blob: 5fb0776f3c3fd6bae332f76bb1f73ed2afc9e1a8 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/internal/obj"
"crypto/md5"
"fmt"
"strings"
)
// "Portable" code generation.
var makefuncdatasym_nsym int32
func makefuncdatasym(namefmt string, funcdatakind int64) *Sym {
var nod Node
sym := Lookupf(namefmt, makefuncdatasym_nsym)
makefuncdatasym_nsym++
pnod := newname(sym)
pnod.Class = PEXTERN
Nodconst(&nod, Types[TINT32], funcdatakind)
Thearch.Gins(obj.AFUNCDATA, &nod, pnod)
return sym
}
// gvardef inserts a VARDEF for n into the instruction stream.
// VARDEF is an annotation for the liveness analysis, marking a place
// where a complete initialization (definition) of a variable begins.
// Since the liveness analysis can see initialization of single-word
// variables quite easy, gvardef is usually only called for multi-word
// or 'fat' variables, those satisfying isfat(n->type).
// However, gvardef is also called when a non-fat variable is initialized
// via a block move; the only time this happens is when you have
// return f()
// for a function with multiple return values exactly matching the return
// types of the current function.
//
// A 'VARDEF x' annotation in the instruction stream tells the liveness
// analysis to behave as though the variable x is being initialized at that
// point in the instruction stream. The VARDEF must appear before the
// actual (multi-instruction) initialization, and it must also appear after
// any uses of the previous value, if any. For example, if compiling:
//
// x = x[1:]
//
// it is important to generate code like:
//
// base, len, cap = pieces of x[1:]
// VARDEF x
// x = {base, len, cap}
//
// If instead the generated code looked like:
//
// VARDEF x
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
//
// then the liveness analysis would decide the previous value of x was
// unnecessary even though it is about to be used by the x[1:] computation.
// Similarly, if the generated code looked like:
//
// base, len, cap = pieces of x[1:]
// x = {base, len, cap}
// VARDEF x
//
// then the liveness analysis will not preserve the new value of x, because
// the VARDEF appears to have "overwritten" it.
//
// VARDEF is a bit of a kludge to work around the fact that the instruction
// stream is working on single-word values but the liveness analysis
// wants to work on individual variables, which might be multi-word
// aggregates. It might make sense at some point to look into letting
// the liveness analysis work on single-word values as well, although
// there are complications around interface values, slices, and strings,
// all of which cannot be treated as individual words.
//
// VARKILL is the opposite of VARDEF: it marks a value as no longer needed,
// even if its address has been taken. That is, a VARKILL annotation asserts
// that its argument is certainly dead, for use when the liveness analysis
// would not otherwise be able to deduce that fact.
func gvardefx(n *Node, as int) {
if n == nil {
Fatal("gvardef nil")
}
if n.Op != ONAME {
Yyerror("gvardef %v; %v", Oconv(int(n.Op), obj.FmtSharp), n)
return
}
switch n.Class {
case PAUTO, PPARAM, PPARAMOUT:
Thearch.Gins(as, nil, n)
}
}
func Gvardef(n *Node) {
gvardefx(n, obj.AVARDEF)
}
func gvarkill(n *Node) {
gvardefx(n, obj.AVARKILL)
}
func removevardef(firstp *obj.Prog) {
for p := firstp; p != nil; p = p.Link {
for p.Link != nil && (p.Link.As == obj.AVARDEF || p.Link.As == obj.AVARKILL) {
p.Link = p.Link.Link
}
if p.To.Type == obj.TYPE_BRANCH {
for p.To.Val.(*obj.Prog) != nil && (p.To.Val.(*obj.Prog).As == obj.AVARDEF || p.To.Val.(*obj.Prog).As == obj.AVARKILL) {
p.To.Val = p.To.Val.(*obj.Prog).Link
}
}
}
}
func gcsymdup(s *Sym) {
ls := Linksym(s)
if len(ls.R) > 0 {
Fatal("cannot rosymdup %s with relocations", ls.Name)
}
ls.Name = fmt.Sprintf("gclocals·%x", md5.Sum(ls.P))
ls.Dupok = 1
}
func emitptrargsmap() {
sym := Lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Nname.Sym.Name))
nptr := int(Curfn.Type.Argwid / int64(Widthptr))
bv := bvalloc(int32(nptr) * 2)
nbitmap := 1
if Curfn.Type.Outtuple > 0 {
nbitmap = 2
}
off := duint32(sym, 0, uint32(nbitmap))
off = duint32(sym, off, uint32(bv.n))
var xoffset int64
if Curfn.Type.Thistuple > 0 {
xoffset = 0
onebitwalktype1(getthisx(Curfn.Type), &xoffset, bv)
}
if Curfn.Type.Intuple > 0 {
xoffset = 0
onebitwalktype1(getinargx(Curfn.Type), &xoffset, bv)
}
for j := 0; int32(j) < bv.n; j += 32 {
off = duint32(sym, off, bv.b[j/32])
}
if Curfn.Type.Outtuple > 0 {
xoffset = 0
onebitwalktype1(getoutargx(Curfn.Type), &xoffset, bv)
for j := 0; int32(j) < bv.n; j += 32 {
off = duint32(sym, off, bv.b[j/32])
}
}
ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL)
}
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvar(a *Node, b *Node) int {
if a.Class != b.Class {
if a.Class == PAUTO {
return +1
}
return -1
}
if a.Class != PAUTO {
if a.Xoffset < b.Xoffset {
return -1
}
if a.Xoffset > b.Xoffset {
return +1
}
return 0
}
if a.Used != b.Used {
return obj.Bool2int(b.Used) - obj.Bool2int(a.Used)
}
ap := obj.Bool2int(haspointers(a.Type))
bp := obj.Bool2int(haspointers(b.Type))
if ap != bp {
return bp - ap
}
ap = obj.Bool2int(a.Name.Needzero)
bp = obj.Bool2int(b.Name.Needzero)
if ap != bp {
return bp - ap
}
if a.Type.Width < b.Type.Width {
return +1
}
if a.Type.Width > b.Type.Width {
return -1
}
return stringsCompare(a.Sym.Name, b.Sym.Name)
}
// TODO(lvd) find out where the PAUTO/OLITERAL nodes come from.
func allocauto(ptxt *obj.Prog) {
Stksize = 0
stkptrsize = 0
if Curfn.Func.Dcl == nil {
return
}
// Mark the PAUTO's unused.
for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next {
if ll.N.Class == PAUTO {
ll.N.Used = false
}
}
markautoused(ptxt)
listsort(&Curfn.Func.Dcl, cmpstackvar)
// Unused autos are at the end, chop 'em off.
ll := Curfn.Func.Dcl
n := ll.N
if n.Class == PAUTO && n.Op == ONAME && !n.Used {
// No locals used at all
Curfn.Func.Dcl = nil
fixautoused(ptxt)
return
}
for ll := Curfn.Func.Dcl; ll.Next != nil; ll = ll.Next {
n = ll.Next.N
if n.Class == PAUTO && n.Op == ONAME && !n.Used {
ll.Next = nil
Curfn.Func.Dcl.End = ll
break
}
}
// Reassign stack offsets of the locals that are still there.
var w int64
for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next {
n = ll.N
if n.Class != PAUTO || n.Op != ONAME {
continue
}
dowidth(n.Type)
w = n.Type.Width
if w >= Thearch.MAXWIDTH || w < 0 {
Fatal("bad width")
}
Stksize += w
Stksize = Rnd(Stksize, int64(n.Type.Align))
if haspointers(n.Type) {
stkptrsize = Stksize
}
if Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' {
Stksize = Rnd(Stksize, int64(Widthptr))
}
if Stksize >= 1<<31 {
setlineno(Curfn)
Yyerror("stack frame too large (>2GB)")
}
n.Stkdelta = -Stksize - n.Xoffset
}
Stksize = Rnd(Stksize, int64(Widthreg))
stkptrsize = Rnd(stkptrsize, int64(Widthreg))
fixautoused(ptxt)
// The debug information needs accurate offsets on the symbols.
for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next {
if ll.N.Class != PAUTO || ll.N.Op != ONAME {
continue
}
ll.N.Xoffset += ll.N.Stkdelta
ll.N.Stkdelta = 0
}
}
func Cgen_checknil(n *Node) {
if Disable_checknil != 0 {
return
}
// Ideally we wouldn't see any integer types here, but we do.
if n.Type == nil || (!Isptr[n.Type.Etype] && !Isint[n.Type.Etype] && n.Type.Etype != TUNSAFEPTR) {
Dump("checknil", n)
Fatal("bad checknil")
}
if ((Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9') && n.Op != OREGISTER) || !n.Addable || n.Op == OLITERAL {
var reg Node
Regalloc(&reg, Types[Tptr], n)
Cgen(n, &reg)
Thearch.Gins(obj.ACHECKNIL, &reg, nil)
Regfree(&reg)
return
}
Thearch.Gins(obj.ACHECKNIL, n, nil)
}
func compile(fn *Node) {
if Newproc == nil {
Newproc = Sysfunc("newproc")
Deferproc = Sysfunc("deferproc")
Deferreturn = Sysfunc("deferreturn")
Panicindex = Sysfunc("panicindex")
panicslice = Sysfunc("panicslice")
throwreturn = Sysfunc("throwreturn")
}
lno := setlineno(fn)
Curfn = fn
dowidth(Curfn.Type)
var oldstksize int64
var nod1 Node
var ptxt *obj.Prog
var pl *obj.Plist
var p *obj.Prog
var n *Node
var nam *Node
var gcargs *Sym
var gclocals *Sym
if fn.Nbody == nil {
if pure_go != 0 || strings.HasPrefix(fn.Nname.Sym.Name, "init.") {
Yyerror("missing function body for %q", fn.Nname.Sym.Name)
goto ret
}
if Debug['A'] != 0 {
goto ret
}
emitptrargsmap()
goto ret
}
saveerrors()
// set up domain for labels
clearlabels()
if Curfn.Type.Outnamed != 0 {
// add clearing of the output parameters
var save Iter
t := Structfirst(&save, Getoutarg(Curfn.Type))
for t != nil {
if t.Nname != nil {
n = Nod(OAS, t.Nname, nil)
typecheck(&n, Etop)
Curfn.Nbody = concat(list1(n), Curfn.Nbody)
}
t = structnext(&save)
}
}
order(Curfn)
if nerrors != 0 {
goto ret
}
Hasdefer = 0
walk(Curfn)
if nerrors != 0 {
goto ret
}
if flag_race != 0 {
racewalk(Curfn)
}
if nerrors != 0 {
goto ret
}
continpc = nil
breakpc = nil
pl = newplist()
pl.Name = Linksym(Curfn.Nname.Sym)
setlineno(Curfn)
Nodconst(&nod1, Types[TINT32], 0)
nam = Curfn.Nname
if isblank(nam) {
nam = nil
}
ptxt = Thearch.Gins(obj.ATEXT, nam, &nod1)
if fn.Func.Dupok {
ptxt.From3.Offset |= obj.DUPOK
}
if fn.Func.Wrapper {
ptxt.From3.Offset |= obj.WRAPPER
}
if fn.Func.Needctxt {
ptxt.From3.Offset |= obj.NEEDCTXT
}
if fn.Func.Nosplit {
ptxt.From3.Offset |= obj.NOSPLIT
}
// Clumsy but important.
// See test/recover.go for test cases and src/reflect/value.go
// for the actual functions being considered.
if myimportpath != "" && myimportpath == "reflect" {
if Curfn.Nname.Sym.Name == "callReflect" || Curfn.Nname.Sym.Name == "callMethod" {
ptxt.From3.Offset |= obj.WRAPPER
}
}
Afunclit(&ptxt.From, Curfn.Nname)
ginit()
gcargs = makefuncdatasym("gcargs·%d", obj.FUNCDATA_ArgsPointerMaps)
gclocals = makefuncdatasym("gclocals·%d", obj.FUNCDATA_LocalsPointerMaps)
for t := Curfn.Paramfld; t != nil; t = t.Down {
gtrack(tracksym(t.Type))
}
for l := fn.Func.Dcl; l != nil; l = l.Next {
n = l.N
if n.Op != ONAME { // might be OTYPE or OLITERAL
continue
}
switch n.Class {
case PAUTO, PPARAM, PPARAMOUT:
Nodconst(&nod1, Types[TUINTPTR], l.N.Type.Width)
p = Thearch.Gins(obj.ATYPE, l.N, &nod1)
p.From.Gotype = Linksym(ngotype(l.N))
}
}
Genlist(Curfn.Func.Enter)
Genlist(Curfn.Nbody)
gclean()
checklabels()
if nerrors != 0 {
goto ret
}
if Curfn.Func.Endlineno != 0 {
lineno = Curfn.Func.Endlineno
}
if Curfn.Type.Outtuple != 0 {
Ginscall(throwreturn, 0)
}
ginit()
// TODO: Determine when the final cgen_ret can be omitted. Perhaps always?
cgen_ret(nil)
if Hasdefer != 0 {
// deferreturn pretends to have one uintptr argument.
// Reserve space for it so stack scanner is happy.
if Maxarg < int64(Widthptr) {
Maxarg = int64(Widthptr)
}
}
gclean()
if nerrors != 0 {
goto ret
}
Pc.As = obj.ARET // overwrite AEND
Pc.Lineno = lineno
fixjmp(ptxt)
if Debug['N'] == 0 || Debug['R'] != 0 || Debug['P'] != 0 {
regopt(ptxt)
nilopt(ptxt)
}
Thearch.Expandchecks(ptxt)
oldstksize = Stksize
allocauto(ptxt)
if false {
fmt.Printf("allocauto: %d to %d\n", oldstksize, int64(Stksize))
}
setlineno(Curfn)
if int64(Stksize)+Maxarg > 1<<31 {
Yyerror("stack frame too large (>2GB)")
goto ret
}
// Emit garbage collection symbols.
liveness(Curfn, ptxt, gcargs, gclocals)
gcsymdup(gcargs)
gcsymdup(gclocals)
Thearch.Defframe(ptxt)
if Debug['f'] != 0 {
frame(0)
}
// Remove leftover instrumentation from the instruction stream.
removevardef(ptxt)
ret:
lineno = lno
}