blob: 69348d1c2fb225c6d51d39ce30e085bc0b225315 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package gc
// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL.
type Node struct {
// Tree structure.
// Generic recursive walks should follow these fields.
Left *Node
Right *Node
Ntest *Node
Nincr *Node
Ninit *NodeList
Nbody *NodeList
Nelse *NodeList
List *NodeList
Rlist *NodeList
// most nodes
Type *Type
Orig *Node // original form, for printing, and tracking copies of ONAMEs
Nname *Node
// func
Func *Func
// ONAME
Name *Name
Defn *Node // ONAME: initializing assignment; OLABEL: labeled statement
Pack *Node // real package for import . names
Curfn *Node // function for local variables
Paramfld *Type // TFIELD for this PPARAM; also for ODOT, curfn
Alloc *Node // allocation call
*Param
// OPACK
Pkg *Pkg
// OARRAYLIT, OMAPLIT, OSTRUCTLIT.
Initplan *InitPlan
// Escape analysis.
Escflowsrc *NodeList // flow(this, src)
Escretval *NodeList // on OCALLxxx, list of dummy return values
Sym *Sym // various
Opt interface{} // for optimization passes
// OLITERAL
Val Val
Xoffset int64
Stkdelta int64 // offset added by stack frame compaction phase.
// Escape analysis.
Escloopdepth int32 // -1: global, 0: return variables, 1:function top level, increased inside function for every loop or label to mark scopes
Vargen int32 // unique name for OTYPE/ONAME within a function. Function outputs are numbered starting at one.
Lineno int32
Iota int32
Walkgen uint32
Funcdepth int32
// OREGISTER, OINDREG
Reg int16
// most nodes - smaller fields
Esclevel Level
Esc uint16 // EscXXX
Op uint8
Nointerface bool
Ullman uint8 // sethi/ullman number
Addable bool // addressable
Etype uint8 // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg
Bounded bool // bounds check unnecessary
Class uint8 // PPARAM, PAUTO, PEXTERN, etc
Embedded uint8 // ODCLFIELD embedded type
Colas bool // OAS resulting from :=
Diag uint8 // already printed error about this
Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
Walkdef uint8
Typecheck uint8
Local bool
Dodata uint8
Initorder uint8
Used bool
Isddd bool // is the argument variadic
Implicit bool
Addrtaken bool // address taken, even if not moved to heap
Assigned bool // is the variable ever assigned to
Likely int8 // likeliness of if statement
Hasbreak bool // has break statement
}
// Name holds Node fields used only by ONAME nodes.
type Name struct {
Heapaddr *Node // temp holding heap address of param
Inlvar *Node // ONAME substitute while inlining
Decldepth int32 // declaration loop depth, increased for every loop or label
Method bool // OCALLMETH name
Readonly bool
Captured bool // is the variable captured by a closure
Byval bool // is the variable captured by value or by reference
Needzero bool // if it contains pointers, needs to be zeroed on function entry
}
type Param struct {
Ntype *Node
// ONAME func param with PHEAP
Outerexpr *Node // expression copied into closure for variable
Stackparam *Node // OPARAM node referring to stack copy of param
// ONAME closure param with PPARAMREF
Outer *Node // outer PPARAMREF in nested closure
Closure *Node // ONAME/PHEAP <-> ONAME/PPARAMREF
Top int // top context (Ecall, Eproc, etc)
}
// Func holds Node fields used only with function-like nodes.
type Func struct {
Shortname *Node
Enter *NodeList
Exit *NodeList
Cvars *NodeList // closure params
Dcl *NodeList // autodcl for this func/closure
Inldcl *NodeList // copy of dcl for use in inlining
Closgen int
Outerfunc *Node
Inl *NodeList // copy of the body for use in inlining
InlCost int32
Endlineno int32
Nosplit bool // func should not execute on separate stack
Nowritebarrier bool // emit compiler error instead of write barrier
Dupok bool // duplicate definitions ok
Wrapper bool // is method wrapper
Needctxt bool // function uses context register (has closure variables)
}
// Node ops.
const (
OXXX = iota
// names
ONAME // var, const or func name
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
OTYPE // type name
OPACK // import
OLITERAL // literal
// expressions
OADD // x + y
OSUB // x - y
OOR // x | y
OXOR // x ^ y
OADDSTR // s + "foo"
OADDR // &x
OANDAND // b0 && b1
OAPPEND // append
OARRAYBYTESTR // string(bytes)
OARRAYBYTESTRTMP // string(bytes) ephemeral
OARRAYRUNESTR // string(runes)
OSTRARRAYBYTE // []byte(s)
OSTRARRAYBYTETMP // []byte(s) ephemeral
OSTRARRAYRUNE // []rune(s)
OAS // x = y or x := y
OAS2 // x, y, z = xx, yy, zz
OAS2FUNC // x, y = f()
OAS2RECV // x, ok = <-c
OAS2MAPR // x, ok = m["foo"]
OAS2DOTTYPE // x, ok = I.(int)
OASOP // x += y
OASWB // OAS but with write barrier
OCALL // function call, method call or type conversion, possibly preceded by defer or go.
OCALLFUNC // f()
OCALLMETH // t.Method()
OCALLINTER // err.Error()
OCALLPART // t.Method (without ())
OCAP // cap
OCLOSE // close
OCLOSURE // f = func() { etc }
OCMPIFACE // err1 == err2
OCMPSTR // s1 == s2
OCOMPLIT // composite literal, typechecking may convert to a more specific OXXXLIT.
OMAPLIT // M{"foo":3, "bar":4}
OSTRUCTLIT // T{x:3, y:4}
OARRAYLIT // [2]int{3, 4}
OPTRLIT // &T{x:3, y:4}
OCONV // var i int; var u uint; i = int(u)
OCONVIFACE // I(t)
OCONVNOP // type Int int; var i int; var j Int; i = int(j)
OCOPY // copy
ODCL // var x int
ODCLFUNC // func f() or func (r) f()
ODCLFIELD // struct field, interface field, or func/method argument/return value.
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int
ODELETE // delete
ODOT // t.x
ODOTPTR // p.x that is implicitly (*p).x
ODOTMETH // t.Method
ODOTINTER // err.Error
OXDOT // t.x, typechecking may convert to a more specific ODOTXXX.
ODOTTYPE // e = err.(MyErr)
ODOTTYPE2 // e, ok = err.(MyErr)
OEQ // x == y
ONE // x != y
OLT // x < y
OLE // x <= y
OGE // x >= y
OGT // x > y
OIND // *p
OINDEX // a[i]
OINDEXMAP // m[s]
OKEY // The x:3 in t{x:3, y:4}, the 1:2 in a[1:2], the 2:20 in [3]int{2:20}, etc.
OPARAM // The on-stack copy of a parameter or return value that escapes.
OLEN // len
OMAKE // make, typechecking may convert to a more specific OMAKEXXX.
OMAKECHAN // make(chan int)
OMAKEMAP // make(map[string]int)
OMAKESLICE // make([]int, 0)
OMUL // *
ODIV // x / y
OMOD // x % y
OLSH // x << u
ORSH // x >> u
OAND // x & y
OANDNOT // x &^ y
ONEW // new
ONOT // !b
OCOM // ^x
OPLUS // +x
OMINUS // -y
OOROR // b1 || b2
OPANIC // panic
OPRINT // print
OPRINTN // println
OPAREN // (x)
OSEND // c <- x
OSLICE // v[1:2], typechecking may convert to a more specific OSLICEXXX.
OSLICEARR // a[1:2]
OSLICESTR // s[1:2]
OSLICE3 // v[1:2:3], typechecking may convert to OSLICE3ARR.
OSLICE3ARR // a[1:2:3]
ORECOVER // recover
ORECV // <-c
ORUNESTR // string(i)
OSELRECV // case x = <-c:
OSELRECV2 // case x, ok = <-c:
OIOTA // iota
OREAL // real
OIMAG // imag
OCOMPLEX // complex
// statements
OBLOCK // block of code
OBREAK // break
OCASE // case, after being verified by swt.c's casebody.
OXCASE // case, before verification.
OCONTINUE // continue
ODEFER // defer
OEMPTY // no-op
OFALL // fallthrough, after being verified by swt.c's casebody.
OXFALL // fallthrough, before verification.
OFOR // for
OGOTO // goto
OIF // if
OLABEL // label:
OPROC // go
ORANGE // range
ORETURN // return
OSELECT // select
OSWITCH // switch x
OTYPESW // switch err.(type)
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
OTFUNC // func()
OTARRAY // []int, [8]int, [N]int or [...]int
// misc
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
ODDDARG // func f(args ...int), introduced by escape analysis.
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OSPTR // base pointer of a slice or string.
OCLOSUREVAR // variable reference at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARKILL // variable is dead
// thearch-specific registers
OREGISTER // a register, such as AX.
OINDREG // offset plus indirect of a register, such as 8(SP).
// arch-specific opcodes
OCMP // compare: ACMP.
ODEC // decrement: ADEC.
OINC // increment: AINC.
OEXTEND // extend: ACWD/ACDQ/ACQO.
OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
OLROT // left rotate: AROL.
ORROTC // right rotate-carry: ARCR.
ORETJMP // return to other function
OPS // compare parity set (for x86 NaN check)
OPC // compare parity clear (for x86 NaN check)
OSQRT // sqrt(float64), on systems that have hw support
OGETG // runtime.getg() (read g pointer)
OEND
)
/*
* Every node has a walkgen field.
* If you want to do a traversal of a node graph that
* might contain duplicates and want to avoid
* visiting the same nodes twice, increment walkgen
* before starting. Then before processing a node, do
*
* if(n->walkgen == walkgen)
* return;
* n->walkgen = walkgen;
*
* Such a walk cannot call another such walk recursively,
* because of the use of the global walkgen.
*/
var walkgen uint32
// A NodeList is a linked list of nodes.
// TODO(rsc): Some uses of NodeList should be made into slices.
// The remaining ones probably just need a simple linked list,
// not one with concatenation support.
type NodeList struct {
N *Node
Next *NodeList
End *NodeList
}
// concat returns the concatenation of the lists a and b.
// The storage taken by both is reused for the result.
func concat(a *NodeList, b *NodeList) *NodeList {
if a == nil {
return b
}
if b == nil {
return a
}
a.End.Next = b
a.End = b.End
b.End = nil
return a
}
// list1 returns a one-element list containing n.
func list1(n *Node) *NodeList {
if n == nil {
return nil
}
if n.Op == OBLOCK && n.Ninit == nil {
// Flatten list and steal storage.
// Poison pointer to catch errant uses.
l := n.List
n.List = nil
return l
}
l := new(NodeList)
l.N = n
l.End = l
return l
}
// list returns the result of appending n to l.
func list(l *NodeList, n *Node) *NodeList {
return concat(l, list1(n))
}
// listsort sorts *l in place according to the 3-way comparison function f.
// The algorithm is mergesort, so it is guaranteed to be O(n log n).
func listsort(l **NodeList, f func(*Node, *Node) int) {
if *l == nil || (*l).Next == nil {
return
}
l1 := *l
l2 := *l
for {
l2 = l2.Next
if l2 == nil {
break
}
l2 = l2.Next
if l2 == nil {
break
}
l1 = l1.Next
}
l2 = l1.Next
l1.Next = nil
l2.End = (*l).End
(*l).End = l1
l1 = *l
listsort(&l1, f)
listsort(&l2, f)
if f(l1.N, l2.N) < 0 {
*l = l1
} else {
*l = l2
l2 = l1
l1 = *l
}
// now l1 == *l; and l1 < l2
var le *NodeList
for (l1 != nil) && (l2 != nil) {
for (l1.Next != nil) && f(l1.Next.N, l2.N) < 0 {
l1 = l1.Next
}
// l1 is last one from l1 that is < l2
le = l1.Next // le is the rest of l1, first one that is >= l2
if le != nil {
le.End = (*l).End
}
(*l).End = l1 // cut *l at l1
*l = concat(*l, l2) // glue l2 to *l's tail
l1 = l2 // l1 is the first element of *l that is < the new l2
l2 = le // ... because l2 now is the old tail of l1
}
*l = concat(*l, l2) // any remainder
}
// count returns the length of the list l.
func count(l *NodeList) int {
n := int64(0)
for ; l != nil; l = l.Next {
n++
}
if int64(int(n)) != n { // Overflow.
Yyerror("too many elements in list")
}
return int(n)
}