| // run -gcflags=-G=3 |
| |
| // Copyright 2020 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package main |
| |
| import ( |
| "fmt" |
| "math" |
| ) |
| |
| type Numeric interface { |
| type int, int8, int16, int32, int64, |
| uint, uint8, uint16, uint32, uint64, uintptr, |
| float32, float64, |
| complex64, complex128 |
| } |
| |
| // numericAbs matches numeric types with an Abs method. |
| type numericAbs[T any] interface { |
| Numeric |
| Abs() T |
| } |
| |
| // AbsDifference computes the absolute value of the difference of |
| // a and b, where the absolute value is determined by the Abs method. |
| func absDifference[T numericAbs[T]](a, b T) T { |
| d := a - b |
| return d.Abs() |
| } |
| |
| // orderedNumeric matches numeric types that support the < operator. |
| type orderedNumeric interface { |
| type int, int8, int16, int32, int64, |
| uint, uint8, uint16, uint32, uint64, uintptr, |
| float32, float64 |
| } |
| |
| // Complex matches the two complex types, which do not have a < operator. |
| type Complex interface { |
| type complex64, complex128 |
| } |
| |
| // orderedAbs is a helper type that defines an Abs method for |
| // ordered numeric types. |
| type orderedAbs[T orderedNumeric] T |
| |
| func (a orderedAbs[T]) Abs() orderedAbs[T] { |
| // TODO(danscales): orderedAbs[T] conversion shouldn't be needed |
| if a < orderedAbs[T](0) { |
| return -a |
| } |
| return a |
| } |
| |
| // complexAbs is a helper type that defines an Abs method for |
| // complex types. |
| type complexAbs[T Complex] T |
| |
| func (a complexAbs[T]) Abs() complexAbs[T] { |
| r := float64(real(a)) |
| i := float64(imag(a)) |
| d := math.Sqrt(r * r + i * i) |
| return complexAbs[T](complex(d, 0)) |
| } |
| |
| // OrderedAbsDifference returns the absolute value of the difference |
| // between a and b, where a and b are of an ordered type. |
| func orderedAbsDifference[T orderedNumeric](a, b T) T { |
| return T(absDifference(orderedAbs[T](a), orderedAbs[T](b))) |
| } |
| |
| // ComplexAbsDifference returns the absolute value of the difference |
| // between a and b, where a and b are of a complex type. |
| func complexAbsDifference[T Complex](a, b T) T { |
| return T(absDifference(complexAbs[T](a), complexAbs[T](b))) |
| } |
| |
| func main() { |
| if got, want := orderedAbsDifference(1.0, -2.0), 3.0; got != want { |
| panic(fmt.Sprintf("got = %v, want = %v", got, want)) |
| } |
| if got, want := orderedAbsDifference(-1.0, 2.0), 3.0; got != want { |
| panic(fmt.Sprintf("got = %v, want = %v", got, want)) |
| } |
| if got, want := orderedAbsDifference(-20, 15), 35; got != want { |
| panic(fmt.Sprintf("got = %v, want = %v", got, want)) |
| } |
| |
| if got, want := complexAbsDifference(5.0 + 2.0i, 2.0 - 2.0i), 5+0i; got != want { |
| panic(fmt.Sprintf("got = %v, want = %v", got, want)) |
| } |
| if got, want := complexAbsDifference(2.0 - 2.0i, 5.0 + 2.0i), 5+0i; got != want { |
| panic(fmt.Sprintf("got = %v, want = %v", got, want)) |
| } |
| } |