| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| /* |
| Bessel function of the first and second kinds of order n. |
| */ |
| |
| // The original C code and the long comment below are |
| // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and |
| // came with this notice. The go code is a simplified |
| // version of the original C. |
| // |
| // ==================================================== |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Developed at SunPro, a Sun Microsystems, Inc. business. |
| // Permission to use, copy, modify, and distribute this |
| // software is freely granted, provided that this notice |
| // is preserved. |
| // ==================================================== |
| // |
| // __ieee754_jn(n, x), __ieee754_yn(n, x) |
| // floating point Bessel's function of the 1st and 2nd kind |
| // of order n |
| // |
| // Special cases: |
| // y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
| // y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
| // Note 2. About jn(n,x), yn(n,x) |
| // For n=0, j0(x) is called, |
| // for n=1, j1(x) is called, |
| // for n<x, forward recursion is used starting |
| // from values of j0(x) and j1(x). |
| // for n>x, a continued fraction approximation to |
| // j(n,x)/j(n-1,x) is evaluated and then backward |
| // recursion is used starting from a supposed value |
| // for j(n,x). The resulting value of j(0,x) is |
| // compared with the actual value to correct the |
| // supposed value of j(n,x). |
| // |
| // yn(n,x) is similar in all respects, except |
| // that forward recursion is used for all |
| // values of n>1. |
| |
| // Jn returns the order-n Bessel function of the first kind. |
| // |
| // Special cases are: |
| // Jn(n, ±Inf) = 0 |
| // Jn(n, NaN) = NaN |
| func Jn(n int, x float64) float64 { |
| const ( |
| TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000 |
| Two302 = 1 << 302 // 2**302 0x52D0000000000000 |
| ) |
| // special cases |
| switch { |
| case IsNaN(x): |
| return x |
| case IsInf(x, 0): |
| return 0 |
| } |
| // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x) |
| // Thus, J(-n, x) = J(n, -x) |
| |
| if n == 0 { |
| return J0(x) |
| } |
| if x == 0 { |
| return 0 |
| } |
| if n < 0 { |
| n, x = -n, -x |
| } |
| if n == 1 { |
| return J1(x) |
| } |
| sign := false |
| if x < 0 { |
| x = -x |
| if n&1 == 1 { |
| sign = true // odd n and negative x |
| } |
| } |
| var b float64 |
| if float64(n) <= x { |
| // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) |
| if x >= Two302 { // x > 2**302 |
| |
| // (x >> n**2) |
| // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| // Let s=sin(x), c=cos(x), |
| // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| // |
| // n sin(xn)*sqt2 cos(xn)*sqt2 |
| // ---------------------------------- |
| // 0 s-c c+s |
| // 1 -s-c -c+s |
| // 2 -s+c -c-s |
| // 3 s+c c-s |
| |
| var temp float64 |
| switch n & 3 { |
| case 0: |
| temp = Cos(x) + Sin(x) |
| case 1: |
| temp = -Cos(x) + Sin(x) |
| case 2: |
| temp = -Cos(x) - Sin(x) |
| case 3: |
| temp = Cos(x) - Sin(x) |
| } |
| b = (1 / SqrtPi) * temp / Sqrt(x) |
| } else { |
| b = J1(x) |
| for i, a := 1, J0(x); i < n; i++ { |
| a, b = b, b*(float64(i+i)/x)-a // avoid underflow |
| } |
| } |
| } else { |
| if x < TwoM29 { // x < 2**-29 |
| // x is tiny, return the first Taylor expansion of J(n,x) |
| // J(n,x) = 1/n!*(x/2)**n - ... |
| |
| if n > 33 { // underflow |
| b = 0 |
| } else { |
| temp := x * 0.5 |
| b = temp |
| a := 1.0 |
| for i := 2; i <= n; i++ { |
| a *= float64(i) // a = n! |
| b *= temp // b = (x/2)**n |
| } |
| b /= a |
| } |
| } else { |
| // use backward recurrence |
| // x x**2 x**2 |
| // J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| // 2n - 2(n+1) - 2(n+2) |
| // |
| // 1 1 1 |
| // (for large x) = ---- ------ ------ ..... |
| // 2n 2(n+1) 2(n+2) |
| // -- - ------ - ------ - |
| // x x x |
| // |
| // Let w = 2n/x and h=2/x, then the above quotient |
| // is equal to the continued fraction: |
| // 1 |
| // = ----------------------- |
| // 1 |
| // w - ----------------- |
| // 1 |
| // w+h - --------- |
| // w+2h - ... |
| // |
| // To determine how many terms needed, let |
| // Q(0) = w, Q(1) = w(w+h) - 1, |
| // Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| // When Q(k) > 1e4 good for single |
| // When Q(k) > 1e9 good for double |
| // When Q(k) > 1e17 good for quadruple |
| |
| // determine k |
| w := float64(n+n) / x |
| h := 2 / x |
| q0 := w |
| z := w + h |
| q1 := w*z - 1 |
| k := 1 |
| for q1 < 1e9 { |
| k++ |
| z += h |
| q0, q1 = q1, z*q1-q0 |
| } |
| m := n + n |
| t := 0.0 |
| for i := 2 * (n + k); i >= m; i -= 2 { |
| t = 1 / (float64(i)/x - t) |
| } |
| a := t |
| b = 1 |
| // estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n) |
| // Hence, if n*(log(2n/x)) > ... |
| // single 8.8722839355e+01 |
| // double 7.09782712893383973096e+02 |
| // long double 1.1356523406294143949491931077970765006170e+04 |
| // then recurrent value may overflow and the result is |
| // likely underflow to zero |
| |
| tmp := float64(n) |
| v := 2 / x |
| tmp = tmp * Log(Abs(v*tmp)) |
| if tmp < 7.09782712893383973096e+02 { |
| for i := n - 1; i > 0; i-- { |
| di := float64(i + i) |
| a, b = b, b*di/x-a |
| } |
| } else { |
| for i := n - 1; i > 0; i-- { |
| di := float64(i + i) |
| a, b = b, b*di/x-a |
| // scale b to avoid spurious overflow |
| if b > 1e100 { |
| a /= b |
| t /= b |
| b = 1 |
| } |
| } |
| } |
| b = t * J0(x) / b |
| } |
| } |
| if sign { |
| return -b |
| } |
| return b |
| } |
| |
| // Yn returns the order-n Bessel function of the second kind. |
| // |
| // Special cases are: |
| // Yn(n, +Inf) = 0 |
| // Yn(n ≥ 0, 0) = -Inf |
| // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even |
| // Yn(n, x < 0) = NaN |
| // Yn(n, NaN) = NaN |
| func Yn(n int, x float64) float64 { |
| const Two302 = 1 << 302 // 2**302 0x52D0000000000000 |
| // special cases |
| switch { |
| case x < 0 || IsNaN(x): |
| return NaN() |
| case IsInf(x, 1): |
| return 0 |
| } |
| |
| if n == 0 { |
| return Y0(x) |
| } |
| if x == 0 { |
| if n < 0 && n&1 == 1 { |
| return Inf(1) |
| } |
| return Inf(-1) |
| } |
| sign := false |
| if n < 0 { |
| n = -n |
| if n&1 == 1 { |
| sign = true // sign true if n < 0 && |n| odd |
| } |
| } |
| if n == 1 { |
| if sign { |
| return -Y1(x) |
| } |
| return Y1(x) |
| } |
| var b float64 |
| if x >= Two302 { // x > 2**302 |
| // (x >> n**2) |
| // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| // Let s=sin(x), c=cos(x), |
| // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| // |
| // n sin(xn)*sqt2 cos(xn)*sqt2 |
| // ---------------------------------- |
| // 0 s-c c+s |
| // 1 -s-c -c+s |
| // 2 -s+c -c-s |
| // 3 s+c c-s |
| |
| var temp float64 |
| switch n & 3 { |
| case 0: |
| temp = Sin(x) - Cos(x) |
| case 1: |
| temp = -Sin(x) - Cos(x) |
| case 2: |
| temp = -Sin(x) + Cos(x) |
| case 3: |
| temp = Sin(x) + Cos(x) |
| } |
| b = (1 / SqrtPi) * temp / Sqrt(x) |
| } else { |
| a := Y0(x) |
| b = Y1(x) |
| // quit if b is -inf |
| for i := 1; i < n && !IsInf(b, -1); i++ { |
| a, b = b, (float64(i+i)/x)*b-a |
| } |
| } |
| if sign { |
| return -b |
| } |
| return b |
| } |