| // Copyright 2019 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | //go:build ppc64le | 
 |  | 
 | package elliptic | 
 |  | 
 | import ( | 
 | 	"crypto/subtle" | 
 | 	"encoding/binary" | 
 | 	"math/big" | 
 | ) | 
 |  | 
 | // This was ported from the s390x implementation for ppc64le. | 
 | // Some hints are included here for changes that should be | 
 | // in the big endian ppc64 implementation, however more | 
 | // investigation and testing is needed for the ppc64 big | 
 | // endian version to work. | 
 | type p256CurveFast struct { | 
 | 	*CurveParams | 
 | } | 
 |  | 
 | type p256Point struct { | 
 | 	x [32]byte | 
 | 	y [32]byte | 
 | 	z [32]byte | 
 | } | 
 |  | 
 | var ( | 
 | 	p256        Curve | 
 | 	p256PreFast *[37][64]p256Point | 
 | ) | 
 |  | 
 | func initP256Arch() { | 
 | 	p256 = p256CurveFast{p256Params} | 
 | 	initTable() | 
 | 	return | 
 | } | 
 |  | 
 | func (curve p256CurveFast) Params() *CurveParams { | 
 | 	return curve.CurveParams | 
 | } | 
 |  | 
 | // Functions implemented in p256_asm_ppc64le.s | 
 | // Montgomery multiplication modulo P256 | 
 | // | 
 | //go:noescape | 
 | func p256MulAsm(res, in1, in2 []byte) | 
 |  | 
 | // Montgomery square modulo P256 | 
 | // | 
 | func p256Sqr(res, in []byte) { | 
 | 	p256MulAsm(res, in, in) | 
 | } | 
 |  | 
 | // Montgomery multiplication by 1 | 
 | // | 
 | //go:noescape | 
 | func p256FromMont(res, in []byte) | 
 |  | 
 | // iff cond == 1  val <- -val | 
 | // | 
 | //go:noescape | 
 | func p256NegCond(val *p256Point, cond int) | 
 |  | 
 | // if cond == 0 res <- b; else res <- a | 
 | // | 
 | //go:noescape | 
 | func p256MovCond(res, a, b *p256Point, cond int) | 
 |  | 
 | // Constant time table access | 
 | // | 
 | //go:noescape | 
 | func p256Select(point *p256Point, table []p256Point, idx int) | 
 |  | 
 | // | 
 | //go:noescape | 
 | func p256SelectBase(point *p256Point, table []p256Point, idx int) | 
 |  | 
 | // Point add with P2 being affine point | 
 | // If sign == 1 -> P2 = -P2 | 
 | // If sel == 0 -> P3 = P1 | 
 | // if zero == 0 -> P3 = P2 | 
 | // | 
 | //go:noescape | 
 | func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int) | 
 |  | 
 | // Point add | 
 | // | 
 | //go:noescape | 
 | func p256PointAddAsm(res, in1, in2 *p256Point) int | 
 |  | 
 | // | 
 | //go:noescape | 
 | func p256PointDoubleAsm(res, in *p256Point) | 
 |  | 
 | // The result should be a slice in LE order, but the slice | 
 | // from big.Bytes is in BE order. | 
 | // TODO: For big endian implementation, do not reverse bytes. | 
 | // | 
 | func fromBig(big *big.Int) []byte { | 
 | 	// This could be done a lot more efficiently... | 
 | 	res := big.Bytes() | 
 | 	t := make([]byte, 32) | 
 | 	if len(res) < 32 { | 
 | 		copy(t[32-len(res):], res) | 
 | 	} else if len(res) == 32 { | 
 | 		copy(t, res) | 
 | 	} else { | 
 | 		copy(t, res[len(res)-32:]) | 
 | 	} | 
 | 	p256ReverseBytes(t, t) | 
 | 	return t | 
 | } | 
 |  | 
 | // p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar | 
 | // is equal or greater than the order of the group, it's reduced modulo that order. | 
 | func p256GetMultiplier(in []byte) []byte { | 
 | 	n := new(big.Int).SetBytes(in) | 
 |  | 
 | 	if n.Cmp(p256Params.N) >= 0 { | 
 | 		n.Mod(n, p256Params.N) | 
 | 	} | 
 | 	return fromBig(n) | 
 | } | 
 |  | 
 | // p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the | 
 | // underlying field of the curve. (See initP256 for the value.) Thus rr here is | 
 | // R×R mod p. See comment in Inverse about how this is used. | 
 | // TODO: For big endian implementation, the bytes in these slices should be in reverse order, | 
 | // as found in the s390x implementation. | 
 | var rr = []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00} | 
 |  | 
 | // (This is one, in the Montgomery domain.) | 
 | var one = []byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00} | 
 |  | 
 | func maybeReduceModP(in *big.Int) *big.Int { | 
 | 	if in.Cmp(p256Params.P) < 0 { | 
 | 		return in | 
 | 	} | 
 | 	return new(big.Int).Mod(in, p256Params.P) | 
 | } | 
 |  | 
 | // p256ReverseBytes copies the first 32 bytes from in to res in reverse order. | 
 | func p256ReverseBytes(res, in []byte) { | 
 | 	// remove bounds check | 
 | 	in = in[:32] | 
 | 	res = res[:32] | 
 |  | 
 | 	// Load in reverse order | 
 | 	a := binary.BigEndian.Uint64(in[0:]) | 
 | 	b := binary.BigEndian.Uint64(in[8:]) | 
 | 	c := binary.BigEndian.Uint64(in[16:]) | 
 | 	d := binary.BigEndian.Uint64(in[24:]) | 
 |  | 
 | 	// Store in normal order | 
 | 	binary.LittleEndian.PutUint64(res[0:], d) | 
 | 	binary.LittleEndian.PutUint64(res[8:], c) | 
 | 	binary.LittleEndian.PutUint64(res[16:], b) | 
 | 	binary.LittleEndian.PutUint64(res[24:], a) | 
 | } | 
 |  | 
 | func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) { | 
 | 	var r1, r2 p256Point | 
 |  | 
 | 	scalarReduced := p256GetMultiplier(baseScalar) | 
 | 	r1IsInfinity := scalarIsZero(scalarReduced) | 
 | 	r1.p256BaseMult(scalarReduced) | 
 |  | 
 | 	copy(r2.x[:], fromBig(maybeReduceModP(bigX))) | 
 | 	copy(r2.y[:], fromBig(maybeReduceModP(bigY))) | 
 | 	copy(r2.z[:], one) | 
 | 	p256MulAsm(r2.x[:], r2.x[:], rr[:]) | 
 | 	p256MulAsm(r2.y[:], r2.y[:], rr[:]) | 
 |  | 
 | 	scalarReduced = p256GetMultiplier(scalar) | 
 | 	r2IsInfinity := scalarIsZero(scalarReduced) | 
 | 	r2.p256ScalarMult(scalarReduced) | 
 |  | 
 | 	var sum, double p256Point | 
 | 	pointsEqual := p256PointAddAsm(&sum, &r1, &r2) | 
 | 	p256PointDoubleAsm(&double, &r1) | 
 | 	p256MovCond(&sum, &double, &sum, pointsEqual) | 
 | 	p256MovCond(&sum, &r1, &sum, r2IsInfinity) | 
 | 	p256MovCond(&sum, &r2, &sum, r1IsInfinity) | 
 | 	return sum.p256PointToAffine() | 
 | } | 
 |  | 
 | func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) { | 
 | 	var r p256Point | 
 | 	reducedScalar := p256GetMultiplier(scalar) | 
 | 	r.p256BaseMult(reducedScalar) | 
 | 	return r.p256PointToAffine() | 
 | } | 
 |  | 
 | func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { | 
 | 	scalarReduced := p256GetMultiplier(scalar) | 
 | 	var r p256Point | 
 | 	copy(r.x[:], fromBig(maybeReduceModP(bigX))) | 
 | 	copy(r.y[:], fromBig(maybeReduceModP(bigY))) | 
 | 	copy(r.z[:], one) | 
 | 	p256MulAsm(r.x[:], r.x[:], rr[:]) | 
 | 	p256MulAsm(r.y[:], r.y[:], rr[:]) | 
 | 	r.p256ScalarMult(scalarReduced) | 
 | 	return r.p256PointToAffine() | 
 | } | 
 |  | 
 | func scalarIsZero(scalar []byte) int { | 
 | 	// If any byte is not zero, return 0. | 
 | 	// Check for -0.... since that appears to compare to 0. | 
 | 	b := byte(0) | 
 | 	for _, s := range scalar { | 
 | 		b |= s | 
 | 	} | 
 | 	return subtle.ConstantTimeByteEq(b, 0) | 
 | } | 
 |  | 
 | func (p *p256Point) p256PointToAffine() (x, y *big.Int) { | 
 | 	zInv := make([]byte, 32) | 
 | 	zInvSq := make([]byte, 32) | 
 |  | 
 | 	p256Inverse(zInv, p.z[:]) | 
 | 	p256Sqr(zInvSq, zInv) | 
 | 	p256MulAsm(zInv, zInv, zInvSq) | 
 |  | 
 | 	p256MulAsm(zInvSq, p.x[:], zInvSq) | 
 | 	p256MulAsm(zInv, p.y[:], zInv) | 
 |  | 
 | 	p256FromMont(zInvSq, zInvSq) | 
 | 	p256FromMont(zInv, zInv) | 
 |  | 
 | 	// SetBytes expects a slice in big endian order, | 
 | 	// since ppc64le is little endian, reverse the bytes. | 
 | 	// TODO: For big endian, bytes don't need to be reversed. | 
 | 	p256ReverseBytes(zInvSq, zInvSq) | 
 | 	p256ReverseBytes(zInv, zInv) | 
 | 	rx := new(big.Int).SetBytes(zInvSq) | 
 | 	ry := new(big.Int).SetBytes(zInv) | 
 | 	return rx, ry | 
 | } | 
 |  | 
 | // p256Inverse sets out to in^-1 mod p. | 
 | func p256Inverse(out, in []byte) { | 
 | 	var stack [6 * 32]byte | 
 | 	p2 := stack[32*0 : 32*0+32] | 
 | 	p4 := stack[32*1 : 32*1+32] | 
 | 	p8 := stack[32*2 : 32*2+32] | 
 | 	p16 := stack[32*3 : 32*3+32] | 
 | 	p32 := stack[32*4 : 32*4+32] | 
 |  | 
 | 	p256Sqr(out, in) | 
 | 	p256MulAsm(p2, out, in) // 3*p | 
 |  | 
 | 	p256Sqr(out, p2) | 
 | 	p256Sqr(out, out) | 
 | 	p256MulAsm(p4, out, p2) // f*p | 
 |  | 
 | 	p256Sqr(out, p4) | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256MulAsm(p8, out, p4) // ff*p | 
 |  | 
 | 	p256Sqr(out, p8) | 
 |  | 
 | 	for i := 0; i < 7; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(p16, out, p8) // ffff*p | 
 |  | 
 | 	p256Sqr(out, p16) | 
 | 	for i := 0; i < 15; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(p32, out, p16) // ffffffff*p | 
 |  | 
 | 	p256Sqr(out, p32) | 
 |  | 
 | 	for i := 0; i < 31; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(out, out, in) | 
 |  | 
 | 	for i := 0; i < 32*4; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(out, out, p32) | 
 |  | 
 | 	for i := 0; i < 32; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(out, out, p32) | 
 |  | 
 | 	for i := 0; i < 16; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(out, out, p16) | 
 |  | 
 | 	for i := 0; i < 8; i++ { | 
 | 		p256Sqr(out, out) | 
 | 	} | 
 | 	p256MulAsm(out, out, p8) | 
 |  | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256MulAsm(out, out, p4) | 
 |  | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256MulAsm(out, out, p2) | 
 |  | 
 | 	p256Sqr(out, out) | 
 | 	p256Sqr(out, out) | 
 | 	p256MulAsm(out, out, in) | 
 | } | 
 |  | 
 | func boothW5(in uint) (int, int) { | 
 | 	var s uint = ^((in >> 5) - 1) | 
 | 	var d uint = (1 << 6) - in - 1 | 
 | 	d = (d & s) | (in & (^s)) | 
 | 	d = (d >> 1) + (d & 1) | 
 | 	return int(d), int(s & 1) | 
 | } | 
 |  | 
 | func boothW6(in uint) (int, int) { | 
 | 	var s uint = ^((in >> 6) - 1) | 
 | 	var d uint = (1 << 7) - in - 1 | 
 | 	d = (d & s) | (in & (^s)) | 
 | 	d = (d >> 1) + (d & 1) | 
 | 	return int(d), int(s & 1) | 
 | } | 
 |  | 
 | func boothW7(in uint) (int, int) { | 
 | 	var s uint = ^((in >> 7) - 1) | 
 | 	var d uint = (1 << 8) - in - 1 | 
 | 	d = (d & s) | (in & (^s)) | 
 | 	d = (d >> 1) + (d & 1) | 
 | 	return int(d), int(s & 1) | 
 | } | 
 |  | 
 | func initTable() { | 
 |  | 
 | 	p256PreFast = new([37][64]p256Point) | 
 |  | 
 | 	// TODO: For big endian, these slices should be in reverse byte order, | 
 | 	// as found in the s390x implementation. | 
 | 	basePoint := p256Point{ | 
 | 		x: [32]byte{0x3c, 0x14, 0xa9, 0x18, 0xd4, 0x30, 0xe7, 0x79, 0x01, 0xb6, 0xed, 0x5f, 0xfc, 0x95, 0xba, 0x75, | 
 | 			0x10, 0x25, 0x62, 0x77, 0x2b, 0x73, 0xfb, 0x79, 0xc6, 0x55, 0x37, 0xa5, 0x76, 0x5f, 0x90, 0x18}, //(p256.x*2^256)%p | 
 | 		y: [32]byte{0x0a, 0x56, 0x95, 0xce, 0x57, 0x53, 0xf2, 0xdd, 0x5c, 0xe4, 0x19, 0xba, 0xe4, 0xb8, 0x4a, 0x8b, | 
 | 			0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p | 
 | 		z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, | 
 | 			0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p | 
 |  | 
 | 	} | 
 |  | 
 | 	t1 := new(p256Point) | 
 | 	t2 := new(p256Point) | 
 | 	*t2 = basePoint | 
 |  | 
 | 	zInv := make([]byte, 32) | 
 | 	zInvSq := make([]byte, 32) | 
 | 	for j := 0; j < 64; j++ { | 
 | 		*t1 = *t2 | 
 | 		for i := 0; i < 37; i++ { | 
 | 			// The window size is 7 so we need to double 7 times. | 
 | 			if i != 0 { | 
 | 				for k := 0; k < 7; k++ { | 
 | 					p256PointDoubleAsm(t1, t1) | 
 | 				} | 
 | 			} | 
 | 			// Convert the point to affine form. (Its values are | 
 | 			// still in Montgomery form however.) | 
 | 			p256Inverse(zInv, t1.z[:]) | 
 | 			p256Sqr(zInvSq, zInv) | 
 | 			p256MulAsm(zInv, zInv, zInvSq) | 
 |  | 
 | 			p256MulAsm(t1.x[:], t1.x[:], zInvSq) | 
 | 			p256MulAsm(t1.y[:], t1.y[:], zInv) | 
 |  | 
 | 			copy(t1.z[:], basePoint.z[:]) | 
 | 			// Update the table entry | 
 | 			copy(p256PreFast[i][j].x[:], t1.x[:]) | 
 | 			copy(p256PreFast[i][j].y[:], t1.y[:]) | 
 | 		} | 
 | 		if j == 0 { | 
 | 			p256PointDoubleAsm(t2, &basePoint) | 
 | 		} else { | 
 | 			p256PointAddAsm(t2, t2, &basePoint) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | func (p *p256Point) p256BaseMult(scalar []byte) { | 
 | 	// TODO: For big endian, the index should be 31 not 0. | 
 | 	wvalue := (uint(scalar[0]) << 1) & 0xff | 
 | 	sel, sign := boothW7(uint(wvalue)) | 
 | 	p256SelectBase(p, p256PreFast[0][:], sel) | 
 | 	p256NegCond(p, sign) | 
 |  | 
 | 	copy(p.z[:], one[:]) | 
 | 	var t0 p256Point | 
 |  | 
 | 	copy(t0.z[:], one[:]) | 
 |  | 
 | 	index := uint(6) | 
 | 	zero := sel | 
 | 	for i := 1; i < 37; i++ { | 
 | 		// TODO: For big endian, use the same index values as found | 
 | 		// in the  s390x implementation. | 
 | 		if index < 247 { | 
 | 			wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0xff | 
 | 		} else { | 
 | 			wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0xff | 
 | 		} | 
 | 		index += 7 | 
 | 		sel, sign = boothW7(uint(wvalue)) | 
 | 		p256SelectBase(&t0, p256PreFast[i][:], sel) | 
 | 		p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) | 
 | 		zero |= sel | 
 | 	} | 
 | } | 
 |  | 
 | func (p *p256Point) p256ScalarMult(scalar []byte) { | 
 | 	// precomp is a table of precomputed points that stores powers of p | 
 | 	// from p^1 to p^16. | 
 | 	var precomp [16]p256Point | 
 | 	var t0, t1, t2, t3 p256Point | 
 |  | 
 | 	*&precomp[0] = *p | 
 | 	p256PointDoubleAsm(&t0, p) | 
 | 	p256PointDoubleAsm(&t1, &t0) | 
 | 	p256PointDoubleAsm(&t2, &t1) | 
 | 	p256PointDoubleAsm(&t3, &t2) | 
 | 	*&precomp[1] = t0 | 
 | 	*&precomp[3] = t1 | 
 | 	*&precomp[7] = t2 | 
 | 	*&precomp[15] = t3 | 
 |  | 
 | 	p256PointAddAsm(&t0, &t0, p) | 
 | 	p256PointAddAsm(&t1, &t1, p) | 
 | 	p256PointAddAsm(&t2, &t2, p) | 
 |  | 
 | 	*&precomp[2] = t0 | 
 | 	*&precomp[4] = t1 | 
 | 	*&precomp[8] = t2 | 
 |  | 
 | 	p256PointDoubleAsm(&t0, &t0) | 
 | 	p256PointDoubleAsm(&t1, &t1) | 
 | 	*&precomp[5] = t0 | 
 | 	*&precomp[9] = t1 | 
 |  | 
 | 	p256PointAddAsm(&t2, &t0, p) | 
 | 	p256PointAddAsm(&t1, &t1, p) | 
 | 	*&precomp[6] = t2 | 
 | 	*&precomp[10] = t1 | 
 |  | 
 | 	p256PointDoubleAsm(&t0, &t0) | 
 | 	p256PointDoubleAsm(&t2, &t2) | 
 | 	*&precomp[11] = t0 | 
 | 	*&precomp[13] = t2 | 
 |  | 
 | 	p256PointAddAsm(&t0, &t0, p) | 
 | 	p256PointAddAsm(&t2, &t2, p) | 
 | 	*&precomp[12] = t0 | 
 | 	*&precomp[14] = t2 | 
 |  | 
 | 	// Start scanning the window from top bit | 
 | 	index := uint(254) | 
 | 	var sel, sign int | 
 |  | 
 | 	// TODO: For big endian, use index found in s390x implementation. | 
 | 	wvalue := (uint(scalar[index/8]) >> (index % 8)) & 0x3f | 
 | 	sel, _ = boothW5(uint(wvalue)) | 
 | 	p256Select(p, precomp[:], sel) | 
 | 	zero := sel | 
 |  | 
 | 	for index > 4 { | 
 | 		index -= 5 | 
 | 		p256PointDoubleAsm(p, p) | 
 | 		p256PointDoubleAsm(p, p) | 
 | 		p256PointDoubleAsm(p, p) | 
 | 		p256PointDoubleAsm(p, p) | 
 | 		p256PointDoubleAsm(p, p) | 
 |  | 
 | 		// TODO: For big endian, use index values as found in s390x implementation. | 
 | 		if index < 247 { | 
 | 			wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0x3f | 
 | 		} else { | 
 | 			wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0x3f | 
 | 		} | 
 |  | 
 | 		sel, sign = boothW5(uint(wvalue)) | 
 |  | 
 | 		p256Select(&t0, precomp[:], sel) | 
 | 		p256NegCond(&t0, sign) | 
 | 		p256PointAddAsm(&t1, p, &t0) | 
 | 		p256MovCond(&t1, &t1, p, sel) | 
 | 		p256MovCond(p, &t1, &t0, zero) | 
 | 		zero |= sel | 
 | 	} | 
 |  | 
 | 	p256PointDoubleAsm(p, p) | 
 | 	p256PointDoubleAsm(p, p) | 
 | 	p256PointDoubleAsm(p, p) | 
 | 	p256PointDoubleAsm(p, p) | 
 | 	p256PointDoubleAsm(p, p) | 
 |  | 
 | 	// TODO: Use index for big endian as found in s390x implementation. | 
 | 	wvalue = (uint(scalar[0]) << 1) & 0x3f | 
 | 	sel, sign = boothW5(uint(wvalue)) | 
 |  | 
 | 	p256Select(&t0, precomp[:], sel) | 
 | 	p256NegCond(&t0, sign) | 
 | 	p256PointAddAsm(&t1, p, &t0) | 
 | 	p256MovCond(&t1, &t1, p, sel) | 
 | 	p256MovCond(p, &t1, &t0, zero) | 
 | } |