| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/internal/obj" |
| "crypto/md5" |
| "fmt" |
| "strings" |
| ) |
| |
| // "Portable" code generation. |
| |
| var makefuncdatasym_nsym int32 |
| |
| func makefuncdatasym(namefmt string, funcdatakind int64) *Sym { |
| var nod Node |
| |
| sym := Lookupf(namefmt, makefuncdatasym_nsym) |
| makefuncdatasym_nsym++ |
| pnod := newname(sym) |
| pnod.Class = PEXTERN |
| Nodconst(&nod, Types[TINT32], funcdatakind) |
| Thearch.Gins(obj.AFUNCDATA, &nod, pnod) |
| return sym |
| } |
| |
| // gvardef inserts a VARDEF for n into the instruction stream. |
| // VARDEF is an annotation for the liveness analysis, marking a place |
| // where a complete initialization (definition) of a variable begins. |
| // Since the liveness analysis can see initialization of single-word |
| // variables quite easy, gvardef is usually only called for multi-word |
| // or 'fat' variables, those satisfying isfat(n->type). |
| // However, gvardef is also called when a non-fat variable is initialized |
| // via a block move; the only time this happens is when you have |
| // return f() |
| // for a function with multiple return values exactly matching the return |
| // types of the current function. |
| // |
| // A 'VARDEF x' annotation in the instruction stream tells the liveness |
| // analysis to behave as though the variable x is being initialized at that |
| // point in the instruction stream. The VARDEF must appear before the |
| // actual (multi-instruction) initialization, and it must also appear after |
| // any uses of the previous value, if any. For example, if compiling: |
| // |
| // x = x[1:] |
| // |
| // it is important to generate code like: |
| // |
| // base, len, cap = pieces of x[1:] |
| // VARDEF x |
| // x = {base, len, cap} |
| // |
| // If instead the generated code looked like: |
| // |
| // VARDEF x |
| // base, len, cap = pieces of x[1:] |
| // x = {base, len, cap} |
| // |
| // then the liveness analysis would decide the previous value of x was |
| // unnecessary even though it is about to be used by the x[1:] computation. |
| // Similarly, if the generated code looked like: |
| // |
| // base, len, cap = pieces of x[1:] |
| // x = {base, len, cap} |
| // VARDEF x |
| // |
| // then the liveness analysis will not preserve the new value of x, because |
| // the VARDEF appears to have "overwritten" it. |
| // |
| // VARDEF is a bit of a kludge to work around the fact that the instruction |
| // stream is working on single-word values but the liveness analysis |
| // wants to work on individual variables, which might be multi-word |
| // aggregates. It might make sense at some point to look into letting |
| // the liveness analysis work on single-word values as well, although |
| // there are complications around interface values, slices, and strings, |
| // all of which cannot be treated as individual words. |
| // |
| // VARKILL is the opposite of VARDEF: it marks a value as no longer needed, |
| // even if its address has been taken. That is, a VARKILL annotation asserts |
| // that its argument is certainly dead, for use when the liveness analysis |
| // would not otherwise be able to deduce that fact. |
| |
| func gvardefx(n *Node, as int) { |
| if n == nil { |
| Fatal("gvardef nil") |
| } |
| if n.Op != ONAME { |
| Yyerror("gvardef %v; %v", Oconv(int(n.Op), obj.FmtSharp), n) |
| return |
| } |
| |
| switch n.Class { |
| case PAUTO, PPARAM, PPARAMOUT: |
| Thearch.Gins(as, nil, n) |
| } |
| } |
| |
| func Gvardef(n *Node) { |
| gvardefx(n, obj.AVARDEF) |
| } |
| |
| func gvarkill(n *Node) { |
| gvardefx(n, obj.AVARKILL) |
| } |
| |
| func removevardef(firstp *obj.Prog) { |
| for p := firstp; p != nil; p = p.Link { |
| for p.Link != nil && (p.Link.As == obj.AVARDEF || p.Link.As == obj.AVARKILL) { |
| p.Link = p.Link.Link |
| } |
| if p.To.Type == obj.TYPE_BRANCH { |
| for p.To.Val.(*obj.Prog) != nil && (p.To.Val.(*obj.Prog).As == obj.AVARDEF || p.To.Val.(*obj.Prog).As == obj.AVARKILL) { |
| p.To.Val = p.To.Val.(*obj.Prog).Link |
| } |
| } |
| } |
| } |
| |
| func gcsymdup(s *Sym) { |
| ls := Linksym(s) |
| if len(ls.R) > 0 { |
| Fatal("cannot rosymdup %s with relocations", ls.Name) |
| } |
| ls.Name = fmt.Sprintf("gclocals·%x", md5.Sum(ls.P)) |
| ls.Dupok = 1 |
| } |
| |
| func emitptrargsmap() { |
| sym := Lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Nname.Sym.Name)) |
| |
| nptr := int(Curfn.Type.Argwid / int64(Widthptr)) |
| bv := bvalloc(int32(nptr) * 2) |
| nbitmap := 1 |
| if Curfn.Type.Outtuple > 0 { |
| nbitmap = 2 |
| } |
| off := duint32(sym, 0, uint32(nbitmap)) |
| off = duint32(sym, off, uint32(bv.n)) |
| var xoffset int64 |
| if Curfn.Type.Thistuple > 0 { |
| xoffset = 0 |
| onebitwalktype1(getthisx(Curfn.Type), &xoffset, bv) |
| } |
| |
| if Curfn.Type.Intuple > 0 { |
| xoffset = 0 |
| onebitwalktype1(getinargx(Curfn.Type), &xoffset, bv) |
| } |
| |
| for j := 0; int32(j) < bv.n; j += 32 { |
| off = duint32(sym, off, bv.b[j/32]) |
| } |
| if Curfn.Type.Outtuple > 0 { |
| xoffset = 0 |
| onebitwalktype1(getoutargx(Curfn.Type), &xoffset, bv) |
| for j := 0; int32(j) < bv.n; j += 32 { |
| off = duint32(sym, off, bv.b[j/32]) |
| } |
| } |
| |
| ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL) |
| } |
| |
| // Sort the list of stack variables. Autos after anything else, |
| // within autos, unused after used, within used, things with |
| // pointers first, zeroed things first, and then decreasing size. |
| // Because autos are laid out in decreasing addresses |
| // on the stack, pointers first, zeroed things first and decreasing size |
| // really means, in memory, things with pointers needing zeroing at |
| // the top of the stack and increasing in size. |
| // Non-autos sort on offset. |
| func cmpstackvar(a *Node, b *Node) int { |
| if a.Class != b.Class { |
| if a.Class == PAUTO { |
| return +1 |
| } |
| return -1 |
| } |
| |
| if a.Class != PAUTO { |
| if a.Xoffset < b.Xoffset { |
| return -1 |
| } |
| if a.Xoffset > b.Xoffset { |
| return +1 |
| } |
| return 0 |
| } |
| |
| if a.Used != b.Used { |
| return obj.Bool2int(b.Used) - obj.Bool2int(a.Used) |
| } |
| |
| ap := obj.Bool2int(haspointers(a.Type)) |
| bp := obj.Bool2int(haspointers(b.Type)) |
| if ap != bp { |
| return bp - ap |
| } |
| |
| ap = obj.Bool2int(a.Name.Needzero) |
| bp = obj.Bool2int(b.Name.Needzero) |
| if ap != bp { |
| return bp - ap |
| } |
| |
| if a.Type.Width < b.Type.Width { |
| return +1 |
| } |
| if a.Type.Width > b.Type.Width { |
| return -1 |
| } |
| |
| return stringsCompare(a.Sym.Name, b.Sym.Name) |
| } |
| |
| // TODO(lvd) find out where the PAUTO/OLITERAL nodes come from. |
| func allocauto(ptxt *obj.Prog) { |
| Stksize = 0 |
| stkptrsize = 0 |
| |
| if Curfn.Func.Dcl == nil { |
| return |
| } |
| |
| // Mark the PAUTO's unused. |
| for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next { |
| if ll.N.Class == PAUTO { |
| ll.N.Used = false |
| } |
| } |
| |
| markautoused(ptxt) |
| |
| listsort(&Curfn.Func.Dcl, cmpstackvar) |
| |
| // Unused autos are at the end, chop 'em off. |
| ll := Curfn.Func.Dcl |
| |
| n := ll.N |
| if n.Class == PAUTO && n.Op == ONAME && !n.Used { |
| // No locals used at all |
| Curfn.Func.Dcl = nil |
| |
| fixautoused(ptxt) |
| return |
| } |
| |
| for ll := Curfn.Func.Dcl; ll.Next != nil; ll = ll.Next { |
| n = ll.Next.N |
| if n.Class == PAUTO && n.Op == ONAME && !n.Used { |
| ll.Next = nil |
| Curfn.Func.Dcl.End = ll |
| break |
| } |
| } |
| |
| // Reassign stack offsets of the locals that are still there. |
| var w int64 |
| for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next { |
| n = ll.N |
| if n.Class != PAUTO || n.Op != ONAME { |
| continue |
| } |
| |
| dowidth(n.Type) |
| w = n.Type.Width |
| if w >= Thearch.MAXWIDTH || w < 0 { |
| Fatal("bad width") |
| } |
| Stksize += w |
| Stksize = Rnd(Stksize, int64(n.Type.Align)) |
| if haspointers(n.Type) { |
| stkptrsize = Stksize |
| } |
| if Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' { |
| Stksize = Rnd(Stksize, int64(Widthptr)) |
| } |
| if Stksize >= 1<<31 { |
| setlineno(Curfn) |
| Yyerror("stack frame too large (>2GB)") |
| } |
| |
| n.Stkdelta = -Stksize - n.Xoffset |
| } |
| |
| Stksize = Rnd(Stksize, int64(Widthreg)) |
| stkptrsize = Rnd(stkptrsize, int64(Widthreg)) |
| |
| fixautoused(ptxt) |
| |
| // The debug information needs accurate offsets on the symbols. |
| for ll := Curfn.Func.Dcl; ll != nil; ll = ll.Next { |
| if ll.N.Class != PAUTO || ll.N.Op != ONAME { |
| continue |
| } |
| ll.N.Xoffset += ll.N.Stkdelta |
| ll.N.Stkdelta = 0 |
| } |
| } |
| |
| func Cgen_checknil(n *Node) { |
| if Disable_checknil != 0 { |
| return |
| } |
| |
| // Ideally we wouldn't see any integer types here, but we do. |
| if n.Type == nil || (!Isptr[n.Type.Etype] && !Isint[n.Type.Etype] && n.Type.Etype != TUNSAFEPTR) { |
| Dump("checknil", n) |
| Fatal("bad checknil") |
| } |
| |
| if ((Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9') && n.Op != OREGISTER) || !n.Addable || n.Op == OLITERAL { |
| var reg Node |
| Regalloc(®, Types[Tptr], n) |
| Cgen(n, ®) |
| Thearch.Gins(obj.ACHECKNIL, ®, nil) |
| Regfree(®) |
| return |
| } |
| |
| Thearch.Gins(obj.ACHECKNIL, n, nil) |
| } |
| |
| func compile(fn *Node) { |
| if Newproc == nil { |
| Newproc = Sysfunc("newproc") |
| Deferproc = Sysfunc("deferproc") |
| Deferreturn = Sysfunc("deferreturn") |
| Panicindex = Sysfunc("panicindex") |
| panicslice = Sysfunc("panicslice") |
| throwreturn = Sysfunc("throwreturn") |
| } |
| |
| lno := setlineno(fn) |
| |
| Curfn = fn |
| dowidth(Curfn.Type) |
| |
| var oldstksize int64 |
| var nod1 Node |
| var ptxt *obj.Prog |
| var pl *obj.Plist |
| var p *obj.Prog |
| var n *Node |
| var nam *Node |
| var gcargs *Sym |
| var gclocals *Sym |
| if fn.Nbody == nil { |
| if pure_go != 0 || strings.HasPrefix(fn.Nname.Sym.Name, "init.") { |
| Yyerror("missing function body for %q", fn.Nname.Sym.Name) |
| goto ret |
| } |
| |
| if Debug['A'] != 0 { |
| goto ret |
| } |
| emitptrargsmap() |
| goto ret |
| } |
| |
| saveerrors() |
| |
| // set up domain for labels |
| clearlabels() |
| |
| if Curfn.Type.Outnamed != 0 { |
| // add clearing of the output parameters |
| var save Iter |
| t := Structfirst(&save, Getoutarg(Curfn.Type)) |
| |
| for t != nil { |
| if t.Nname != nil { |
| n = Nod(OAS, t.Nname, nil) |
| typecheck(&n, Etop) |
| Curfn.Nbody = concat(list1(n), Curfn.Nbody) |
| } |
| |
| t = structnext(&save) |
| } |
| } |
| |
| order(Curfn) |
| if nerrors != 0 { |
| goto ret |
| } |
| |
| Hasdefer = 0 |
| walk(Curfn) |
| if nerrors != 0 { |
| goto ret |
| } |
| if flag_race != 0 { |
| racewalk(Curfn) |
| } |
| if nerrors != 0 { |
| goto ret |
| } |
| |
| continpc = nil |
| breakpc = nil |
| |
| pl = newplist() |
| pl.Name = Linksym(Curfn.Nname.Sym) |
| |
| setlineno(Curfn) |
| |
| Nodconst(&nod1, Types[TINT32], 0) |
| nam = Curfn.Nname |
| if isblank(nam) { |
| nam = nil |
| } |
| ptxt = Thearch.Gins(obj.ATEXT, nam, &nod1) |
| if fn.Func.Dupok { |
| ptxt.From3.Offset |= obj.DUPOK |
| } |
| if fn.Func.Wrapper { |
| ptxt.From3.Offset |= obj.WRAPPER |
| } |
| if fn.Func.Needctxt { |
| ptxt.From3.Offset |= obj.NEEDCTXT |
| } |
| if fn.Func.Nosplit { |
| ptxt.From3.Offset |= obj.NOSPLIT |
| } |
| |
| // Clumsy but important. |
| // See test/recover.go for test cases and src/reflect/value.go |
| // for the actual functions being considered. |
| if myimportpath != "" && myimportpath == "reflect" { |
| if Curfn.Nname.Sym.Name == "callReflect" || Curfn.Nname.Sym.Name == "callMethod" { |
| ptxt.From3.Offset |= obj.WRAPPER |
| } |
| } |
| |
| Afunclit(&ptxt.From, Curfn.Nname) |
| |
| ginit() |
| |
| gcargs = makefuncdatasym("gcargs·%d", obj.FUNCDATA_ArgsPointerMaps) |
| gclocals = makefuncdatasym("gclocals·%d", obj.FUNCDATA_LocalsPointerMaps) |
| |
| for t := Curfn.Paramfld; t != nil; t = t.Down { |
| gtrack(tracksym(t.Type)) |
| } |
| |
| for l := fn.Func.Dcl; l != nil; l = l.Next { |
| n = l.N |
| if n.Op != ONAME { // might be OTYPE or OLITERAL |
| continue |
| } |
| switch n.Class { |
| case PAUTO, PPARAM, PPARAMOUT: |
| Nodconst(&nod1, Types[TUINTPTR], l.N.Type.Width) |
| p = Thearch.Gins(obj.ATYPE, l.N, &nod1) |
| p.From.Gotype = Linksym(ngotype(l.N)) |
| } |
| } |
| |
| Genlist(Curfn.Func.Enter) |
| Genlist(Curfn.Nbody) |
| gclean() |
| checklabels() |
| if nerrors != 0 { |
| goto ret |
| } |
| if Curfn.Func.Endlineno != 0 { |
| lineno = Curfn.Func.Endlineno |
| } |
| |
| if Curfn.Type.Outtuple != 0 { |
| Ginscall(throwreturn, 0) |
| } |
| |
| ginit() |
| |
| // TODO: Determine when the final cgen_ret can be omitted. Perhaps always? |
| cgen_ret(nil) |
| |
| if Hasdefer != 0 { |
| // deferreturn pretends to have one uintptr argument. |
| // Reserve space for it so stack scanner is happy. |
| if Maxarg < int64(Widthptr) { |
| Maxarg = int64(Widthptr) |
| } |
| } |
| |
| gclean() |
| if nerrors != 0 { |
| goto ret |
| } |
| |
| Pc.As = obj.ARET // overwrite AEND |
| Pc.Lineno = lineno |
| |
| fixjmp(ptxt) |
| if Debug['N'] == 0 || Debug['R'] != 0 || Debug['P'] != 0 { |
| regopt(ptxt) |
| nilopt(ptxt) |
| } |
| |
| Thearch.Expandchecks(ptxt) |
| |
| oldstksize = Stksize |
| allocauto(ptxt) |
| |
| if false { |
| fmt.Printf("allocauto: %d to %d\n", oldstksize, int64(Stksize)) |
| } |
| |
| setlineno(Curfn) |
| if int64(Stksize)+Maxarg > 1<<31 { |
| Yyerror("stack frame too large (>2GB)") |
| goto ret |
| } |
| |
| // Emit garbage collection symbols. |
| liveness(Curfn, ptxt, gcargs, gclocals) |
| |
| gcsymdup(gcargs) |
| gcsymdup(gclocals) |
| |
| Thearch.Defframe(ptxt) |
| |
| if Debug['f'] != 0 { |
| frame(0) |
| } |
| |
| // Remove leftover instrumentation from the instruction stream. |
| removevardef(ptxt) |
| |
| ret: |
| lineno = lno |
| } |