
| } |
| if qhatv.cmp(uu.norm()) > 0 { |
| panic("impossible") |
| } |
| c := subVV(uu[:len(qhatv)], uu[:len(qhatv)], qhatv) |
| if c > 0 { |
| subVW(uu[len(qhatv):], uu[len(qhatv):], c) |
| } |
| addAt(z, qhat, j-B) |
| j -= B |
| } |
| |
| // Now u < (v<<B), compute lower bits in the same way. |
| // Choose shift = B-1 again. |
| s := B - 1 |
| qhat := *temps[depth] |
| qhat.clear() |
| qhat.divRecursiveStep(u[s:].norm(), v[s:], depth+1, tmp, temps) |
| qhat = qhat.norm() |
| qhatv := tmp.make(3 * n) |
| qhatv.clear() |
| qhatv = qhatv.mul(qhat, v[:s]) |
| // Set the correct remainder as before. |
| for i := 0; i < 2; i++ { |
| if e := qhatv.cmp(u.norm()); e > 0 { |
| subVW(qhat, qhat, 1) |
| c := subVV(qhatv[:s], qhatv[:s], v[:s]) |
| if len(qhatv) > s { |
| subVW(qhatv[s:], qhatv[s:], c) |
| } |
| addAt(u[s:], v[s:], 0) |
| } |
| } |
| if qhatv.cmp(u.norm()) > 0 { |
| panic("impossible") |
| } |
| c := subVV(u[0:len(qhatv)], u[0:len(qhatv)], qhatv) |
| if c > 0 { |
| c = subVW(u[len(qhatv):], u[len(qhatv):], c) |
| } |
| if c > 0 { |
| panic("impossible") |
| } |
| |
| // Done! |
| addAt(z, qhat.norm(), 0) |
| } |
| |
| // Length of x in bits. x must be normalized. |
| func (x nat) bitLen() int { |
| if i := len(x) - 1; i >= 0 { |
| return i*_W + bits.Len(uint(x[i])) |
| } |
| return 0 |
| } |
| |
| // trailingZeroBits returns the number of consecutive least significant zero |
| // bits of x. |
| func (x nat) trailingZeroBits() uint { |
| if len(x) == 0 { |
| return 0 |
| } |
| var i uint |
| for x[i] == 0 { |
| i++ |
| } |
| // x[i] != 0 |
| return i*_W + uint(bits.TrailingZeros(uint(x[i]))) |
| } |
| |
| func same(x, y nat) bool { |
| return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0] |
| } |
| |
| // z = x << s |
| func (z nat) shl(x nat, s uint) nat { |
| if s == 0 { |
| if same(z, x) { |
| return z |
| } |
| if !alias(z, x) { |
| return z.set(x) |
| } |
| } |
| |
| m := len(x) |
| if m == 0 { |
| return z[:0] |
| } |
| // m > 0 |
| |
| n := m + int(s/_W) |
| z = z.make(n + 1) |
| z[n] = shlVU(z[n-m:n], x, s%_W) |
| z[0 : n-m].clear() |
| |
| return z.norm() |
| } |
| |
| // z = x >> s |
| func (z nat) shr(x nat, s uint) nat { |
| if s == 0 { |
| if same(z, x) { |
| return z |
| } |
| if !alias(z, x) { |
| return z.set(x) |
| } |
| } |
| |
| m := len(x) |
| n := m - int(s/_W) |
| if n <= 0 { |
| return z[:0] |
| } |
| // n > 0 |
| |
| z = z.make(n) |
| shrVU(z, x[m-n:], s%_W) |
| |
| return z.norm() |
| } |
| |
| func (z nat) setBit(x nat, i uint, b uint) nat { |
| j := int(i / _W) |
| m := Word(1) << (i % _W) |
| n := len(x) |
| switch b { |
| case 0: |
| z = z.make(n) |
| copy(z, x) |
| if j >= n { |
| // no need to grow |
| return z |
| } |
| z[j] &^= m |
| return z.norm() |
| case 1: |
| if j >= n { |
| z = z.make(j + 1) |
| z[n:].clear() |
| } else { |
| z = z.make(n) |
| } |
| copy(z, x) |
| z[j] |= m |
| // no need to normalize |
| return z |
| } |
| panic("set bit is not 0 or 1") |
| } |
| |
| // bit returns the value of the i'th bit, with lsb == bit 0. |
| func (x nat) bit(i uint) uint { |
| j := i / _W |
| if j >= uint(len(x)) { |
| return 0 |
| } |
| // 0 <= j < len(x) |
| return uint(x[j] >> (i % _W) & 1) |
| } |
| |
| // sticky returns 1 if there's a 1 bit within the |
| // i least significant bits, otherwise it returns 0. |
| func (x nat) sticky(i uint) uint { |
| j := i / _W |
| if j >= uint(len(x)) { |
| if len(x) == 0 { |
| return 0 |
| } |
| return 1 |
| } |
| // 0 <= j < len(x) |
| for _, x := range x[:j] { |
| if x != 0 { |
| return 1 |
| } |
| } |
| if x[j]<<(_W-i%_W) != 0 { |
| return 1 |
| } |
| return 0 |
| } |
| |
| func (z nat) and(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if m > n { |
| m = n |
| } |
| // m <= n |
| |
| z = z.make(m) |
| for i := 0; i < m; i++ { |
| z[i] = x[i] & y[i] |
| } |
| |
| return z.norm() |
| } |
| |
| func (z nat) andNot(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| if n > m { |
| n = m |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] &^ y[i] |
| } |
| copy(z[n:m], x[n:m]) |
| |
| return z.norm() |
| } |
| |
| func (z nat) or(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] | y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| func (z nat) xor(x, y nat) nat { |
| m := len(x) |
| n := len(y) |
| s := x |
| if m < n { |
| n, m = m, n |
| s = y |
| } |
| // m >= n |
| |
| z = z.make(m) |
| for i := 0; i < n; i++ { |
| z[i] = x[i] ^ y[i] |
| } |
| copy(z[n:m], s[n:m]) |
| |
| return z.norm() |
| } |
| |
| // greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2) |
| func greaterThan(x1, x2, y1, y2 Word) bool { |
| return x1 > y1 || x1 == y1 && x2 > y2 |
| } |
| |
| // modW returns x % d. |
| func (x nat) modW(d Word) (r Word) { |
| // TODO(agl): we don't actually need to store the q value. |
| var q nat |
| q = q.make(len(x)) |
| return divWVW(q, 0, x, d) |
| } |
| |
| // random creates a random integer in [0..limit), using the space in z if |
| // possible. n is the bit length of limit. |
| func (z nat) random(rand *rand.Rand, limit nat, n int) nat { |
| if alias(z, limit) { |
| z = nil // z is an alias for limit - cannot reuse |
| } |
| z = z.make(len(limit)) |
| |
| bitLengthOfMSW := uint(n % _W) |
| if bitLengthOfMSW == 0 { |
| bitLengthOfMSW = _W |
| } |
| mask := Word((1 << bitLengthOfMSW) - 1) |
| |
| for { |
| switch _W { |
| case 32: |
| for i := range z { |
| z[i] = Word(rand.Uint32()) |
| } |
| case 64: |
| for i := range z { |
| z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 |
| } |
| default: |
| panic("unknown word size") |
| } |
| z[len(limit)-1] &= mask |
| if z.cmp(limit) < 0 { |
| break |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; |
| // otherwise it sets z to x**y. The result is the value of z. |
| func (z nat) expNN(x, y, m nat) nat { |
| if alias(z, x) || alias(z, y) { |
| // We cannot allow in-place modification of x or y. |
| z = nil |
| } |
| |
| // x**y mod 1 == 0 |
| if len(m) == 1 && m[0] == 1 { |
| return z.setWord(0) |
| } |
| // m == 0 || m > 1 |
| |
| // x**0 == 1 |
| if len(y) == 0 { |
| return z.setWord(1) |
| } |
| // y > 0 |
| |
| // x**1 mod m == x mod m |
| if len(y) == 1 && y[0] == 1 && len(m) != 0 { |
| _, z = nat(nil).div(z, x, m) |
| return z |
| } |
| // y > 1 |
| |
| if len(m) != 0 { |
| // We likely end up being as long as the modulus. |
| z = z.make(len(m)) |
| } |
| z = z.set(x) |
| |
| // If the base is non-trivial and the exponent is large, we use |
| // 4-bit, windowed exponentiation. This involves precomputing 14 values |
| // (x^2...x^15) but then reduces the number of multiply-reduces by a |
| // third. Even for a 32-bit exponent, this reduces the number of |
| // operations. Uses Montgomery method for odd moduli. |
| if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 { |
| if m[0]&1 == 1 { |
| return z.expNNMontgomery(x, y, m) |
| } |
| return z.expNNWindowed(x, y, m) |
| } |
| |
| v := y[len(y)-1] // v > 0 because y is normalized and y > 0 |
| shift := nlz(v) + 1 |
| v <<= shift |
| var q nat |
| |
| const mask = 1 << (_W - 1) |
| |
| // We walk through the bits of the exponent one by one. Each time we |
| // see a bit, we square, thus doubling the power. If the bit is a one, |
| // we also multiply by x, thus adding one to the power. |
| |
| w := _W - int(shift) |
| // zz and r are used to avoid allocating in mul and div as |
| // otherwise the arguments would alias. |
| var zz, r nat |
| for j := 0; j < w; j++ { |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| |
| if v&mask != 0 { |
| zz = zz.mul(z, x) |
| zz, z = z, zz |
| } |
| |
| if len(m) != 0 { |
| zz, r = zz.div(r, z, m) |
| zz, r, q, z = q, z, zz, r |
| } |
| |
| v <<= 1 |
| } |
| |
| for i := len(y) - 2; i >= 0; i-- { |
| v = y[i] |
| |
| for j := 0; j < _W; j++ { |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| |
| if v&mask != 0 { |
| zz = zz.mul(z, x) |
| zz, z = z, zz |
| } |
| |
| if len(m) != 0 { |
| zz, r = zz.div(r, z, m) |
| zz, r, q, z = q, z, zz, r |
| } |
| |
| v <<= 1 |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // expNNWindowed calculates x**y mod m using a fixed, 4-bit window. |
| func (z nat) expNNWindowed(x, y, m nat) nat { |
| // zz and r are used to avoid allocating in mul and div as otherwise |
| // the arguments would alias. |
| var zz, r nat |
| |
| const n = 4 |
| // powers[i] contains x^i. |
| var powers [1 << n]nat |
| powers[0] = natOne |
| powers[1] = x |
| for i := 2; i < 1<<n; i += 2 { |
| p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] |
| *p = p.sqr(*p2) |
| zz, r = zz.div(r, *p, m) |
| *p, r = r, *p |
| *p1 = p1.mul(*p, x) |
| zz, r = zz.div(r, *p1, m) |
| *p1, r = r, *p1 |
| } |
| |
| z = z.setWord(1) |
| |
| for i := len(y) - 1; i >= 0; i-- { |
| yi := y[i] |
| for j := 0; j < _W; j += n { |
| if i != len(y)-1 || j != 0 { |
| // Unrolled loop for significant performance |
| // gain. Use go test -bench=".*" in crypto/rsa |
| // to check performance before making changes. |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| zz, r = zz.div(r, z, m) |
| z, r = r, z |
| |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| zz, r = zz.div(r, z, m) |
| z, r = r, z |
| |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| zz, r = zz.div(r, z, m) |
| z, r = r, z |
| |
| zz = zz.sqr(z) |
| zz, z = z, zz |
| zz, r = zz.div(r, z, m) |
| z, r = r, z |
| } |
| |
| zz = zz.mul(z, powers[yi>>(_W-n)]) |
| zz, z = z, zz |
| zz, r = zz.div(r, z, m) |
| z, r = r, z |
| |
| yi <<= n |
| } |
| } |
| |
| return z.norm() |
| } |
| |
| // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. |
| // Uses Montgomery representation. |
| func (z nat) expNNMontgomery(x, y, m nat) nat { |
| numWords := len(m) |
| |
| // We want the lengths of x and m to be equal. |
| // It is OK if x >= m as long as len(x) == len(m). |
| if len(x) > numWords { |
| _, x = nat(nil).div(nil, x, m) |
| // Note: now len(x) <= numWords, not guaranteed ==. |
| } |
| if len(x) < numWords { |
| rr := make(nat, numWords) |
| copy(rr, x) |
| x = rr |
| } |
| |
| // Ideally the precomputations would be performed outside, and reused |
| // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson |
| // Iteration for Multiplicative Inverses Modulo Prime Powers". |
| k0 := 2 - m[0] |
| t := m[0] - 1 |
| for i := 1; i < _W; i <<= 1 { |
| t *= t |
| k0 *= (t + 1) |
| } |
| k0 = -k0 |
| |
| // RR = 2**(2*_W*len(m)) mod m |
| RR := nat(nil).setWord(1) |
| zz := nat(nil).shl(RR, uint(2*numWords*_W)) |
| _, RR = nat(nil).div(RR, zz, m) |
| if len(RR) < numWords { |
| zz = zz.make(numWords) |
| copy(zz, RR) |
| RR = zz |
| } |
| // one = 1, with equal length to that of m |
| one := make(nat, numWords) |
| one[0] = 1 |
| |
| const n = 4 |
| // powers[i] contains x^i |
| var powers [1 << n]nat |
| powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) |
| powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) |
| for i := 2; i < 1<<n; i++ { |
| powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) |
| } |
| |
| // initialize z = 1 (Montgomery 1) |
| z = z.make(numWords) |
| copy(z, powers[0]) |
| |
| zz = zz.make(numWords) |
| |
| // same windowed exponent, but with Montgomery multiplications |
| for i := len(y) - 1; i >= 0; i-- { |
| yi := y[i] |
| for j := 0; j < _W; j += n { |
| if i != len(y)-1 || j != 0 { |
| zz = zz.montgomery(z, z, m, k0, numWords) |
| z = z.montgomery(zz, zz, m, k0, numWords) |
| zz = zz.montgomery(z, z, m, k0, numWords) |
| z = z.montgomery(zz, zz, m, k0, numWords) |
| } |
| zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) |
| z, zz = zz, z |
| yi <<= n |
| } |
| } |
| // convert to regular number |
| zz = zz.montgomery(z, one, m, k0, numWords) |
| |
| // One last reduction, just in case. |
| // See golang.org/issue/13907. |
| if zz.cmp(m) >= 0 { |
| // Common case is m has high bit set; in that case, |
| // since zz is the same length as m, there can be just |
| // one multiple of m to remove. Just subtract. |
| // We think that the subtract should be sufficient in general, |
| // so do that unconditionally, but double-check, |
| // in case our beliefs are wrong. |
| // The div is not expected to be reached. |
| zz = zz.sub(zz, m) |
| if zz.cmp(m) >= 0 { |
| _, zz = nat(nil).div(nil, zz, m) |
| } |
| } |
| |
| return zz.norm() |
| } |
| |
| // bytes writes the value of z into buf using big-endian encoding. |
| // The value of z is encoded in the slice buf[i:]. If the value of z |
| // cannot be represented in buf, bytes panics. The number i of unused |
| // bytes at the beginning of buf is returned as result. |
| func (z nat) bytes(buf []byte) (i int) { |
| i = len(buf) |
| for _, d := range z { |
| for j := 0; j < _S; j++ { |
| i-- |
| if i >= 0 { |
| buf[i] = byte(d) |
| } else if byte(d) != 0 { |
| panic("math/big: buffer too small to fit value") |
| } |
| d >>= 8 |
| } |
| } |
| |
| if i < 0 { |
| i = 0 |
| } |
| for i < len(buf) && buf[i] == 0 { |
| i++ |
| } |
| |
| return |
| } |
| |
| // bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value. |
| func bigEndianWord(buf []byte) Word { |
| if _W == 64 { |
| return Word(binary.BigEndian.Uint64(buf)) |
| } |
| return Word(binary.BigEndian.Uint32(buf)) |
| } |
| |
| // setBytes interprets buf as the bytes of a big-endian unsigned |
| // integer, sets z to that value, and returns z. |
| func (z nat) setBytes(buf []byte) nat { |
| z = z.make((len(buf) + _S - 1) / _S) |
| |
| i := len(buf) |
| for k := 0; i >= _S; k++ { |
| z[k] = bigEndianWord(buf[i-_S : i]) |
| i -= _S |
| } |
| if i > 0 { |
| var d Word |
| for s := uint(0); i > 0; s += 8 { |
| d |= Word(buf[i-1]) << s |
| i-- |
| } |
| z[len(z)-1] = d |
| } |
| |
| return z.norm() |
| } |
| |
| // sqrt sets z = ⌊√x⌋ |
| func (z nat) sqrt(x nat) nat { |
| if x.cmp(natOne) <= 0 { |
| return z.set(x) |
| } |
| if alias(z, x) { |
| z = nil |
| } |
| |
| // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. |
| // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). |
| // https://members.loria.fr/PZimmermann/mca/pub226.html |
| // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; |
| // otherwise it converges to the correct z and stays there. |
| var z1, z2 nat |
| z1 = z |
| z1 = z1.setUint64(1) |
| z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x |
| for n := 0; ; n++ { |
| z2, _ = z2.div(nil, x, z1) |
| z2 = z2.add(z2, z1) |
| z2 = z2.shr(z2, 1) |
| if z2.cmp(z1) >= 0 { |
| // z1 is answer. |
| // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. |
| if n&1 == 0 { |
| return z1 |
| } |
| return z.set(z1) |
| } |
| z1, z2 = z2, z1 |
| } |
| } |