blob: 750ce8aa398df4ba6d32244ea9e211c592e38821 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file provides Go implementations of elementary multi-precision
// arithmetic operations on word vectors. These have the suffix _g.
// These are needed for platforms without assembly implementations of these routines.
// This file also contains elementary operations that can be implemented
// sufficiently efficiently in Go.
package big
import "math/bits"
// A Word represents a single digit of a multi-precision unsigned integer.
type Word uint
const (
_S = _W / 8 // word size in bytes
_W = bits.UintSize // word size in bits
_B = 1 << _W // digit base
_M = _B - 1 // digit mask
)
// Many of the loops in this file are of the form
// for i := 0; i < len(z) && i < len(x) && i < len(y); i++
// i < len(z) is the real condition.
// However, checking i < len(x) && i < len(y) as well is faster than
// having the compiler do a bounds check in the body of the loop;
// remarkably it is even faster than hoisting the bounds check
// out of the loop, by doing something like
// _, _ = x[len(z)-1], y[len(z)-1]
// There are other ways to hoist the bounds check out of the loop,
// but the compiler's BCE isn't powerful enough for them (yet?).
// See the discussion in CL 164966.
// ----------------------------------------------------------------------------
// Elementary operations on words
//
// These operations are used by the vector operations below.
// z1<<_W + z0 = x*y
func mulWW_g(x, y Word) (z1, z0 Word) {
hi, lo := bits.Mul(uint(x), uint(y))
return Word(hi), Word(lo)
}
// z1<<_W + z0 = x*y + c
func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
hi, lo := bits.Mul(uint(x), uint(y))
var cc uint
lo, cc = bits.Add(lo, uint(c), 0)
return Word(hi + cc), Word(lo)
}
// nlz returns the number of leading zeros in x.
// Wraps bits.LeadingZeros call for convenience.
func nlz(x Word) uint {
return uint(bits.LeadingZeros(uint(x)))
}
// The resulting carry c is either 0 or 1.
func addVV_g(z, x, y []Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
z[i] = Word(zi)
c = Word(cc)
}
return
}
// The resulting carry c is either 0 or 1.
func subVV_g(z, x, y []Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
z[i] = Word(zi)
c = Word(cc)
}
return
}
// The resulting carry c is either 0 or 1.
func addVW_g(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
zi, cc := bits.Add(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
// addVWlarge is addVW, but intended for large z.
// The only difference is that we check on every iteration
// whether we are done with carries,
// and if so, switch to a much faster copy instead.
// This is only a good idea for large z,
// because the overhead of the check and the function call
// outweigh the benefits when z is small.
func addVWlarge(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
if c == 0 {
copy(z[i:], x[i:])
return
}
zi, cc := bits.Add(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
func subVW_g(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
// subVWlarge is to subVW as addVWlarge is to addVW.
func subVWlarge(z, x []Word, y Word) (c Word) {
c = y
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
if c == 0 {
copy(z[i:], x[i:])
return
}
zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
z[i] = Word(zi)
c = Word(cc)
}
return
}
func shlVU_g(z, x []Word, s uint) (c Word) {
if s == 0 {
copy(z, x)
return
}
if len(z) == 0 {
return
}
s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
ŝ := _W - s
ŝ &= _W - 1 // ditto
c = x[len(z)-1] >> ŝ
for i := len(z) - 1; i > 0; i-- {
z[i] = x[i]<<s | x[i-1]>>ŝ
}
z[0] = x[0] << s
return
}
func shrVU_g(z, x []Word, s uint) (c Word) {
if s == 0 {
copy(z, x)
return
}
if len(z) == 0 {
return
}
s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
ŝ := _W - s
ŝ &= _W - 1 // ditto
c = x[0] << ŝ
for i := 0; i < len(z)-1; i++ {
z[i] = x[i]>>s | x[i+1]<<ŝ
}
z[len(z)-1] = x[len(z)-1] >> s
return
}
func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
c = r
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
c, z[i] = mulAddWWW_g(x[i], y, c)
}
return
}
func addMulVVW_g(z, x []Word, y Word) (c Word) {
// The comment near the top of this file discusses this for loop condition.
for i := 0; i < len(z) && i < len(x); i++ {
z1, z0 := mulAddWWW_g(x[i], y, z[i])
lo, cc := bits.Add(uint(z0), uint(c), 0)
c, z[i] = Word(cc), Word(lo)
c += z1
}
return
}
// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
// (IEEE Transactions on Computers, 11 Jun. 2010)"
func divWW(x1, x0, y, m Word) (q, r Word) {
s := nlz(y)
if s != 0 {
x1 = x1<<s | x0>>(_W-s)
x0 <<= s
y <<= s
}
d := uint(y)
// We know that
// m = ⎣(B^2-1)/d⎦-B
// ⎣(B^2-1)/d⎦ = m+B
// (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d
// B^2/d = m+B+delta2 0 <= delta2 <= 1
// The quotient we're trying to compute is
// quotient = ⎣(x1*B+x0)/d⎦
// = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
// = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
// = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
// The latter two terms of this three-term sum are between 0 and 1.
// So we can compute just the first term, and we will be low by at most 2.
t1, t0 := bits.Mul(uint(m), uint(x1))
_, c := bits.Add(t0, uint(x0), 0)
t1, _ = bits.Add(t1, uint(x1), c)
// The quotient is either t1, t1+1, or t1+2.
// We'll try t1 and adjust if needed.
qq := t1
// compute remainder r=x-d*q.
dq1, dq0 := bits.Mul(d, qq)
r0, b := bits.Sub(uint(x0), dq0, 0)
r1, _ := bits.Sub(uint(x1), dq1, b)
// The remainder we just computed is bounded above by B+d:
// r = x1*B + x0 - d*q.
// = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
// = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1
// = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
// = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1
// = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
// = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha
// = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
// < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
// = B - d + d + d
// = B+d
// So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
// Add 1 to q and subtract d from r. That guarantees that r is <B, so
// we no longer need to keep track of r1.
if r1 != 0 {
qq++
r0 -= d
}
// If the remainder is still too large, increment q one more time.
if r0 >= d {
qq++
r0 -= d
}
return Word(qq), Word(r0 >> s)
}
func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
r = xn
if len(x) == 1 {
qq, rr := bits.Div(uint(r), uint(x[0]), uint(y))
z[0] = Word(qq)
return Word(rr)
}
rec := reciprocalWord(y)
for i := len(z) - 1; i >= 0; i-- {
z[i], r = divWW(r, x[i], y, rec)
}
return r
}
// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
func reciprocalWord(d1 Word) Word {
u := uint(d1 << nlz(d1))
x1 := ^u
x0 := uint(_M)
rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
return Word(rec)
}