| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "textflag.h" |
| |
| // This is a port of the s390x asm implementation. |
| // to ppc64le. |
| |
| // Some changes were needed due to differences in |
| // the Go opcodes and/or available instructions |
| // between s390x and ppc64le. |
| |
| // 1. There were operand order differences in the |
| // VSUBUQM, VSUBCUQ, and VSEL instructions. |
| |
| // 2. ppc64 does not have a multiply high and low |
| // like s390x, so those were implemented using |
| // macros to compute the equivalent values. |
| |
| // 3. The LVX, STVX instructions on ppc64 require |
| // 16 byte alignment of the data. To avoid that |
| // requirement, data is loaded using LXVD2X and |
| // STXVD2X with VPERM to reorder bytes correctly. |
| |
| // I have identified some areas where I believe |
| // changes would be needed to make this work for big |
| // endian; however additional changes beyond what I |
| // have noted are most likely needed to make it work. |
| // - The string used with VPERM to swap the byte order |
| // for loads and stores. |
| // - The EXTRACT_HI and EXTRACT_LO strings. |
| // - The constants that are loaded from CPOOL. |
| // |
| |
| // Permute string used by VPERM to reorder bytes |
| // loaded or stored using LXVD2X or STXVD2X |
| // on little endian. |
| DATA byteswap<>+0(SB)/8, $0x08090a0b0c0d0e0f |
| DATA byteswap<>+8(SB)/8, $0x0001020304050607 |
| |
| // The following constants are defined in an order |
| // that is correct for use with LXVD2X/STXVD2X |
| // on little endian. |
| DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256 |
| DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256 |
| DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256 |
| DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256 |
| DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0 |
| DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0 |
| DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256mul<>+0x00(SB)/8, $0x00000000ffffffff // P256 original |
| DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256 |
| DATA p256mul<>+0x10(SB)/8, $0xffffffff00000001 // P256 original |
| DATA p256mul<>+0x18(SB)/8, $0x0000000000000000 // P256 |
| DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0 |
| DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0 |
| DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0 |
| DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0 |
| DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1 |
| DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1 |
| DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0 |
| DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0 |
| DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 |
| DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0 |
| DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0 |
| DATA p256mul<>+0x80(SB)/8, $0xffffffff00000000 // (1*2^256)%P256 |
| DATA p256mul<>+0x88(SB)/8, $0x0000000000000001 // (1*2^256)%P256 |
| DATA p256mul<>+0x90(SB)/8, $0x00000000fffffffe // (1*2^256)%P256 |
| DATA p256mul<>+0x98(SB)/8, $0xffffffffffffffff // (1*2^256)%P256 |
| |
| // The following are used with VPERM to extract the high and low |
| // values from the intermediate results of a vector multiply. |
| // They are used in the VMULTxxx macros. These have been tested |
| // only on little endian, I think they would have to be different |
| // for big endian. |
| DATA p256permhilo<>+0x00(SB)/8, $0x0405060714151617 // least significant |
| DATA p256permhilo<>+0x08(SB)/8, $0x0c0d0e0f1c1d1e1f |
| DATA p256permhilo<>+0x10(SB)/8, $0x0001020310111213 // most significant |
| DATA p256permhilo<>+0x18(SB)/8, $0x08090a0b18191A1B |
| |
| // External declarations for constants |
| GLOBL p256ord<>(SB), 8, $32 |
| GLOBL p256<>(SB), 8, $80 |
| GLOBL p256mul<>(SB), 8, $160 |
| GLOBL p256permhilo<>(SB), 8, $32 |
| GLOBL byteswap<>+0(SB), RODATA, $16 |
| |
| // The following macros are used to implement the ppc64le |
| // equivalent function from the corresponding s390x |
| // instruction for vector multiply high, low, and add, |
| // since there aren't exact equivalent instructions. |
| // The corresponding s390x instructions appear in the |
| // comments. |
| // Implementation for big endian would have to be |
| // investigated, I think it would be different. |
| // |
| // Vector multiply low word |
| // |
| // VMLF x0, x1, out_low |
| #define VMULT_LOW(x1, x2, out_low) \ |
| VMULUWM x1, x2, out_low |
| |
| // |
| // Vector multiply high word |
| // |
| // VMLHF x0, x1, out_hi |
| #define VMULT_HI(x1, x2, out_hi) \ |
| VMULEUW x1, x2, TMP1; \ |
| VMULOUW x1, x2, TMP2; \ |
| VPERM TMP1, TMP2, EXTRACT_HI, out_hi |
| |
| // |
| // Vector multiply word |
| // |
| // VMLF x0, x1, out_low |
| // VMLHF x0, x1, out_hi |
| #define VMULT(x1, x2, out_low, out_hi) \ |
| VMULEUW x1, x2, TMP1; \ |
| VMULOUW x1, x2, TMP2; \ |
| VPERM TMP1, TMP2, EXTRACT_LO, out_low; \ |
| VPERM TMP1, TMP2, EXTRACT_HI, out_hi |
| |
| // |
| // Vector multiply add word |
| // |
| // VMALF x0, x1, y, out_low |
| // VMALHF x0, x1, y, out_hi |
| #define VMULT_ADD(x1, x2, y, out_low, out_hi) \ |
| VSPLTISW $1, TMP1; \ |
| VMULEUW y, TMP1, TMP2; \ |
| VMULOUW y, TMP1, TMP1; \ |
| VMULEUW x1, x2, out_low; \ |
| VMULOUW x1, x2, out_hi; \ |
| VADDUDM TMP1, out_hi, TMP1; \ |
| VADDUDM TMP2, out_low, TMP2; \ |
| VPERM TMP2, TMP1, EXTRACT_LO, out_low; \ |
| VPERM TMP2, TMP1, EXTRACT_HI, out_hi |
| |
| // |
| // Vector multiply add high word |
| // |
| // VMALF x0, x1, y, out_low |
| // VMALHF x0, x1, y, out_hi |
| #define VMULT_ADD_HI(x1, x2, y, out_low, out_hi) \ |
| VSPLTISW $1, TMP1; \ |
| VMULOUW y, TMP1, TMP2; \ |
| VMULEUW y, TMP1, TMP1; \ |
| VMULEUW x1, x2, out_hi; \ |
| VMULOUW x1, x2, out_low; \ |
| VADDUDM TMP1, out_hi, TMP1; \ |
| VADDUDM TMP2, out_low, TMP2; \ |
| VPERM TMP2, TMP1, EXTRACT_HI, out_hi |
| |
| // |
| // Vector multiply add low word |
| // |
| // VMALF s0, x1, y, out_low |
| #define VMULT_ADD_LOW(x1, x2, y, out_low) \ |
| VMULUWM x1, x2, out_low; \ |
| VADDUWM out_low, y, out_low |
| |
| #define res_ptr R3 |
| #define a_ptr R4 |
| |
| #undef res_ptr |
| #undef a_ptr |
| |
| // func p256NegCond(val *p256Point, cond int) |
| #define P1ptr R3 |
| #define CPOOL R7 |
| |
| #define Y1L V0 |
| #define Y1L_ VS32 |
| #define Y1H V1 |
| #define Y1H_ VS33 |
| #define T1L V2 |
| #define T1L_ VS34 |
| #define T1H V3 |
| #define T1H_ VS35 |
| |
| #define SWAP V28 |
| #define SWAP_ VS60 |
| |
| #define PL V30 |
| #define PL_ VS62 |
| #define PH V31 |
| #define PH_ VS63 |
| |
| #define SEL1 V5 |
| #define SEL1_ VS37 |
| #define CAR1 V6 |
| // |
| // iff cond == 1 val <- -val |
| // |
| TEXT ·p256NegCond(SB), NOSPLIT, $0-16 |
| MOVD val+0(FP), P1ptr |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $40, R19 |
| |
| MOVD cond+8(FP), R6 |
| CMP $0, R6 |
| BC 12, 2, LR // just return if cond == 0 |
| |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| |
| MOVD $byteswap<>+0x00(SB), R8 |
| LXVD2X (R8)(R0), SWAP_ |
| |
| LXVD2X (P1ptr)(R17), Y1L_ |
| LXVD2X (P1ptr)(R18), Y1H_ |
| |
| VPERM Y1H, Y1H, SWAP, Y1H |
| VPERM Y1L, Y1L, SWAP, Y1L |
| |
| LXVD2X (CPOOL)(R0), PL_ |
| LXVD2X (CPOOL)(R16), PH_ |
| |
| VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry |
| VSUBUQM PL, Y1L, T1L // subtract part2 giving result |
| VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2 |
| |
| VPERM T1H, T1H, SWAP, T1H |
| VPERM T1L, T1L, SWAP, T1L |
| |
| STXVD2X T1L_, (R17+P1ptr) |
| STXVD2X T1H_, (R18+P1ptr) |
| RET |
| |
| #undef P1ptr |
| #undef CPOOL |
| #undef Y1L |
| #undef Y1L_ |
| #undef Y1H |
| #undef Y1H_ |
| #undef T1L |
| #undef T1L_ |
| #undef T1H |
| #undef T1H_ |
| #undef PL |
| #undef PL_ |
| #undef PH |
| #undef PH_ |
| #undef SEL1 |
| #undef SEL1_ |
| #undef CAR1 |
| |
| // |
| // if cond == 0 res <-b else res <-a |
| // |
| // func p256MovCond(res, a, b *p256Point, cond int) |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define P2ptr R5 |
| |
| #define FROMptr R7 |
| #define X1L V0 |
| #define X1H V1 |
| #define Y1L V2 |
| #define Y1H V3 |
| #define Z1L V4 |
| #define Z1H V5 |
| #define X1L_ VS32 |
| #define X1H_ VS33 |
| #define Y1L_ VS34 |
| #define Y1H_ VS35 |
| #define Z1L_ VS36 |
| #define Z1H_ VS37 |
| |
| // This function uses LXVD2X and STXVD2X to avoid the |
| // data alignment requirement for LVX, STVX. Since |
| // this code is just moving bytes and not doing arithmetic, |
| // order of the bytes doesn't matter. |
| // |
| TEXT ·p256MovCond(SB), NOSPLIT, $0-32 |
| MOVD res+0(FP), P3ptr |
| MOVD a+8(FP), P1ptr |
| MOVD b+16(FP), P2ptr |
| MOVD cond+24(FP), R6 |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $56, R21 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| |
| // Check the condition |
| CMP $0, R6 |
| |
| // If 0, use b as the source |
| BEQ FROMB |
| |
| // Not 0, use a as the source |
| MOVD P1ptr, FROMptr |
| BR LOADVALS |
| |
| FROMB: |
| MOVD P2ptr, FROMptr |
| |
| LOADVALS: |
| // Load from a or b depending on the setting |
| // of FROMptr |
| LXVW4X (FROMptr+R0), X1H_ |
| LXVW4X (FROMptr+R16), X1L_ |
| LXVW4X (FROMptr+R17), Y1H_ |
| LXVW4X (FROMptr+R18), Y1L_ |
| LXVW4X (FROMptr+R19), Z1H_ |
| LXVW4X (FROMptr+R20), Z1L_ |
| |
| STXVW4X X1H_, (P3ptr+R0) |
| STXVW4X X1L_, (P3ptr+R16) |
| STXVW4X Y1H_, (P3ptr+R17) |
| STXVW4X Y1L_, (P3ptr+R18) |
| STXVW4X Z1H_, (P3ptr+R19) |
| STXVW4X Z1L_, (P3ptr+R20) |
| |
| RET |
| |
| #undef P3ptr |
| #undef P1ptr |
| #undef P2ptr |
| #undef FROMptr |
| #undef X1L |
| #undef X1H |
| #undef Y1L |
| #undef Y1H |
| #undef Z1L |
| #undef Z1H |
| #undef X1L_ |
| #undef X1H_ |
| #undef Y1L_ |
| #undef Y1H_ |
| #undef Z1L_ |
| #undef Z1H_ |
| // |
| // Select the point from the table for idx |
| // |
| // func p256Select(point *p256Point, table []p256Point, idx int) |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define COUNT R5 |
| |
| #define X1L V0 |
| #define X1H V1 |
| #define Y1L V2 |
| #define Y1H V3 |
| #define Z1L V4 |
| #define Z1H V5 |
| #define X1L_ VS32 |
| #define X1H_ VS33 |
| #define Y1L_ VS34 |
| #define Y1H_ VS35 |
| #define Z1L_ VS36 |
| #define Z1H_ VS37 |
| #define X2L V6 |
| #define X2H V7 |
| #define Y2L V8 |
| #define Y2H V9 |
| #define Z2L V10 |
| #define Z2H V11 |
| #define X2L_ VS38 |
| #define X2H_ VS39 |
| #define Y2L_ VS40 |
| #define Y2H_ VS41 |
| #define Z2L_ VS42 |
| #define Z2H_ VS43 |
| |
| #define ONE V18 |
| #define IDX V19 |
| #define SEL1 V20 |
| #define SEL1_ VS52 |
| #define SEL2 V21 |
| // |
| TEXT ·p256Select(SB), NOSPLIT, $0-40 |
| MOVD point+0(FP), P3ptr |
| MOVD table+8(FP), P1ptr |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| |
| LXVDSX (R1)(R19), SEL1_ // VLREPG idx+32(FP), SEL1 |
| VSPLTB $7, SEL1, IDX // splat byte |
| VSPLTISB $1, ONE // VREPIB $1, ONE |
| VSPLTISB $1, SEL2 // VREPIB $1, SEL2 |
| MOVD $17, COUNT |
| MOVD COUNT, CTR // set up ctr |
| |
| VSPLTISB $0, X1H // VZERO X1H |
| VSPLTISB $0, X1L // VZERO X1L |
| VSPLTISB $0, Y1H // VZERO Y1H |
| VSPLTISB $0, Y1L // VZERO Y1L |
| VSPLTISB $0, Z1H // VZERO Z1H |
| VSPLTISB $0, Z1L // VZERO Z1L |
| |
| loop_select: |
| |
| // LVXD2X is used here since data alignment doesn't |
| // matter. |
| |
| LXVD2X (P1ptr+R0), X2H_ |
| LXVD2X (P1ptr+R16), X2L_ |
| LXVD2X (P1ptr+R17), Y2H_ |
| LXVD2X (P1ptr+R18), Y2L_ |
| LXVD2X (P1ptr+R19), Z2H_ |
| LXVD2X (P1ptr+R20), Z2L_ |
| |
| VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK |
| |
| // This will result in SEL1 being all 0s or 1s, meaning |
| // the result is either X1L or X2L, no individual byte |
| // selection. |
| |
| VSEL X1L, X2L, SEL1, X1L |
| VSEL X1H, X2H, SEL1, X1H |
| VSEL Y1L, Y2L, SEL1, Y1L |
| VSEL Y1H, Y2H, SEL1, Y1H |
| VSEL Z1L, Z2L, SEL1, Z1L |
| VSEL Z1H, Z2H, SEL1, Z1H |
| |
| // Add 1 to all bytes in SEL2 |
| VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK |
| ADD $96, P1ptr |
| BC 16, 0, loop_select |
| |
| // STXVD2X is used here so that alignment doesn't |
| // need to be verified. Since values were loaded |
| // using LXVD2X this is OK. |
| STXVD2X X1H_, (P3ptr+R0) |
| STXVD2X X1L_, (P3ptr+R16) |
| STXVD2X Y1H_, (P3ptr+R17) |
| STXVD2X Y1L_, (P3ptr+R18) |
| STXVD2X Z1H_, (P3ptr+R19) |
| STXVD2X Z1L_, (P3ptr+R20) |
| RET |
| |
| #undef P3ptr |
| #undef P1ptr |
| #undef COUNT |
| #undef X1L |
| #undef X1H |
| #undef Y1L |
| #undef Y1H |
| #undef Z1L |
| #undef Z1H |
| #undef X2L |
| #undef X2H |
| #undef Y2L |
| #undef Y2H |
| #undef Z2L |
| #undef Z2H |
| #undef X2L_ |
| #undef X2H_ |
| #undef Y2L_ |
| #undef Y2H_ |
| #undef Z2L_ |
| #undef Z2H_ |
| #undef ONE |
| #undef IDX |
| #undef SEL1 |
| #undef SEL1_ |
| #undef SEL2 |
| |
| // func p256SelectBase(point, table []uint64, idx int) |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define COUNT R5 |
| |
| #define X1L V0 |
| #define X1H V1 |
| #define Y1L V2 |
| #define Y1H V3 |
| #define Z1L V4 |
| #define Z1H V5 |
| #define X2L V6 |
| #define X2H V7 |
| #define Y2L V8 |
| #define Y2H V9 |
| #define Z2L V10 |
| #define Z2H V11 |
| #define X2L_ VS38 |
| #define X2H_ VS39 |
| #define Y2L_ VS40 |
| #define Y2H_ VS41 |
| #define Z2L_ VS42 |
| #define Z2H_ VS43 |
| |
| #define ONE V18 |
| #define IDX V19 |
| #define SEL1 V20 |
| #define SEL1_ VS52 |
| #define SEL2 V21 |
| TEXT ·p256SelectBase(SB), NOSPLIT, $0-40 |
| MOVD point+0(FP), P3ptr |
| MOVD table+8(FP), P1ptr |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| MOVD $56, R21 |
| |
| LXVDSX (R1)(R19), SEL1_ |
| VSPLTB $7, SEL1, IDX // splat byte |
| |
| VSPLTISB $1, ONE // Vector with byte 1s |
| VSPLTISB $1, SEL2 // Vector with byte 1s |
| MOVD $65, COUNT |
| MOVD COUNT, CTR // loop count |
| |
| VSPLTISB $0, X1H // VZERO X1H |
| VSPLTISB $0, X1L // VZERO X1L |
| VSPLTISB $0, Y1H // VZERO Y1H |
| VSPLTISB $0, Y1L // VZERO Y1L |
| VSPLTISB $0, Z1H // VZERO Z1H |
| VSPLTISB $0, Z1L // VZERO Z1L |
| |
| loop_select: |
| LXVD2X (P1ptr+R0), X2H_ |
| LXVD2X (P1ptr+R16), X2L_ |
| LXVD2X (P1ptr+R17), Y2H_ |
| LXVD2X (P1ptr+R18), Y2L_ |
| LXVD2X (P1ptr+R19), Z2H_ |
| LXVD2X (P1ptr+R20), Z2L_ |
| |
| VCMPEQUD SEL2, IDX, SEL1 // Compare against idx |
| |
| VSEL X1L, X2L, SEL1, X1L // Select if idx matched |
| VSEL X1H, X2H, SEL1, X1H |
| VSEL Y1L, Y2L, SEL1, Y1L |
| VSEL Y1H, Y2H, SEL1, Y1H |
| VSEL Z1L, Z2L, SEL1, Z1L |
| VSEL Z1H, Z2H, SEL1, Z1H |
| |
| VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1 |
| ADD $96, P1ptr // Next chunk |
| BC 16, 0, loop_select |
| |
| STXVD2X X1H_, (P3ptr+R0) |
| STXVD2X X1L_, (P3ptr+R16) |
| STXVD2X Y1H_, (P3ptr+R17) |
| STXVD2X Y1L_, (P3ptr+R18) |
| STXVD2X Z1H_, (P3ptr+R19) |
| STXVD2X Z1L_, (P3ptr+R20) |
| RET |
| |
| #undef P3ptr |
| #undef P1ptr |
| #undef COUNT |
| #undef X1L |
| #undef X1H |
| #undef Y1L |
| #undef Y1H |
| #undef Z1L |
| #undef Z1H |
| #undef X2L |
| #undef X2H |
| #undef Y2L |
| #undef Y2H |
| #undef Z2L |
| #undef Z2H |
| #undef X1L_ |
| #undef X1H_ |
| #undef X2L_ |
| #undef X2H_ |
| #undef Y1L_ |
| #undef Y1H_ |
| #undef Y2L_ |
| #undef Y2H_ |
| #undef Z1L_ |
| #undef Z1H_ |
| #undef Z2L_ |
| #undef Z2H_ |
| #undef ONE |
| #undef IDX |
| #undef SEL1 |
| #undef SEL1_ |
| #undef SEL2 |
| #undef SWAP |
| #undef SWAP_ |
| |
| // --------------------------------------- |
| // func p256FromMont(res, in []byte) |
| #define res_ptr R3 |
| #define x_ptr R4 |
| #define CPOOL R7 |
| |
| #define T0 V0 |
| #define T0_ VS32 |
| #define T1 V1 |
| #define T1_ VS33 |
| #define T2 V2 |
| #define TT0 V3 |
| #define TT1 V4 |
| #define TT0_ VS35 |
| #define TT1_ VS36 |
| |
| #define ZER V6 |
| #define SEL1 V7 |
| #define SEL1_ VS39 |
| #define SEL2 V8 |
| #define SEL2_ VS40 |
| #define CAR1 V9 |
| #define CAR2 V10 |
| #define RED1 V11 |
| #define RED2 V12 |
| #define PL V13 |
| #define PL_ VS45 |
| #define PH V14 |
| #define PH_ VS46 |
| #define SWAP V28 |
| #define SWAP_ VS57 |
| |
| TEXT ·p256FromMont(SB), NOSPLIT, $0-48 |
| MOVD res+0(FP), res_ptr |
| MOVD in+24(FP), x_ptr |
| |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $p256<>+0x00(SB), CPOOL |
| MOVD $byteswap<>+0x00(SB), R15 |
| |
| VSPLTISB $0, T2 // VZERO T2 |
| VSPLTISB $0, ZER // VZERO ZER |
| |
| // Constants are defined so that the LXVD2X is correct |
| LXVD2X (CPOOL+R0), PH_ |
| LXVD2X (CPOOL+R16), PL_ |
| |
| // VPERM byte selections |
| LXVD2X (CPOOL+R18), SEL2_ |
| LXVD2X (CPOOL+R19), SEL1_ |
| |
| LXVD2X (R15)(R0), SWAP_ |
| |
| LXVD2X (R16)(x_ptr), T1_ |
| LXVD2X (R0)(x_ptr), T0_ |
| |
| // Put in true little endian order |
| VPERM T0, T0, SWAP, T0 |
| VPERM T1, T1, SWAP, T1 |
| |
| // First round |
| VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 |
| VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 |
| VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow |
| |
| VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 |
| VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 |
| VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 |
| VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 |
| VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 |
| |
| // Second round |
| VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 |
| VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 |
| VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow |
| |
| VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 |
| VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 |
| VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 |
| VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 |
| VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 |
| |
| // Third round |
| VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 |
| VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 |
| VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow |
| |
| VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 |
| VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 |
| VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 |
| VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 |
| VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 |
| |
| // Last round |
| VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 |
| VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 |
| VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow |
| |
| VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 |
| VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 |
| VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 |
| VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 |
| VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 |
| |
| // --------------------------------------------------- |
| |
| VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1 |
| VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0 |
| VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2 |
| VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1 |
| VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2 |
| |
| VSEL TT0, T0, T2, T0 |
| VSEL TT1, T1, T2, T1 |
| |
| // Reorder the bytes so STXVD2X can be used. |
| // TT0, TT1 used for VPERM result in case |
| // the caller expects T0, T1 to be good. |
| VPERM T0, T0, SWAP, TT0 |
| VPERM T1, T1, SWAP, TT1 |
| |
| STXVD2X TT0_, (R0)(res_ptr) |
| STXVD2X TT1_, (R16)(res_ptr) |
| RET |
| |
| #undef res_ptr |
| #undef x_ptr |
| #undef CPOOL |
| #undef T0 |
| #undef T0_ |
| #undef T1 |
| #undef T1_ |
| #undef T2 |
| #undef TT0 |
| #undef TT1 |
| #undef ZER |
| #undef SEL1 |
| #undef SEL1_ |
| #undef SEL2 |
| #undef SEL2_ |
| #undef CAR1 |
| #undef CAR2 |
| #undef RED1 |
| #undef RED2 |
| #undef PL |
| #undef PL_ |
| #undef PH |
| #undef PH_ |
| #undef SWAP |
| #undef SWAP_ |
| |
| // --------------------------------------- |
| // p256MulInternal |
| // V0-V3 V30,V31 - Not Modified |
| // V4-V15 V27-V29 - Volatile |
| |
| #define CPOOL R7 |
| |
| // Parameters |
| #define X0 V0 // Not modified |
| #define X1 V1 // Not modified |
| #define Y0 V2 // Not modified |
| #define Y1 V3 // Not modified |
| #define T0 V4 // Result |
| #define T1 V5 // Result |
| #define P0 V30 // Not modified |
| #define P1 V31 // Not modified |
| |
| // Temporaries: lots of reused vector regs |
| #define YDIG V6 // Overloaded with CAR2 |
| #define ADD1H V7 // Overloaded with ADD3H |
| #define ADD2H V8 // Overloaded with ADD4H |
| #define ADD3 V9 // Overloaded with SEL2,SEL5 |
| #define ADD4 V10 // Overloaded with SEL3,SEL6 |
| #define RED1 V11 // Overloaded with CAR2 |
| #define RED2 V12 |
| #define RED3 V13 // Overloaded with SEL1 |
| #define T2 V14 |
| // Overloaded temporaries |
| #define ADD1 V4 // Overloaded with T0 |
| #define ADD2 V5 // Overloaded with T1 |
| #define ADD3H V7 // Overloaded with ADD1H |
| #define ADD4H V8 // Overloaded with ADD2H |
| #define ZER V28 // Overloaded with TMP1 |
| #define CAR1 V6 // Overloaded with YDIG |
| #define CAR2 V11 // Overloaded with RED1 |
| // Constant Selects |
| #define SEL1 V13 // Overloaded with RED3 |
| #define SEL2 V9 // Overloaded with ADD3,SEL5 |
| #define SEL3 V10 // Overloaded with ADD4,SEL6 |
| #define SEL4 V6 // Overloaded with YDIG,CAR1 |
| #define SEL5 V9 // Overloaded with ADD3,SEL2 |
| #define SEL6 V10 // Overloaded with ADD4,SEL3 |
| #define SEL1_ VS45 |
| #define SEL2_ VS41 |
| #define SEL3_ VS42 |
| #define SEL4_ VS38 |
| #define SEL5_ VS41 |
| #define SEL6_ VS42 |
| |
| // TMP1, TMP2, EXTRACT_LO, EXTRACT_HI used in |
| // VMULT macros |
| #define TMP1 V13 // Overloaded with RED3 |
| #define TMP2 V27 |
| #define EVENODD R5 |
| #define EXTRACT_LO V28 |
| #define EXTRACT_LO_ VS60 |
| #define EXTRACT_HI V29 |
| #define EXTRACT_HI_ VS61 |
| |
| /* * |
| * To follow the flow of bits, for your own sanity a stiff drink, need you shall. |
| * Of a single round, a 'helpful' picture, here is. Meaning, column position has. |
| * With you, SIMD be... |
| * |
| * +--------+--------+ |
| * +--------| RED2 | RED1 | |
| * | +--------+--------+ |
| * | ---+--------+--------+ |
| * | +---- T2| T1 | T0 |--+ |
| * | | ---+--------+--------+ | |
| * | | | |
| * | | ======================= | |
| * | | | |
| * | | +--------+--------+<-+ |
| * | +-------| ADD2 | ADD1 |--|-----+ |
| * | | +--------+--------+ | | |
| * | | +--------+--------+<---+ | |
| * | | | ADD2H | ADD1H |--+ | |
| * | | +--------+--------+ | | |
| * | | +--------+--------+<-+ | |
| * | | | ADD4 | ADD3 |--|-+ | |
| * | | +--------+--------+ | | | |
| * | | +--------+--------+<---+ | | |
| * | | | ADD4H | ADD3H |------|-+ |(+vzero) |
| * | | +--------+--------+ | | V |
| * | | ------------------------ | | +--------+ |
| * | | | | | RED3 | [d0 0 0 d0] |
| * | | | | +--------+ |
| * | +---->+--------+--------+ | | | |
| * (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | | |
| * | +--------+--------+ | | | |
| * +---->---+--------+--------+ | | | |
| * T2| T1 | T0 |----+ | | |
| * ---+--------+--------+ | | | |
| * ---+--------+--------+<---+ | | |
| * +--- T2| T1 | T0 |----------+ |
| * | ---+--------+--------+ | | |
| * | +--------+--------+<-------------+ |
| * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] |
| * | +--------+--------+ | | | |
| * | +--------+<----------------------+ |
| * | | RED3 |--------------+ | [0 0 d1 d0] |
| * | +--------+ | | |
| * +--->+--------+--------+ | | |
| * | T1 | T0 |--------+ |
| * +--------+--------+ | | |
| * --------------------------- | | |
| * | | |
| * +--------+--------+<----+ | |
| * | RED2 | RED1 | | |
| * +--------+--------+ | |
| * ---+--------+--------+<-------+ |
| * T2| T1 | T0 | (H1P-H1P-H00RRAY!) |
| * ---+--------+--------+ |
| * |
| * *Mi obra de arte de siglo XXI @vpaprots |
| * |
| * |
| * First group is special, doesnt get the two inputs: |
| * +--------+--------+<-+ |
| * +-------| ADD2 | ADD1 |--|-----+ |
| * | +--------+--------+ | | |
| * | +--------+--------+<---+ | |
| * | | ADD2H | ADD1H |--+ | |
| * | +--------+--------+ | | |
| * | +--------+--------+<-+ | |
| * | | ADD4 | ADD3 |--|-+ | |
| * | +--------+--------+ | | | |
| * | +--------+--------+<---+ | | |
| * | | ADD4H | ADD3H |------|-+ |(+vzero) |
| * | +--------+--------+ | | V |
| * | ------------------------ | | +--------+ |
| * | | | | RED3 | [d0 0 0 d0] |
| * | | | +--------+ |
| * +---->+--------+--------+ | | | |
| * (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | | |
| * +--------+--------+ | | | |
| * ---+--------+--------+<---+ | | |
| * +--- T2| T1 | T0 |----------+ |
| * | ---+--------+--------+ | | |
| * | +--------+--------+<-------------+ |
| * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] |
| * | +--------+--------+ | | | |
| * | +--------+<----------------------+ |
| * | | RED3 |--------------+ | [0 0 d1 d0] |
| * | +--------+ | | |
| * +--->+--------+--------+ | | |
| * | T1 | T0 |--------+ |
| * +--------+--------+ | | |
| * --------------------------- | | |
| * | | |
| * +--------+--------+<----+ | |
| * | RED2 | RED1 | | |
| * +--------+--------+ | |
| * ---+--------+--------+<-------+ |
| * T2| T1 | T0 | (H1P-H1P-H00RRAY!) |
| * ---+--------+--------+ |
| * |
| * Last 'group' needs to RED2||RED1 shifted less |
| */ |
| TEXT p256MulInternal<>(SB), NOSPLIT, $0-16 |
| // CPOOL loaded from caller |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| MOVD $96, R21 |
| MOVD $112, R22 |
| |
| MOVD $p256permhilo<>+0x00(SB), EVENODD |
| |
| // These values are used by the VMULTxxx macros to |
| // extract the high and low portions of the intermediate |
| // result. |
| LXVD2X (R0)(EVENODD), EXTRACT_LO_ |
| LXVD2X (R16)(EVENODD), EXTRACT_HI_ |
| |
| // --------------------------------------------------- |
| |
| VSPLTW $3, Y0, YDIG // VREPF Y0 is input |
| |
| // VMLHF X0, YDIG, ADD1H |
| // VMLHF X1, YDIG, ADD2H |
| // VMLF X0, YDIG, ADD1 |
| // VMLF X1, YDIG, ADD2 |
| // |
| VMULT(X0, YDIG, ADD1, ADD1H) |
| VMULT(X1, YDIG, ADD2, ADD2H) |
| |
| VSPLTW $2, Y0, YDIG // VREPF |
| |
| // VMALF X0, YDIG, ADD1H, ADD3 |
| // VMALF X1, YDIG, ADD2H, ADD4 |
| // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free |
| // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free |
| VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H) |
| VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H) |
| |
| LXVD2X (R17)(CPOOL), SEL1_ |
| VSPLTISB $0, ZER // VZERO ZER |
| VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] |
| |
| VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB |
| VSLDOI $12, ZER, ADD2, T1 // ADD2 Free // VSLDB |
| |
| VADDCUQ T0, ADD3, CAR1 // VACCQ |
| VADDUQM T0, ADD3, T0 // ADD3 Free // VAQ |
| VADDECUQ T1, ADD4, CAR1, T2 // VACCCQ |
| VADDEUQM T1, ADD4, CAR1, T1 // ADD4 Free // VACQ |
| |
| LXVD2X (R18)(CPOOL), SEL2_ |
| LXVD2X (R19)(CPOOL), SEL3_ |
| LXVD2X (R20)(CPOOL), SEL4_ |
| VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] |
| VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] |
| VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] |
| VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow -->? // VSQ |
| |
| VSLDOI $12, T1, T0, T0 // VSLDB |
| VSLDOI $12, T2, T1, T1 // VSLDB |
| |
| VADDCUQ T0, ADD3H, CAR1 // VACCQ |
| VADDUQM T0, ADD3H, T0 // VAQ |
| VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ |
| VADDEUQM T1, ADD4H, CAR1, T1 // VACQ |
| |
| // --------------------------------------------------- |
| |
| VSPLTW $1, Y0, YDIG // VREPF |
| LXVD2X (R0)(EVENODD), EXTRACT_LO_ |
| LXVD2X (R16)(EVENODD), EXTRACT_HI_ |
| |
| // VMALHF X0, YDIG, T0, ADD1H |
| // VMALHF X1, YDIG, T1, ADD2H |
| // VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1 |
| // VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2 |
| VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H) |
| VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H) |
| |
| VSPLTW $0, Y0, YDIG // VREPF |
| |
| // VMALF X0, YDIG, ADD1H, ADD3 |
| // VMALF X1, YDIG, ADD2H, ADD4 |
| // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H |
| // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER |
| VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H) |
| VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H) |
| |
| VSPLTISB $0, ZER // VZERO ZER |
| LXVD2X (R17)(CPOOL), SEL1_ |
| VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] |
| |
| VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free->T0 // VSLDB |
| VSLDOI $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free // VSLDB |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ |
| VADDUQM T0, RED1, T0 // VAQ |
| VADDECUQ T1, RED2, CAR1, T2 // VACCCQ |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ |
| |
| VADDCUQ T0, ADD3, CAR1 // VACCQ |
| VADDUQM T0, ADD3, T0 // VAQ |
| VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ |
| VADDEUQM T1, ADD4, CAR1, T1 // VACQ |
| VADDUQM T2, CAR2, T2 // VAQ |
| |
| LXVD2X (R18)(CPOOL), SEL2_ |
| LXVD2X (R19)(CPOOL), SEL3_ |
| LXVD2X (R20)(CPOOL), SEL4_ |
| VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] |
| VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] |
| VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] |
| VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ |
| |
| VSLDOI $12, T1, T0, T0 // VSLDB |
| VSLDOI $12, T2, T1, T1 // VSLDB |
| |
| VADDCUQ T0, ADD3H, CAR1 // VACCQ |
| VADDUQM T0, ADD3H, T0 // VAQ |
| VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ |
| VADDEUQM T1, ADD4H, CAR1, T1 // VACQ |
| |
| // --------------------------------------------------- |
| |
| VSPLTW $3, Y1, YDIG // VREPF |
| LXVD2X (R0)(EVENODD), EXTRACT_LO_ |
| LXVD2X (R16)(EVENODD), EXTRACT_HI_ |
| |
| // VMALHF X0, YDIG, T0, ADD1H |
| // VMALHF X1, YDIG, T1, ADD2H |
| // VMALF X0, YDIG, T0, ADD1 |
| // VMALF X1, YDIG, T1, ADD2 |
| VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H) |
| VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H) |
| |
| VSPLTW $2, Y1, YDIG // VREPF |
| |
| // VMALF X0, YDIG, ADD1H, ADD3 |
| // VMALF X1, YDIG, ADD2H, ADD4 |
| // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free |
| // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free |
| VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H) |
| VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H) |
| |
| LXVD2X (R17)(CPOOL), SEL1_ |
| VSPLTISB $0, ZER // VZERO ZER |
| LXVD2X (R17)(CPOOL), SEL1_ |
| VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] |
| |
| VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB |
| VSLDOI $12, T2, ADD2, T1 // ADD2 Free // VSLDB |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ |
| VADDUQM T0, RED1, T0 // VAQ |
| VADDECUQ T1, RED2, CAR1, T2 // VACCCQ |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ |
| |
| VADDCUQ T0, ADD3, CAR1 // VACCQ |
| VADDUQM T0, ADD3, T0 // VAQ |
| VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ |
| VADDEUQM T1, ADD4, CAR1, T1 // VACQ |
| VADDUQM T2, CAR2, T2 // VAQ |
| |
| LXVD2X (R18)(CPOOL), SEL2_ |
| LXVD2X (R19)(CPOOL), SEL3_ |
| LXVD2X (R20)(CPOOL), SEL4_ |
| VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] |
| VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] |
| VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] |
| VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ |
| |
| VSLDOI $12, T1, T0, T0 // VSLDB |
| VSLDOI $12, T2, T1, T1 // VSLDB |
| |
| VADDCUQ T0, ADD3H, CAR1 // VACCQ |
| VADDUQM T0, ADD3H, T0 // VAQ |
| VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ |
| VADDEUQM T1, ADD4H, CAR1, T1 // VACQ |
| |
| // --------------------------------------------------- |
| |
| VSPLTW $1, Y1, YDIG // VREPF |
| LXVD2X (R0)(EVENODD), EXTRACT_LO_ |
| LXVD2X (R16)(EVENODD), EXTRACT_HI_ |
| |
| // VMALHF X0, YDIG, T0, ADD1H |
| // VMALHF X1, YDIG, T1, ADD2H |
| // VMALF X0, YDIG, T0, ADD1 |
| // VMALF X1, YDIG, T1, ADD2 |
| VMULT_ADD(X0, YDIG, T0, ADD1, ADD1H) |
| VMULT_ADD(X1, YDIG, T1, ADD2, ADD2H) |
| |
| VSPLTW $0, Y1, YDIG // VREPF |
| |
| // VMALF X0, YDIG, ADD1H, ADD3 |
| // VMALF X1, YDIG, ADD2H, ADD4 |
| // VMALHF X0, YDIG, ADD1H, ADD3H |
| // VMALHF X1, YDIG, ADD2H, ADD4H |
| VMULT_ADD(X0, YDIG, ADD1H, ADD3, ADD3H) |
| VMULT_ADD(X1, YDIG, ADD2H, ADD4, ADD4H) |
| |
| VSPLTISB $0, ZER // VZERO ZER |
| LXVD2X (R17)(CPOOL), SEL1_ |
| VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] |
| |
| VSLDOI $12, ADD2, ADD1, T0 // VSLDB |
| VSLDOI $12, T2, ADD2, T1 // VSLDB |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ |
| VADDUQM T0, RED1, T0 // VAQ |
| VADDECUQ T1, RED2, CAR1, T2 // VACCCQ |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ |
| |
| VADDCUQ T0, ADD3, CAR1 // VACCQ |
| VADDUQM T0, ADD3, T0 // VAQ |
| VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ |
| VADDEUQM T1, ADD4, CAR1, T1 // VACQ |
| VADDUQM T2, CAR2, T2 // VAQ |
| |
| LXVD2X (R21)(CPOOL), SEL5_ |
| LXVD2X (R22)(CPOOL), SEL6_ |
| VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0] |
| VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0] |
| VSUBUQM RED2, RED1, RED2 // Guaranteed not to underflow // VSQ |
| |
| VSLDOI $12, T1, T0, T0 // VSLDB |
| VSLDOI $12, T2, T1, T1 // VSLDB |
| |
| VADDCUQ T0, ADD3H, CAR1 // VACCQ |
| VADDUQM T0, ADD3H, T0 // VAQ |
| VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ |
| VADDEUQM T1, ADD4H, CAR1, T1 // VACQ |
| |
| VADDCUQ T0, RED1, CAR1 // VACCQ |
| VADDUQM T0, RED1, T0 // VAQ |
| VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ |
| VADDEUQM T1, RED2, CAR1, T1 // VACQ |
| VADDUQM T2, CAR2, T2 // VAQ |
| |
| // --------------------------------------------------- |
| |
| VSPLTISB $0, RED3 // VZERO RED3 |
| VSUBCUQ T0, P0, CAR1 // VSCBIQ |
| VSUBUQM T0, P0, ADD1H // VSQ |
| VSUBECUQ T1, P1, CAR1, CAR2 // VSBCBIQ |
| VSUBEUQM T1, P1, CAR1, ADD2H // VSBIQ |
| VSUBEUQM T2, RED3, CAR2, T2 // VSBIQ |
| |
| // what output to use, ADD2H||ADD1H or T1||T0? |
| VSEL ADD1H, T0, T2, T0 |
| VSEL ADD2H, T1, T2, T1 |
| RET |
| |
| #undef CPOOL |
| |
| #undef X0 |
| #undef X1 |
| #undef Y0 |
| #undef Y1 |
| #undef T0 |
| #undef T1 |
| #undef P0 |
| #undef P1 |
| |
| #undef SEL1 |
| #undef SEL2 |
| #undef SEL3 |
| #undef SEL4 |
| #undef SEL5 |
| #undef SEL6 |
| #undef SEL1_ |
| #undef SEL2_ |
| #undef SEL3_ |
| #undef SEL4_ |
| #undef SEL5_ |
| #undef SEL6_ |
| |
| #undef YDIG |
| #undef ADD1H |
| #undef ADD2H |
| #undef ADD3 |
| #undef ADD4 |
| #undef RED1 |
| #undef RED2 |
| #undef RED3 |
| #undef T2 |
| #undef ADD1 |
| #undef ADD2 |
| #undef ADD3H |
| #undef ADD4H |
| #undef ZER |
| #undef CAR1 |
| #undef CAR2 |
| |
| #undef TMP1 |
| #undef TMP2 |
| #undef EVENODD |
| #undef EXTRACT_HI |
| #undef EXTRACT_HI_ |
| #undef EXTRACT_LO |
| #undef EXTRACT_LO_ |
| |
| #define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \ |
| VSPLTISB $0, ZER \ // VZERO |
| VSUBCUQ X0, Y0, CAR1 \ |
| VSUBUQM X0, Y0, T0 \ |
| VSUBECUQ X1, Y1, CAR1, SEL1 \ |
| VSUBEUQM X1, Y1, CAR1, T1 \ |
| VSUBUQM ZER, SEL1, SEL1 \ // VSQ |
| \ |
| VADDCUQ T0, PL, CAR1 \ // VACCQ |
| VADDUQM T0, PL, TT0 \ // VAQ |
| VADDEUQM T1, PH, CAR1, TT1 \ // VACQ |
| \ |
| VSEL TT0, T0, SEL1, T0 \ |
| VSEL TT1, T1, SEL1, T1 \ |
| |
| #define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \ |
| VADDCUQ X0, Y0, CAR1 \ |
| VADDUQM X0, Y0, T0 \ |
| VADDECUQ X1, Y1, CAR1, T2 \ // VACCCQ |
| VADDEUQM X1, Y1, CAR1, T1 \ |
| \ |
| VSPLTISB $0, ZER \ |
| VSUBCUQ T0, PL, CAR1 \ // VSCBIQ |
| VSUBUQM T0, PL, TT0 \ |
| VSUBECUQ T1, PH, CAR1, CAR2 \ // VSBCBIQ |
| VSUBEUQM T1, PH, CAR1, TT1 \ // VSBIQ |
| VSUBEUQM T2, ZER, CAR2, SEL1 \ |
| \ |
| VSEL TT0, T0, SEL1, T0 \ |
| VSEL TT1, T1, SEL1, T1 |
| |
| #define p256HalfInternal(T1, T0, X1, X0) \ |
| VSPLTISB $0, ZER \ |
| VSUBEUQM ZER, ZER, X0, SEL1 \ |
| \ |
| VADDCUQ X0, PL, CAR1 \ |
| VADDUQM X0, PL, T0 \ |
| VADDECUQ X1, PH, CAR1, T2 \ |
| VADDEUQM X1, PH, CAR1, T1 \ |
| \ |
| VSEL T0, X0, SEL1, T0 \ |
| VSEL T1, X1, SEL1, T1 \ |
| VSEL T2, ZER, SEL1, T2 \ |
| \ |
| VSLDOI $15, T2, ZER, TT1 \ |
| VSLDOI $15, T1, ZER, TT0 \ |
| VSPLTISB $1, SEL1 \ |
| VSR T0, SEL1, T0 \ // VSRL |
| VSR T1, SEL1, T1 \ |
| VSPLTISB $7, SEL1 \ // VREPIB |
| VSL TT0, SEL1, TT0 \ |
| VSL TT1, SEL1, TT1 \ |
| VOR T0, TT0, T0 \ |
| VOR T1, TT1, T1 |
| |
| // --------------------------------------- |
| // func p256MulAsm(res, in1, in2 []byte) |
| #define res_ptr R3 |
| #define x_ptr R4 |
| #define y_ptr R5 |
| #define CPOOL R7 |
| #define TEMP R8 |
| |
| // Parameters |
| #define X0 V0 |
| #define X1 V1 |
| #define Y0 V2 |
| #define Y1 V3 |
| #define T0 V4 |
| #define T1 V5 |
| #define X0_ VS32 |
| #define X1_ VS33 |
| #define Y0_ VS34 |
| #define Y1_ VS35 |
| #define T0_ VS36 |
| #define T1_ VS37 |
| #define SWAP V28 |
| #define SWAP_ VS60 |
| |
| // Constants |
| #define P0 V30 |
| #define P1 V31 |
| #define P0_ VS62 |
| #define P1_ VS63 |
| // |
| // Montgomery multiplication modulo P256 |
| // |
| TEXT ·p256MulAsm(SB), NOSPLIT, $0-72 |
| MOVD res+0(FP), res_ptr |
| MOVD in1+24(FP), x_ptr |
| MOVD in2+48(FP), y_ptr |
| MOVD $16, R16 |
| MOVD $32, R17 |
| |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| MOVD $byteswap<>+0x00(SB), R8 |
| |
| LXVD2X (R8)(R0), SWAP_ |
| |
| LXVD2X (R0)(x_ptr), X0_ |
| LXVD2X (R16)(x_ptr), X1_ |
| |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| |
| LXVD2X (R0)(y_ptr), Y0_ |
| LXVD2X (R16)(y_ptr), Y1_ |
| |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| |
| LXVD2X (R16)(CPOOL), P1_ |
| LXVD2X (R0)(CPOOL), P0_ |
| |
| CALL p256MulInternal<>(SB) |
| |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| MOVD $byteswap<>+0x00(SB), R8 |
| |
| LXVD2X (R8)(R0), SWAP_ |
| |
| VPERM T0, T0, SWAP, T0 |
| VPERM T1, T1, SWAP, T1 |
| STXVD2X T0_, (R0)(res_ptr) |
| STXVD2X T1_, (R16)(res_ptr) |
| RET |
| |
| #undef res_ptr |
| #undef x_ptr |
| #undef y_ptr |
| #undef CPOOL |
| |
| #undef X0 |
| #undef X1 |
| #undef Y0 |
| #undef Y1 |
| #undef T0 |
| #undef T1 |
| #undef P0 |
| #undef P1 |
| #undef X0_ |
| #undef X1_ |
| #undef Y0_ |
| #undef Y1_ |
| #undef T0_ |
| #undef T1_ |
| #undef P0_ |
| #undef P1_ |
| |
| // Point add with P2 being affine point |
| // If sign == 1 -> P2 = -P2 |
| // If sel == 0 -> P3 = P1 |
| // if zero == 0 -> P3 = P2 |
| // p256PointAddAffineAsm(P3, P1, P2 *p256Point, sign, sel, zero int) |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define P2ptr R5 |
| #define CPOOL R7 |
| |
| // Temporaries in REGs |
| #define Y2L V15 |
| #define Y2H V16 |
| #define Y2L_ VS47 |
| #define Y2H_ VS48 |
| #define T1L V17 |
| #define T1H V18 |
| #define T2L V19 |
| #define T2H V20 |
| #define T3L V21 |
| #define T3H V22 |
| #define T4L V23 |
| #define T4H V24 |
| |
| // Temps for Sub and Add |
| #define TT0 V11 |
| #define TT1 V12 |
| #define T2 V13 |
| |
| // p256MulAsm Parameters |
| #define X0 V0 |
| #define X1 V1 |
| #define X0_ VS32 |
| #define X1_ VS33 |
| #define Y0 V2 |
| #define Y1 V3 |
| #define Y0_ VS34 |
| #define Y1_ VS35 |
| #define T0 V4 |
| #define T1 V5 |
| |
| #define PL V30 |
| #define PH V31 |
| #define PL_ VS62 |
| #define PH_ VS63 |
| |
| // Names for zero/sel selects |
| #define X1L V0 |
| #define X1H V1 |
| #define X1L_ VS32 |
| #define X1H_ VS33 |
| #define Y1L V2 // p256MulAsmParmY |
| #define Y1H V3 // p256MulAsmParmY |
| #define Y1L_ VS34 |
| #define Y1H_ VS35 |
| #define Z1L V4 |
| #define Z1H V5 |
| #define Z1L_ VS36 |
| #define Z1H_ VS37 |
| #define X2L V0 |
| #define X2H V1 |
| #define X2L_ VS32 |
| #define X2H_ VS33 |
| #define Z2L V4 |
| #define Z2H V5 |
| #define Z2L_ VS36 |
| #define Z2H_ VS37 |
| #define X3L V17 // T1L |
| #define X3H V18 // T1H |
| #define Y3L V21 // T3L |
| #define Y3H V22 // T3H |
| #define Z3L V25 |
| #define Z3H V26 |
| #define X3L_ VS49 |
| #define X3H_ VS50 |
| #define Y3L_ VS53 |
| #define Y3H_ VS54 |
| #define Z3L_ VS57 |
| #define Z3H_ VS58 |
| |
| #define ZER V6 |
| #define SEL1 V7 |
| #define SEL1_ VS39 |
| #define CAR1 V8 |
| #define CAR2 V9 |
| /* * |
| * Three operand formula: |
| * Source: 2004 Hankerson–Menezes–Vanstone, page 91. |
| * T1 = Z1² |
| * T2 = T1*Z1 |
| * T1 = T1*X2 |
| * T2 = T2*Y2 |
| * T1 = T1-X1 |
| * T2 = T2-Y1 |
| * Z3 = Z1*T1 |
| * T3 = T1² |
| * T4 = T3*T1 |
| * T3 = T3*X1 |
| * T1 = 2*T3 |
| * X3 = T2² |
| * X3 = X3-T1 |
| * X3 = X3-T4 |
| * T3 = T3-X3 |
| * T3 = T3*T2 |
| * T4 = T4*Y1 |
| * Y3 = T3-T4 |
| |
| * Three operand formulas, but with MulInternal X,Y used to store temps |
| X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1 |
| X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2 |
| X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2 |
| X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2 |
| SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2 |
| SUB(Y<T1-X1) // T1 = T1-X1 T1 T2 |
| X=Z1; Y- ; MUL;Z3:=T// Z3 = Z1*T1 T2 |
| X=Y; Y- ; MUL;X=T // T3 = T1*T1 T2 |
| X- ; Y- ; MUL;T4=T // T4 = T3*T1 T2 T4 |
| X- ; Y=X1; MUL;T3=T // T3 = T3*X1 T2 T3 T4 |
| ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4 |
| X=T2; Y=T2; MUL;T- // X3 = T2*T2 T1 T2 T3 T4 |
| SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 |
| SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4 |
| SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4 |
| X- ; Y- ; MUL;T3=T // T3 = T3*T2 T2 T3 T4 |
| X=T4; Y=Y1; MUL;T- // T4 = T4*Y1 T3 T4 |
| SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 |
| |
| */ |
| // |
| // V27 is clobbered by p256MulInternal so must be |
| // saved in a temp. |
| // |
| TEXT ·p256PointAddAffineAsm(SB), NOSPLIT, $16-48 |
| MOVD res+0(FP), P3ptr |
| MOVD in1+8(FP), P1ptr |
| MOVD in2+16(FP), P2ptr |
| |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| MOVD $96, R21 |
| MOVD $112, R22 |
| MOVD $128, R23 |
| MOVD $144, R24 |
| MOVD $160, R25 |
| MOVD $104, R26 // offset of sign+24(FP) |
| |
| MOVD $byteswap<>+0+00(SB), R8 |
| LXVD2X (R16)(CPOOL), PH_ |
| LXVD2X (R0)(CPOOL), PL_ |
| |
| // if (sign == 1) { |
| // Y2 = fromBig(new(big.Int).Mod(new(big.Int).Sub(p256.P, new(big.Int).SetBytes(Y2)), p256.P)) // Y2 = P-Y2 |
| // } |
| |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R17)(P2ptr), Y2L_ |
| LXVD2X (R18)(P2ptr), Y2H_ |
| VPERM Y2H, Y2H, SWAP, Y2H |
| VPERM Y2L, Y2L, SWAP, Y2L |
| |
| // Equivalent of VLREPG sign+24(FP), SEL1 |
| LXVDSX (R1)(R26), SEL1_ |
| VSPLTISB $0, ZER |
| VCMPEQUD SEL1, ZER, SEL1 |
| |
| VSUBCUQ PL, Y2L, CAR1 |
| VSUBUQM PL, Y2L, T1L |
| VSUBEUQM PH, Y2H, CAR1, T1H |
| |
| VSEL T1L, Y2L, SEL1, Y2L |
| VSEL T1H, Y2H, SEL1, Y2H |
| |
| /* * |
| * Three operand formula: |
| * Source: 2004 Hankerson–Menezes–Vanstone, page 91. |
| */ |
| // X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1 |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R19)(P1ptr), X0_ // Z1H |
| LXVD2X (R20)(P1ptr), X1_ // Z1L |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2 |
| VOR T0, T0, X0 |
| VOR T1, T1, X1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T2L |
| VOR T1, T1, T2H |
| |
| // X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2 |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R0)(P2ptr), Y0_ // X2H |
| LXVD2X (R16)(P2ptr), Y1_ // X2L |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T1L |
| VOR T1, T1, T1H |
| |
| // X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2 |
| VOR T2L, T2L, X0 |
| VOR T2H, T2H, X1 |
| VOR Y2L, Y2L, Y0 |
| VOR Y2H, Y2H, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2 |
| MOVD in1+8(FP), P1ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R17)(P1ptr), Y1L_ |
| LXVD2X (R18)(P1ptr), Y1H_ |
| VPERM Y1H, Y1H, SWAP, Y1H |
| VPERM Y1L, Y1L, SWAP, Y1L |
| p256SubInternal(T2H,T2L,T1,T0,Y1H,Y1L) |
| |
| // SUB(Y<T1-X1) // T1 = T1-X1 T1 T2 |
| LXVD2X (R0)(P1ptr), X1L_ |
| LXVD2X (R16)(P1ptr), X1H_ |
| VPERM X1H, X1H, SWAP, X1H |
| VPERM X1L, X1L, SWAP, X1L |
| p256SubInternal(Y1,Y0,T1H,T1L,X1H,X1L) |
| |
| // X=Z1; Y- ; MUL; Z3:=T// Z3 = Z1*T1 T2 |
| LXVD2X (R19)(P1ptr), X0_ // Z1H |
| LXVD2X (R20)(P1ptr), X1_ // Z1L |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| CALL p256MulInternal<>(SB) |
| |
| VOR T0, T0, Z3L |
| VOR T1, T1, Z3H |
| |
| // X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2 |
| VOR Y0, Y0, X0 |
| VOR Y1, Y1, X1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, X0 |
| VOR T1, T1, X1 |
| |
| // X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T4L |
| VOR T1, T1, T4H |
| |
| // X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4 |
| MOVD in1+8(FP), P1ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R0)(P1ptr), Y0_ // X1H |
| LXVD2X (R16)(P1ptr), Y1_ // X1L |
| VPERM Y1, Y1, SWAP, Y1 |
| VPERM Y0, Y0, SWAP, Y0 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T3L |
| VOR T1, T1, T3H |
| |
| // ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4 |
| p256AddInternal(T1H,T1L, T1,T0,T1,T0) |
| |
| // X=T2; Y=T2; MUL; T- // X3 = T2*T2 T1 T2 T3 T4 |
| VOR T2L, T2L, X0 |
| VOR T2H, T2H, X1 |
| VOR T2L, T2L, Y0 |
| VOR T2H, T2H, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 (T1 = X3) |
| p256SubInternal(T1,T0,T1,T0,T1H,T1L) |
| |
| // SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4 |
| p256SubInternal(T1,T0,T1,T0,T4H,T4L) |
| VOR T0, T0, X3L |
| VOR T1, T1, X3H |
| |
| // SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4 |
| p256SubInternal(X1,X0,T3H,T3L,T1,T0) |
| |
| // X- ; Y- ; MUL; T3=T // T3 = T3*T2 T2 T3 T4 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T3L |
| VOR T1, T1, T3H |
| |
| // X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4 |
| VOR T4L, T4L, X0 |
| VOR T4H, T4H, X1 |
| MOVD in1+8(FP), P1ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R17)(P1ptr), Y0_ // Y1H |
| LXVD2X (R18)(P1ptr), Y1_ // Y1L |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 (T3 = Y3) |
| p256SubInternal(Y3H,Y3L,T3H,T3L,T1,T0) |
| |
| // if (sel == 0) { |
| // copy(P3.x[:], X1) |
| // copy(P3.y[:], Y1) |
| // copy(P3.z[:], Z1) |
| // } |
| |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R0)(P1ptr), X1L_ |
| LXVD2X (R16)(P1ptr), X1H_ |
| VPERM X1H, X1H, SWAP, X1H |
| VPERM X1L, X1L, SWAP, X1L |
| |
| // Y1 already loaded, left over from addition |
| LXVD2X (R19)(P1ptr), Z1L_ |
| LXVD2X (R20)(P1ptr), Z1H_ |
| VPERM Z1H, Z1H, SWAP, Z1H |
| VPERM Z1L, Z1L, SWAP, Z1L |
| |
| MOVD $112, R26 // Get offset to sel+32 |
| LXVDSX (R1)(R26), SEL1_ |
| VSPLTISB $0, ZER |
| VCMPEQUD SEL1, ZER, SEL1 |
| |
| VSEL X3L, X1L, SEL1, X3L |
| VSEL X3H, X1H, SEL1, X3H |
| VSEL Y3L, Y1L, SEL1, Y3L |
| VSEL Y3H, Y1H, SEL1, Y3H |
| VSEL Z3L, Z1L, SEL1, Z3L |
| VSEL Z3H, Z1H, SEL1, Z3H |
| |
| // if (zero == 0) { |
| // copy(P3.x[:], X2) |
| // copy(P3.y[:], Y2) |
| // copy(P3.z[:], []byte{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| // 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}) //(p256.z*2^256)%p |
| // } |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R0)(P2ptr), X2L_ |
| LXVD2X (R16)(P2ptr), X2H_ |
| VPERM X2H, X2H, SWAP, X2H |
| VPERM X2L, X2L, SWAP, X2L |
| |
| // Y2 already loaded |
| LXVD2X (R23)(CPOOL), Z2L_ |
| LXVD2X (R24)(CPOOL), Z2H_ |
| |
| MOVD $120, R26 // Get the value from zero+40(FP) |
| LXVDSX (R1)(R26), SEL1_ |
| VSPLTISB $0, ZER |
| VCMPEQUD SEL1, ZER, SEL1 |
| |
| VSEL X3L, X2L, SEL1, X3L |
| VSEL X3H, X2H, SEL1, X3H |
| VSEL Y3L, Y2L, SEL1, Y3L |
| VSEL Y3H, Y2H, SEL1, Y3H |
| VSEL Z3L, Z2L, SEL1, Z3L |
| VSEL Z3H, Z2H, SEL1, Z3H |
| |
| // Reorder the bytes so they can be stored using STXVD2X. |
| MOVD res+0(FP), P3ptr |
| VPERM X3H, X3H, SWAP, X3H |
| VPERM X3L, X3L, SWAP, X3L |
| VPERM Y3H, Y3H, SWAP, Y3H |
| VPERM Y3L, Y3L, SWAP, Y3L |
| VPERM Z3H, Z3H, SWAP, Z3H |
| VPERM Z3L, Z3L, SWAP, Z3L |
| STXVD2X X3L_, (R0)(P3ptr) |
| STXVD2X X3H_, (R16)(P3ptr) |
| STXVD2X Y3L_, (R17)(P3ptr) |
| STXVD2X Y3H_, (R18)(P3ptr) |
| STXVD2X Z3L_, (R19)(P3ptr) |
| STXVD2X Z3H_, (R20)(P3ptr) |
| |
| RET |
| |
| #undef P3ptr |
| #undef P1ptr |
| #undef P2ptr |
| #undef CPOOL |
| #undef SWAP |
| #undef SWAP_ |
| |
| #undef Y2L |
| #undef Y2H |
| #undef Y2L_ |
| #undef Y2H_ |
| #undef T1L |
| #undef T1H |
| #undef T2L |
| #undef T2H |
| #undef T3L |
| #undef T3H |
| #undef T4L |
| #undef T4H |
| |
| #undef TT0 |
| #undef TT1 |
| #undef TT0_ |
| #undef TT1_ |
| #undef T2 |
| |
| #undef X0 |
| #undef X1 |
| #undef X0_ |
| #undef X1_ |
| #undef Y0 |
| #undef Y1 |
| #undef Y0_ |
| #undef Y1_ |
| #undef T0 |
| #undef T1 |
| |
| #undef PL |
| #undef PH |
| #undef PL_ |
| #undef PH_ |
| |
| #undef X1L |
| #undef X1H |
| #undef X1L_ |
| #undef X1H_ |
| #undef Y1L |
| #undef Y1H |
| #undef Y1L_ |
| #undef Y1H_ |
| #undef Z1L |
| #undef Z1H |
| #undef Z1L_ |
| #undef Z1H_ |
| #undef X2L |
| #undef X2H |
| #undef X2L_ |
| #undef X2H_ |
| #undef Z2L |
| #undef Z2H |
| #undef Z2L_ |
| #undef Z2H_ |
| #undef X3L |
| #undef X3H |
| #undef X3L_ |
| #undef X3H_ |
| #undef Y3L |
| #undef Y3H |
| #undef Y3L_ |
| #undef Y3H_ |
| #undef Z3L |
| #undef Z3H |
| #undef Z3L_ |
| #undef Z3H_ |
| |
| #undef ZER |
| #undef SEL1 |
| #undef SEL1_ |
| #undef CAR1 |
| #undef CAR2 |
| |
| // p256PointDoubleAsm(P3, P1 *p256Point) |
| // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl |
| // http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html |
| // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective-3.html |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define CPOOL R7 |
| |
| // Temporaries in REGs |
| #define X3L V15 |
| #define X3H V16 |
| #define X3L_ VS47 |
| #define X3H_ VS48 |
| #define Y3L V17 |
| #define Y3H V18 |
| #define Y3L_ VS49 |
| #define Y3H_ VS50 |
| #define T1L V19 |
| #define T1H V20 |
| #define T2L V21 |
| #define T2H V22 |
| #define T3L V23 |
| #define T3H V24 |
| |
| #define X1L V6 |
| #define X1H V7 |
| #define X1L_ VS38 |
| #define X1H_ VS39 |
| #define Y1L V8 |
| #define Y1H V9 |
| #define Y1L_ VS40 |
| #define Y1H_ VS41 |
| #define Z1L V10 |
| #define Z1H V11 |
| |
| // Temps for Sub and Add |
| #define TT0 V11 |
| #define TT1 V12 |
| #define TT0_ VS43 |
| #define TT1_ VS44 |
| #define T2 V13 |
| |
| // p256MulAsm Parameters |
| #define X0 V0 |
| #define X1 V1 |
| #define X0_ VS32 |
| #define X1_ VS33 |
| #define Y0 V2 |
| #define Y1 V3 |
| #define Y0_ VS34 |
| #define Y1_ VS35 |
| #define T0 V4 |
| #define T1 V5 |
| #define T0_ VS36 |
| #define T1_ VS37 |
| |
| #define PL V30 |
| #define PH V31 |
| #define PL_ VS62 |
| #define PH_ VS63 |
| |
| #define Z3L V23 |
| #define Z3H V24 |
| |
| #define SWAP V25 |
| #define SWAP_ VS57 |
| #define ZER V26 |
| #define SEL1 V27 |
| #define CAR1 V28 |
| #define CAR2 V29 |
| /* |
| * http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2004-hmv |
| * Cost: 4M + 4S + 1*half + 5add + 2*2 + 1*3. |
| * Source: 2004 Hankerson–Menezes–Vanstone, page 91. |
| * A = 3(X₁-Z₁²)×(X₁+Z₁²) |
| * B = 2Y₁ |
| * Z₃ = B×Z₁ |
| * C = B² |
| * D = C×X₁ |
| * X₃ = A²-2D |
| * Y₃ = (D-X₃)×A-C²/2 |
| * |
| * Three-operand formula: |
| * T1 = Z1² |
| * T2 = X1-T1 |
| * T1 = X1+T1 |
| * T2 = T2*T1 |
| * T2 = 3*T2 |
| * Y3 = 2*Y1 |
| * Z3 = Y3*Z1 |
| * Y3 = Y3² |
| * T3 = Y3*X1 |
| * Y3 = Y3² |
| * Y3 = half*Y3 |
| * X3 = T2² |
| * T1 = 2*T3 |
| * X3 = X3-T1 |
| * T1 = T3-X3 |
| * T1 = T1*T2 |
| * Y3 = T1-Y3 |
| */ |
| |
| TEXT ·p256PointDoubleAsm(SB), NOSPLIT, $0-16 |
| MOVD res+0(FP), P3ptr |
| MOVD in+8(FP), P1ptr |
| |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| MOVD $byteswap<>+0x00(SB), R15 |
| |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| |
| LXVD2X (R16)(CPOOL), PH_ |
| LXVD2X (R0)(CPOOL), PL_ |
| |
| LXVD2X (R15)(R0), SWAP_ |
| |
| // X=Z1; Y=Z1; MUL; T- // T1 = Z1² |
| LXVD2X (R19)(P1ptr), X0_ // Z1H |
| LXVD2X (R20)(P1ptr), X1_ // Z1L |
| |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(X<X1-T) // T2 = X1-T1 |
| LXVD2X (R0)(P1ptr), X1L_ |
| LXVD2X (R16)(P1ptr), X1H_ |
| VPERM X1L, X1L, SWAP, X1L |
| VPERM X1H, X1H, SWAP, X1H |
| |
| p256SubInternal(X1,X0,X1H,X1L,T1,T0) |
| |
| // ADD(Y<X1+T) // T1 = X1+T1 |
| p256AddInternal(Y1,Y0,X1H,X1L,T1,T0) |
| |
| // X- ; Y- ; MUL; T- // T2 = T2*T1 |
| CALL p256MulInternal<>(SB) |
| |
| // ADD(T2<T+T); ADD(T2<T2+T) // T2 = 3*T2 |
| p256AddInternal(T2H,T2L,T1,T0,T1,T0) |
| p256AddInternal(T2H,T2L,T2H,T2L,T1,T0) |
| |
| // ADD(X<Y1+Y1) // Y3 = 2*Y1 |
| LXVD2X (R15)(R0), SWAP_ |
| LXVD2X (R17)(P1ptr), Y1L_ |
| LXVD2X (R18)(P1ptr), Y1H_ |
| VPERM Y1L, Y1L, SWAP, Y1L |
| VPERM Y1H, Y1H, SWAP, Y1H |
| |
| p256AddInternal(X1,X0,Y1H,Y1L,Y1H,Y1L) |
| |
| // X- ; Y=Z1; MUL; Z3:=T // Z3 = Y3*Z1 |
| LXVD2X (R15)(R0), SWAP_ |
| LXVD2X (R19)(P1ptr), Y0_ |
| LXVD2X (R20)(P1ptr), Y1_ |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| |
| CALL p256MulInternal<>(SB) |
| |
| LXVD2X (R15)(R0), SWAP_ |
| |
| // Leave T0, T1 as is. |
| VPERM T0, T0, SWAP, TT0 |
| VPERM T1, T1, SWAP, TT1 |
| STXVD2X TT0_, (R19)(P3ptr) |
| STXVD2X TT1_, (R20)(P3ptr) |
| |
| // X- ; Y=X ; MUL; T- // Y3 = Y3² |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1 |
| VOR T0, T0, X0 |
| VOR T1, T1, X1 |
| LXVD2X (R15)(R0), SWAP_ |
| LXVD2X (R0)(P1ptr), Y0_ |
| LXVD2X (R16)(P1ptr), Y1_ |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T3L |
| VOR T1, T1, T3H |
| |
| // X- ; Y=X ; MUL; T- // Y3 = Y3² |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // HAL(Y3<T) // Y3 = half*Y3 |
| p256HalfInternal(Y3H,Y3L, T1,T0) |
| |
| // X=T2; Y=T2; MUL; T- // X3 = T2² |
| VOR T2L, T2L, X0 |
| VOR T2H, T2H, X1 |
| VOR T2L, T2L, Y0 |
| VOR T2H, T2H, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // ADD(T1<T3+T3) // T1 = 2*T3 |
| p256AddInternal(T1H,T1L,T3H,T3L,T3H,T3L) |
| |
| // SUB(X3<T-T1) X3:=X3 // X3 = X3-T1 |
| p256SubInternal(X3H,X3L,T1,T0,T1H,T1L) |
| |
| LXVD2X (R15)(R0), SWAP_ |
| VPERM X3L, X3L, SWAP, TT0 |
| VPERM X3H, X3H, SWAP, TT1 |
| STXVD2X TT0_, (R0)(P3ptr) |
| STXVD2X TT1_, (R16)(P3ptr) |
| |
| // SUB(X<T3-X3) // T1 = T3-X3 |
| p256SubInternal(X1,X0,T3H,T3L,X3H,X3L) |
| |
| // X- ; Y- ; MUL; T- // T1 = T1*T2 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(Y3<T-Y3) // Y3 = T1-Y3 |
| p256SubInternal(Y3H,Y3L,T1,T0,Y3H,Y3L) |
| |
| LXVD2X (R15)(R0), SWAP_ |
| VPERM Y3L, Y3L, SWAP, Y3L |
| VPERM Y3H, Y3H, SWAP, Y3H |
| STXVD2X Y3L_, (R17)(P3ptr) |
| STXVD2X Y3H_, (R18)(P3ptr) |
| RET |
| |
| #undef P3ptr |
| #undef P1ptr |
| #undef CPOOL |
| #undef X3L |
| #undef X3H |
| #undef X3L_ |
| #undef X3H_ |
| #undef Y3L |
| #undef Y3H |
| #undef Y3L_ |
| #undef Y3H_ |
| #undef T1L |
| #undef T1H |
| #undef T2L |
| #undef T2H |
| #undef T3L |
| #undef T3H |
| #undef X1L |
| #undef X1H |
| #undef X1L_ |
| #undef X1H_ |
| #undef Y1L |
| #undef Y1H |
| #undef Y1L_ |
| #undef Y1H_ |
| #undef Z1L |
| #undef Z1H |
| #undef TT0 |
| #undef TT1 |
| #undef TT0_ |
| #undef TT1_ |
| #undef T2 |
| #undef X0 |
| #undef X1 |
| #undef X0_ |
| #undef X1_ |
| #undef Y0 |
| #undef Y1 |
| #undef Y0_ |
| #undef Y1_ |
| #undef T0 |
| #undef T1 |
| #undef T0_ |
| #undef T1_ |
| #undef PL |
| #undef PH |
| #undef PL_ |
| #undef PH_ |
| #undef Z3L |
| #undef Z3H |
| #undef ZER |
| #undef SEL1 |
| #undef CAR1 |
| #undef CAR2 |
| #undef SWAP |
| #undef SWAP_ |
| |
| // p256PointAddAsm(P3, P1, P2 *p256Point) |
| #define P3ptr R3 |
| #define P1ptr R4 |
| #define P2ptr R5 |
| #define CPOOL R7 |
| #define TRUE R14 |
| #define RES1 R9 |
| #define RES2 R10 |
| |
| // Temporaries in REGs |
| #define T1L V16 |
| #define T1H V17 |
| #define T2L V18 |
| #define T2H V19 |
| #define U1L V20 |
| #define U1H V21 |
| #define S1L V22 |
| #define S1H V23 |
| #define HL V24 |
| #define HH V25 |
| #define RL V26 |
| #define RH V27 |
| #define RH_ VS59 |
| |
| // Temps for Sub and Add |
| #define ZER V6 |
| #define SEL1 V7 |
| #define CAR1 V8 |
| #define CAR2 V9 |
| #define TT0 V11 |
| #define TT0_ VS43 |
| #define TT1 V12 |
| #define TT1_ VS44 |
| #define T2 V13 |
| |
| #define SWAP V28 |
| #define SWAP_ VS60 |
| |
| // p256MulAsm Parameters |
| #define X0 V0 |
| #define X1 V1 |
| #define X0_ VS32 |
| #define X1_ VS33 |
| #define Y0 V2 |
| #define Y1 V3 |
| #define Y0_ VS34 |
| #define Y1_ VS35 |
| #define T0 V4 |
| #define T1 V5 |
| #define T0_ VS36 |
| #define T1_ VS37 |
| |
| #define PL V30 |
| #define PH V31 |
| #define PL_ VS62 |
| #define PH_ VS63 |
| /* |
| * https://choucroutage.com/Papers/SideChannelAttacks/ctrsa-2011-brown.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields" |
| * |
| * A = X₁×Z₂² |
| * B = Y₁×Z₂³ |
| * C = X₂×Z₁²-A |
| * D = Y₂×Z₁³-B |
| * X₃ = D² - 2A×C² - C³ |
| * Y₃ = D×(A×C² - X₃) - B×C³ |
| * Z₃ = Z₁×Z₂×C |
| * |
| * Three-operand formula (adopted): http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2 |
| * Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R |
| * |
| * T1 = Z1*Z1 |
| * T2 = Z2*Z2 |
| * U1 = X1*T2 |
| * H = X2*T1 |
| * H = H-U1 |
| * Z3 = Z1*Z2 |
| * Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array |
| * |
| * S1 = Z2*T2 |
| * S1 = Y1*S1 |
| * R = Z1*T1 |
| * R = Y2*R |
| * R = R-S1 |
| * |
| * T1 = H*H |
| * T2 = H*T1 |
| * U1 = U1*T1 |
| * |
| * X3 = R*R |
| * X3 = X3-T2 |
| * T1 = 2*U1 |
| * X3 = X3-T1 << store-out X3 result reg |
| * |
| * T2 = S1*T2 |
| * Y3 = U1-X3 |
| * Y3 = R*Y3 |
| * Y3 = Y3-T2 << store-out Y3 result reg |
| |
| // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 |
| // X- ; Y=T ; MUL; R=T // R = Z1*T1 |
| // X=X2; Y- ; MUL; H=T // H = X2*T1 |
| // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 |
| // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 |
| // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 |
| // SUB(H<H-T) // H = H-U1 |
| // X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2 |
| // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array |
| // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 |
| // X=Y2; Y=R ; MUL; T- // R = Y2*R |
| // SUB(R<T-S1) // R = R-S1 |
| // X=H ; Y=H ; MUL; T- // T1 = H*H |
| // X- ; Y=T ; MUL; T2=T // T2 = H*T1 |
| // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 |
| // X=R ; Y=R ; MUL; T- // X3 = R*R |
| // SUB(T<T-T2) // X3 = X3-T2 |
| // ADD(X<U1+U1) // T1 = 2*U1 |
| // SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg |
| // SUB(Y<U1-T) // Y3 = U1-X3 |
| // X=R ; Y- ; MUL; U1=T // Y3 = R*Y3 |
| // X=S1; Y=T2; MUL; T- // T2 = S1*T2 |
| // SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg |
| */ |
| TEXT ·p256PointAddAsm(SB), NOSPLIT, $16-32 |
| MOVD res+0(FP), P3ptr |
| MOVD in1+8(FP), P1ptr |
| MOVD $p256mul<>+0x00(SB), CPOOL |
| MOVD $16, R16 |
| MOVD $32, R17 |
| MOVD $48, R18 |
| MOVD $64, R19 |
| MOVD $80, R20 |
| |
| MOVD $byteswap<>+0x00(SB), R8 |
| LXVD2X (R16)(CPOOL), PH_ |
| LXVD2X (R0)(CPOOL), PL_ |
| |
| // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R19)(P1ptr), X0_ // Z1L |
| LXVD2X (R20)(P1ptr), X1_ // Z1H |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X- ; Y=T ; MUL; R=T // R = Z1*T1 |
| VOR T0, T0, Y0 |
| VOR T1, T1, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, RL // SAVE: RL |
| VOR T1, T1, RH // SAVE: RH |
| |
| STXVD2X RH_, (R1)(R17) // V27 has to be saved |
| |
| // X=X2; Y- ; MUL; H=T // H = X2*T1 |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R0)(P2ptr), X0_ // X2L |
| LXVD2X (R16)(P2ptr), X1_ // X2H |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, HL // SAVE: HL |
| VOR T1, T1, HH // SAVE: HH |
| |
| // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R19)(P2ptr), X0_ // Z2L |
| LXVD2X (R20)(P2ptr), X1_ // Z2H |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| VOR X0, X0, Y0 |
| VOR X1, X1, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 |
| VOR T0, T0, Y0 |
| VOR T1, T1, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, S1L // SAVE: S1L |
| VOR T1, T1, S1H // SAVE: S1H |
| |
| // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 |
| MOVD in1+8(FP), P1ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R0)(P1ptr), X0_ // X1L |
| LXVD2X (R16)(P1ptr), X1_ // X1H |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, U1L // SAVE: U1L |
| VOR T1, T1, U1H // SAVE: U1H |
| |
| // SUB(H<H-T) // H = H-U1 |
| p256SubInternal(HH,HL,HH,HL,T1,T0) |
| |
| // if H == 0 or H^P == 0 then ret=1 else ret=0 |
| // clobbers T1H and T1L |
| MOVD $1, TRUE |
| VSPLTISB $0, ZER |
| VOR HL, HH, T1H |
| VCMPEQUDCC ZER, T1H, T1H |
| |
| // 26 = CR6 NE |
| ISEL $26, R0, TRUE, RES1 |
| VXOR HL, PL, T1L // SAVE: T1L |
| VXOR HH, PH, T1H // SAVE: T1H |
| VOR T1L, T1H, T1H |
| VCMPEQUDCC ZER, T1H, T1H |
| |
| // 26 = CR6 NE |
| ISEL $26, R0, TRUE, RES2 |
| OR RES2, RES1, RES1 |
| MOVD RES1, ret+24(FP) |
| |
| // X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2 |
| MOVD $byteswap<>+0x00(SB), R8 |
| MOVD in1+8(FP), P1ptr |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R19)(P1ptr), X0_ // Z1L |
| LXVD2X (R20)(P1ptr), X1_ // Z1H |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| LXVD2X (R19)(P2ptr), Y0_ // Z2L |
| LXVD2X (R20)(P2ptr), Y1_ // Z2H |
| VPERM Y0, Y0, SWAP, Y0 |
| VPERM Y1, Y1, SWAP, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H |
| VOR T0, T0, X0 |
| VOR T1, T1, X1 |
| VOR HL, HL, Y0 |
| VOR HH, HH, Y1 |
| CALL p256MulInternal<>(SB) |
| MOVD res+0(FP), P3ptr |
| LXVD2X (R8)(R0), SWAP_ |
| VPERM T1, T1, SWAP, TT1 |
| VPERM T0, T0, SWAP, TT0 |
| STXVD2X TT0_, (R19)(P3ptr) |
| STXVD2X TT1_, (R20)(P3ptr) |
| |
| // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 |
| MOVD in1+8(FP), P1ptr |
| LXVD2X (R17)(P1ptr), X0_ |
| LXVD2X (R18)(P1ptr), X1_ |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| VOR S1L, S1L, Y0 |
| VOR S1H, S1H, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, S1L |
| VOR T1, T1, S1H |
| |
| // X=Y2; Y=R ; MUL; T- // R = Y2*R |
| MOVD in2+16(FP), P2ptr |
| LXVD2X (R8)(R0), SWAP_ |
| LXVD2X (R17)(P2ptr), X0_ |
| LXVD2X (R18)(P2ptr), X1_ |
| VPERM X0, X0, SWAP, X0 |
| VPERM X1, X1, SWAP, X1 |
| VOR RL, RL, Y0 |
| |
| // VOR RH, RH, Y1 RH was saved above in D2X format |
| LXVD2X (R1)(R17), Y1_ |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(R<T-S1) // R = T-S1 |
| p256SubInternal(RH,RL,T1,T0,S1H,S1L) |
| |
| STXVD2X RH_, (R1)(R17) // Save RH |
| |
| // if R == 0 or R^P == 0 then ret=ret else ret=0 |
| // clobbers T1H and T1L |
| // Redo this using ISEL?? |
| MOVD $1, TRUE |
| VSPLTISB $0, ZER |
| VOR RL, RH, T1H |
| VCMPEQUDCC ZER, T1H, T1H |
| |
| // 24 = CR6 NE |
| ISEL $26, R0, TRUE, RES1 |
| VXOR RL, PL, T1L |
| VXOR RH, PH, T1H // SAVE: T1L |
| VOR T1L, T1H, T1H |
| VCMPEQUDCC ZER, T1H, T1H |
| |
| // 26 = CR6 NE |
| ISEL $26, R0, TRUE, RES2 |
| OR RES2, RES1, RES1 |
| MOVD ret+24(FP), RES2 |
| AND RES2, RES1, RES1 |
| MOVD RES1, ret+24(FP) |
| |
| // X=H ; Y=H ; MUL; T- // T1 = H*H |
| VOR HL, HL, X0 |
| VOR HH, HH, X1 |
| VOR HL, HL, Y0 |
| VOR HH, HH, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // X- ; Y=T ; MUL; T2=T // T2 = H*T1 |
| VOR T0, T0, Y0 |
| VOR T1, T1, Y1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, T2L |
| VOR T1, T1, T2H |
| |
| // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 |
| VOR U1L, U1L, X0 |
| VOR U1H, U1H, X1 |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, U1L |
| VOR T1, T1, U1H |
| |
| // X=R ; Y=R ; MUL; T- // X3 = R*R |
| VOR RL, RL, X0 |
| |
| // VOR RH, RH, X1 |
| VOR RL, RL, Y0 |
| |
| // RH was saved above using STXVD2X |
| LXVD2X (R1)(R17), X1_ |
| VOR X1, X1, Y1 |
| |
| // VOR RH, RH, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(T<T-T2) // X3 = X3-T2 |
| p256SubInternal(T1,T0,T1,T0,T2H,T2L) |
| |
| // ADD(X<U1+U1) // T1 = 2*U1 |
| p256AddInternal(X1,X0,U1H,U1L,U1H,U1L) |
| |
| // SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg |
| p256SubInternal(T1,T0,T1,T0,X1,X0) |
| MOVD res+0(FP), P3ptr |
| LXVD2X (R8)(R0), SWAP_ |
| VPERM T1, T1, SWAP, TT1 |
| VPERM T0, T0, SWAP, TT0 |
| STXVD2X TT0_, (R0)(P3ptr) |
| STXVD2X TT1_, (R16)(P3ptr) |
| |
| // SUB(Y<U1-T) // Y3 = U1-X3 |
| p256SubInternal(Y1,Y0,U1H,U1L,T1,T0) |
| |
| // X=R ; Y- ; MUL; U1=T // Y3 = R*Y3 |
| VOR RL, RL, X0 |
| |
| // VOR RH, RH, X1 |
| LXVD2X (R1)(R17), X1_ |
| CALL p256MulInternal<>(SB) |
| VOR T0, T0, U1L |
| VOR T1, T1, U1H |
| |
| // X=S1; Y=T2; MUL; T- // T2 = S1*T2 |
| VOR S1L, S1L, X0 |
| VOR S1H, S1H, X1 |
| VOR T2L, T2L, Y0 |
| VOR T2H, T2H, Y1 |
| CALL p256MulInternal<>(SB) |
| |
| // SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg |
| p256SubInternal(T1,T0,U1H,U1L,T1,T0) |
| MOVD res+0(FP), P3ptr |
| LXVD2X (R8)(R0), SWAP_ |
| VPERM T1, T1, SWAP, TT1 |
| VPERM T0, T0, SWAP, TT0 |
| STXVD2X TT0_, (R17)(P3ptr) |
| STXVD2X TT1_, (R18)(P3ptr) |
| |
| RET |