| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package jpeg implements a JPEG image decoder and encoder. |
| // |
| // JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf. |
| package jpeg |
| |
| import ( |
| "image" |
| "image/color" |
| "image/internal/imageutil" |
| "io" |
| ) |
| |
| // A FormatError reports that the input is not a valid JPEG. |
| type FormatError string |
| |
| func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } |
| |
| // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. |
| type UnsupportedError string |
| |
| func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } |
| |
| var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") |
| |
| // Component specification, specified in section B.2.2. |
| type component struct { |
| h int // Horizontal sampling factor. |
| v int // Vertical sampling factor. |
| c uint8 // Component identifier. |
| tq uint8 // Quantization table destination selector. |
| } |
| |
| const ( |
| dcTable = 0 |
| acTable = 1 |
| maxTc = 1 |
| maxTh = 3 |
| maxTq = 3 |
| |
| maxComponents = 4 |
| ) |
| |
| const ( |
| sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential). |
| sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). |
| sof2Marker = 0xc2 // Start Of Frame (Progressive). |
| dhtMarker = 0xc4 // Define Huffman Table. |
| rst0Marker = 0xd0 // ReSTart (0). |
| rst7Marker = 0xd7 // ReSTart (7). |
| soiMarker = 0xd8 // Start Of Image. |
| eoiMarker = 0xd9 // End Of Image. |
| sosMarker = 0xda // Start Of Scan. |
| dqtMarker = 0xdb // Define Quantization Table. |
| driMarker = 0xdd // Define Restart Interval. |
| comMarker = 0xfe // COMment. |
| // "APPlication specific" markers aren't part of the JPEG spec per se, |
| // but in practice, their use is described at |
| // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html |
| app0Marker = 0xe0 |
| app14Marker = 0xee |
| app15Marker = 0xef |
| ) |
| |
| // See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe |
| const ( |
| adobeTransformUnknown = 0 |
| adobeTransformYCbCr = 1 |
| adobeTransformYCbCrK = 2 |
| ) |
| |
| // unzig maps from the zig-zag ordering to the natural ordering. For example, |
| // unzig[3] is the column and row of the fourth element in zig-zag order. The |
| // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). |
| var unzig = [blockSize]int{ |
| 0, 1, 8, 16, 9, 2, 3, 10, |
| 17, 24, 32, 25, 18, 11, 4, 5, |
| 12, 19, 26, 33, 40, 48, 41, 34, |
| 27, 20, 13, 6, 7, 14, 21, 28, |
| 35, 42, 49, 56, 57, 50, 43, 36, |
| 29, 22, 15, 23, 30, 37, 44, 51, |
| 58, 59, 52, 45, 38, 31, 39, 46, |
| 53, 60, 61, 54, 47, 55, 62, 63, |
| } |
| |
| // Deprecated: Reader is not used by the image/jpeg package and should |
| // not be used by others. It is kept for compatibility. |
| type Reader interface { |
| io.ByteReader |
| io.Reader |
| } |
| |
| // bits holds the unprocessed bits that have been taken from the byte-stream. |
| // The n least significant bits of a form the unread bits, to be read in MSB to |
| // LSB order. |
| type bits struct { |
| a uint32 // accumulator. |
| m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. |
| n int32 // the number of unread bits in a. |
| } |
| |
| type decoder struct { |
| r io.Reader |
| bits bits |
| // bytes is a byte buffer, similar to a bufio.Reader, except that it |
| // has to be able to unread more than 1 byte, due to byte stuffing. |
| // Byte stuffing is specified in section F.1.2.3. |
| bytes struct { |
| // buf[i:j] are the buffered bytes read from the underlying |
| // io.Reader that haven't yet been passed further on. |
| buf [4096]byte |
| i, j int |
| // nUnreadable is the number of bytes to back up i after |
| // overshooting. It can be 0, 1 or 2. |
| nUnreadable int |
| } |
| width, height int |
| |
| img1 *image.Gray |
| img3 *image.YCbCr |
| blackPix []byte |
| blackStride int |
| |
| ri int // Restart Interval. |
| nComp int |
| |
| // As per section 4.5, there are four modes of operation (selected by the |
| // SOF? markers): sequential DCT, progressive DCT, lossless and |
| // hierarchical, although this implementation does not support the latter |
| // two non-DCT modes. Sequential DCT is further split into baseline and |
| // extended, as per section 4.11. |
| baseline bool |
| progressive bool |
| |
| jfif bool |
| adobeTransformValid bool |
| adobeTransform uint8 |
| eobRun uint16 // End-of-Band run, specified in section G.1.2.2. |
| |
| comp [maxComponents]component |
| progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. |
| huff [maxTc + 1][maxTh + 1]huffman |
| quant [maxTq + 1]block // Quantization tables, in zig-zag order. |
| tmp [2 * blockSize]byte |
| } |
| |
| // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It |
| // should only be called when there are no unread bytes in d.bytes. |
| func (d *decoder) fill() error { |
| if d.bytes.i != d.bytes.j { |
| panic("jpeg: fill called when unread bytes exist") |
| } |
| // Move the last 2 bytes to the start of the buffer, in case we need |
| // to call unreadByteStuffedByte. |
| if d.bytes.j > 2 { |
| d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] |
| d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] |
| d.bytes.i, d.bytes.j = 2, 2 |
| } |
| // Fill in the rest of the buffer. |
| n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) |
| d.bytes.j += n |
| if n > 0 { |
| err = nil |
| } |
| return err |
| } |
| |
| // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, |
| // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table |
| // requires at least 8 bits for look-up, which means that Huffman decoding can |
| // sometimes overshoot and read one or two too many bytes. Two-byte overshoot |
| // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. |
| func (d *decoder) unreadByteStuffedByte() { |
| d.bytes.i -= d.bytes.nUnreadable |
| d.bytes.nUnreadable = 0 |
| if d.bits.n >= 8 { |
| d.bits.a >>= 8 |
| d.bits.n -= 8 |
| d.bits.m >>= 8 |
| } |
| } |
| |
| // readByte returns the next byte, whether buffered or not buffered. It does |
| // not care about byte stuffing. |
| func (d *decoder) readByte() (x byte, err error) { |
| for d.bytes.i == d.bytes.j { |
| if err = d.fill(); err != nil { |
| return 0, err |
| } |
| } |
| x = d.bytes.buf[d.bytes.i] |
| d.bytes.i++ |
| d.bytes.nUnreadable = 0 |
| return x, nil |
| } |
| |
| // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a |
| // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. |
| var errMissingFF00 = FormatError("missing 0xff00 sequence") |
| |
| // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. |
| func (d *decoder) readByteStuffedByte() (x byte, err error) { |
| // Take the fast path if d.bytes.buf contains at least two bytes. |
| if d.bytes.i+2 <= d.bytes.j { |
| x = d.bytes.buf[d.bytes.i] |
| d.bytes.i++ |
| d.bytes.nUnreadable = 1 |
| if x != 0xff { |
| return x, err |
| } |
| if d.bytes.buf[d.bytes.i] != 0x00 { |
| return 0, errMissingFF00 |
| } |
| d.bytes.i++ |
| d.bytes.nUnreadable = 2 |
| return 0xff, nil |
| } |
| |
| d.bytes.nUnreadable = 0 |
| |
| x, err = d.readByte() |
| if err != nil { |
| return 0, err |
| } |
| d.bytes.nUnreadable = 1 |
| if x != 0xff { |
| return x, nil |
| } |
| |
| x, err = d.readByte() |
| if err != nil { |
| return 0, err |
| } |
| d.bytes.nUnreadable = 2 |
| if x != 0x00 { |
| return 0, errMissingFF00 |
| } |
| return 0xff, nil |
| } |
| |
| // readFull reads exactly len(p) bytes into p. It does not care about byte |
| // stuffing. |
| func (d *decoder) readFull(p []byte) error { |
| // Unread the overshot bytes, if any. |
| if d.bytes.nUnreadable != 0 { |
| if d.bits.n >= 8 { |
| d.unreadByteStuffedByte() |
| } |
| d.bytes.nUnreadable = 0 |
| } |
| |
| for { |
| n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) |
| p = p[n:] |
| d.bytes.i += n |
| if len(p) == 0 { |
| break |
| } |
| if err := d.fill(); err != nil { |
| if err == io.EOF { |
| err = io.ErrUnexpectedEOF |
| } |
| return err |
| } |
| } |
| return nil |
| } |
| |
| // ignore ignores the next n bytes. |
| func (d *decoder) ignore(n int) error { |
| // Unread the overshot bytes, if any. |
| if d.bytes.nUnreadable != 0 { |
| if d.bits.n >= 8 { |
| d.unreadByteStuffedByte() |
| } |
| d.bytes.nUnreadable = 0 |
| } |
| |
| for { |
| m := d.bytes.j - d.bytes.i |
| if m > n { |
| m = n |
| } |
| d.bytes.i += m |
| n -= m |
| if n == 0 { |
| break |
| } |
| if err := d.fill(); err != nil { |
| if err == io.EOF { |
| err = io.ErrUnexpectedEOF |
| } |
| return err |
| } |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.2. |
| func (d *decoder) processSOF(n int) error { |
| if d.nComp != 0 { |
| return FormatError("multiple SOF markers") |
| } |
| switch n { |
| case 6 + 3*1: // Grayscale image. |
| d.nComp = 1 |
| case 6 + 3*3: // YCbCr or RGB image. |
| d.nComp = 3 |
| case 6 + 3*4: // YCbCrK or CMYK image. |
| d.nComp = 4 |
| default: |
| return UnsupportedError("number of components") |
| } |
| if err := d.readFull(d.tmp[:n]); err != nil { |
| return err |
| } |
| // We only support 8-bit precision. |
| if d.tmp[0] != 8 { |
| return UnsupportedError("precision") |
| } |
| d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) |
| d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) |
| if int(d.tmp[5]) != d.nComp { |
| return FormatError("SOF has wrong length") |
| } |
| |
| for i := 0; i < d.nComp; i++ { |
| d.comp[i].c = d.tmp[6+3*i] |
| // Section B.2.2 states that "the value of C_i shall be different from |
| // the values of C_1 through C_(i-1)". |
| for j := 0; j < i; j++ { |
| if d.comp[i].c == d.comp[j].c { |
| return FormatError("repeated component identifier") |
| } |
| } |
| |
| d.comp[i].tq = d.tmp[8+3*i] |
| if d.comp[i].tq > maxTq { |
| return FormatError("bad Tq value") |
| } |
| |
| hv := d.tmp[7+3*i] |
| h, v := int(hv>>4), int(hv&0x0f) |
| if h < 1 || 4 < h || v < 1 || 4 < v { |
| return FormatError("luma/chroma subsampling ratio") |
| } |
| if h == 3 || v == 3 { |
| return errUnsupportedSubsamplingRatio |
| } |
| switch d.nComp { |
| case 1: |
| // If a JPEG image has only one component, section A.2 says "this data |
| // is non-interleaved by definition" and section A.2.2 says "[in this |
| // case...] the order of data units within a scan shall be left-to-right |
| // and top-to-bottom... regardless of the values of H_1 and V_1". Section |
| // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be |
| // one data unit". Similarly, section A.1.1 explains that it is the ratio |
| // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale |
| // images, H_1 is the maximum H_j for all components j, so that ratio is |
| // always 1. The component's (h, v) is effectively always (1, 1): even if |
| // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 |
| // MCUs, not two 16x8 MCUs. |
| h, v = 1, 1 |
| |
| case 3: |
| // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, |
| // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the |
| // (h, v) values for the Y component are either (1, 1), (1, 2), |
| // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values |
| // must be a multiple of the Cb and Cr component's values. We also |
| // assume that the two chroma components have the same subsampling |
| // ratio. |
| switch i { |
| case 0: // Y. |
| // We have already verified, above, that h and v are both |
| // either 1, 2 or 4, so invalid (h, v) combinations are those |
| // with v == 4. |
| if v == 4 { |
| return errUnsupportedSubsamplingRatio |
| } |
| case 1: // Cb. |
| if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { |
| return errUnsupportedSubsamplingRatio |
| } |
| case 2: // Cr. |
| if d.comp[1].h != h || d.comp[1].v != v { |
| return errUnsupportedSubsamplingRatio |
| } |
| } |
| |
| case 4: |
| // For 4-component images (either CMYK or YCbCrK), we only support two |
| // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. |
| // Theoretically, 4-component JPEG images could mix and match hv values |
| // but in practice, those two combinations are the only ones in use, |
| // and it simplifies the applyBlack code below if we can assume that: |
| // - for CMYK, the C and K channels have full samples, and if the M |
| // and Y channels subsample, they subsample both horizontally and |
| // vertically. |
| // - for YCbCrK, the Y and K channels have full samples. |
| switch i { |
| case 0: |
| if hv != 0x11 && hv != 0x22 { |
| return errUnsupportedSubsamplingRatio |
| } |
| case 1, 2: |
| if hv != 0x11 { |
| return errUnsupportedSubsamplingRatio |
| } |
| case 3: |
| if d.comp[0].h != h || d.comp[0].v != v { |
| return errUnsupportedSubsamplingRatio |
| } |
| } |
| } |
| |
| d.comp[i].h = h |
| d.comp[i].v = v |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.4.1. |
| func (d *decoder) processDQT(n int) error { |
| loop: |
| for n > 0 { |
| n-- |
| x, err := d.readByte() |
| if err != nil { |
| return err |
| } |
| tq := x & 0x0f |
| if tq > maxTq { |
| return FormatError("bad Tq value") |
| } |
| switch x >> 4 { |
| default: |
| return FormatError("bad Pq value") |
| case 0: |
| if n < blockSize { |
| break loop |
| } |
| n -= blockSize |
| if err := d.readFull(d.tmp[:blockSize]); err != nil { |
| return err |
| } |
| for i := range d.quant[tq] { |
| d.quant[tq][i] = int32(d.tmp[i]) |
| } |
| case 1: |
| if n < 2*blockSize { |
| break loop |
| } |
| n -= 2 * blockSize |
| if err := d.readFull(d.tmp[:2*blockSize]); err != nil { |
| return err |
| } |
| for i := range d.quant[tq] { |
| d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) |
| } |
| } |
| } |
| if n != 0 { |
| return FormatError("DQT has wrong length") |
| } |
| return nil |
| } |
| |
| // Specified in section B.2.4.4. |
| func (d *decoder) processDRI(n int) error { |
| if n != 2 { |
| return FormatError("DRI has wrong length") |
| } |
| if err := d.readFull(d.tmp[:2]); err != nil { |
| return err |
| } |
| d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) |
| return nil |
| } |
| |
| func (d *decoder) processApp0Marker(n int) error { |
| if n < 5 { |
| return d.ignore(n) |
| } |
| if err := d.readFull(d.tmp[:5]); err != nil { |
| return err |
| } |
| n -= 5 |
| |
| d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' |
| |
| if n > 0 { |
| return d.ignore(n) |
| } |
| return nil |
| } |
| |
| func (d *decoder) processApp14Marker(n int) error { |
| if n < 12 { |
| return d.ignore(n) |
| } |
| if err := d.readFull(d.tmp[:12]); err != nil { |
| return err |
| } |
| n -= 12 |
| |
| if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { |
| d.adobeTransformValid = true |
| d.adobeTransform = d.tmp[11] |
| } |
| |
| if n > 0 { |
| return d.ignore(n) |
| } |
| return nil |
| } |
| |
| // decode reads a JPEG image from r and returns it as an image.Image. |
| func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { |
| d.r = r |
| |
| // Check for the Start Of Image marker. |
| if err := d.readFull(d.tmp[:2]); err != nil { |
| return nil, err |
| } |
| if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { |
| return nil, FormatError("missing SOI marker") |
| } |
| |
| // Process the remaining segments until the End Of Image marker. |
| for { |
| err := d.readFull(d.tmp[:2]) |
| if err != nil { |
| return nil, err |
| } |
| for d.tmp[0] != 0xff { |
| // Strictly speaking, this is a format error. However, libjpeg is |
| // liberal in what it accepts. As of version 9, next_marker in |
| // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and |
| // continues to decode the stream. Even before next_marker sees |
| // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many |
| // bytes as it can, possibly past the end of a scan's data. It |
| // effectively puts back any markers that it overscanned (e.g. an |
| // "\xff\xd9" EOI marker), but it does not put back non-marker data, |
| // and thus it can silently ignore a small number of extraneous |
| // non-marker bytes before next_marker has a chance to see them (and |
| // print a warning). |
| // |
| // We are therefore also liberal in what we accept. Extraneous data |
| // is silently ignored. |
| // |
| // This is similar to, but not exactly the same as, the restart |
| // mechanism within a scan (the RST[0-7] markers). |
| // |
| // Note that extraneous 0xff bytes in e.g. SOS data are escaped as |
| // "\xff\x00", and so are detected a little further down below. |
| d.tmp[0] = d.tmp[1] |
| d.tmp[1], err = d.readByte() |
| if err != nil { |
| return nil, err |
| } |
| } |
| marker := d.tmp[1] |
| if marker == 0 { |
| // Treat "\xff\x00" as extraneous data. |
| continue |
| } |
| for marker == 0xff { |
| // Section B.1.1.2 says, "Any marker may optionally be preceded by any |
| // number of fill bytes, which are bytes assigned code X'FF'". |
| marker, err = d.readByte() |
| if err != nil { |
| return nil, err |
| } |
| } |
| if marker == eoiMarker { // End Of Image. |
| break |
| } |
| if rst0Marker <= marker && marker <= rst7Marker { |
| // Figures B.2 and B.16 of the specification suggest that restart markers should |
| // only occur between Entropy Coded Segments and not after the final ECS. |
| // However, some encoders may generate incorrect JPEGs with a final restart |
| // marker. That restart marker will be seen here instead of inside the processSOS |
| // method, and is ignored as a harmless error. Restart markers have no extra data, |
| // so we check for this before we read the 16-bit length of the segment. |
| continue |
| } |
| |
| // Read the 16-bit length of the segment. The value includes the 2 bytes for the |
| // length itself, so we subtract 2 to get the number of remaining bytes. |
| if err = d.readFull(d.tmp[:2]); err != nil { |
| return nil, err |
| } |
| n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 |
| if n < 0 { |
| return nil, FormatError("short segment length") |
| } |
| |
| switch marker { |
| case sof0Marker, sof1Marker, sof2Marker: |
| d.baseline = marker == sof0Marker |
| d.progressive = marker == sof2Marker |
| err = d.processSOF(n) |
| if configOnly && d.jfif { |
| return nil, err |
| } |
| case dhtMarker: |
| if configOnly { |
| err = d.ignore(n) |
| } else { |
| err = d.processDHT(n) |
| } |
| case dqtMarker: |
| if configOnly { |
| err = d.ignore(n) |
| } else { |
| err = d.processDQT(n) |
| } |
| case sosMarker: |
| if configOnly { |
| return nil, nil |
| } |
| err = d.processSOS(n) |
| case driMarker: |
| if configOnly { |
| err = d.ignore(n) |
| } else { |
| err = d.processDRI(n) |
| } |
| case app0Marker: |
| err = d.processApp0Marker(n) |
| case app14Marker: |
| err = d.processApp14Marker(n) |
| default: |
| if app0Marker <= marker && marker <= app15Marker || marker == comMarker { |
| err = d.ignore(n) |
| } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". |
| err = FormatError("unknown marker") |
| } else { |
| err = UnsupportedError("unknown marker") |
| } |
| } |
| if err != nil { |
| return nil, err |
| } |
| } |
| |
| if d.progressive { |
| if err := d.reconstructProgressiveImage(); err != nil { |
| return nil, err |
| } |
| } |
| if d.img1 != nil { |
| return d.img1, nil |
| } |
| if d.img3 != nil { |
| if d.blackPix != nil { |
| return d.applyBlack() |
| } else if d.isRGB() { |
| return d.convertToRGB() |
| } |
| return d.img3, nil |
| } |
| return nil, FormatError("missing SOS marker") |
| } |
| |
| // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula |
| // used depends on whether the JPEG image is stored as CMYK or YCbCrK, |
| // indicated by the APP14 (Adobe) metadata. |
| // |
| // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full |
| // ink, so we apply "v = 255 - v" at various points. Note that a double |
| // inversion is a no-op, so inversions might be implicit in the code below. |
| func (d *decoder) applyBlack() (image.Image, error) { |
| if !d.adobeTransformValid { |
| return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") |
| } |
| |
| // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB |
| // or CMYK)" as per |
| // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe |
| // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. |
| if d.adobeTransform != adobeTransformUnknown { |
| // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get |
| // CMY, and patch in the original K. The RGB to CMY inversion cancels |
| // out the 'Adobe inversion' described in the applyBlack doc comment |
| // above, so in practice, only the fourth channel (black) is inverted. |
| bounds := d.img3.Bounds() |
| img := image.NewRGBA(bounds) |
| imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) |
| for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { |
| for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { |
| img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] |
| } |
| } |
| return &image.CMYK{ |
| Pix: img.Pix, |
| Stride: img.Stride, |
| Rect: img.Rect, |
| }, nil |
| } |
| |
| // The first three channels (cyan, magenta, yellow) of the CMYK |
| // were decoded into d.img3, but each channel was decoded into a separate |
| // []byte slice, and some channels may be subsampled. We interleave the |
| // separate channels into an image.CMYK's single []byte slice containing 4 |
| // contiguous bytes per pixel. |
| bounds := d.img3.Bounds() |
| img := image.NewCMYK(bounds) |
| |
| translations := [4]struct { |
| src []byte |
| stride int |
| }{ |
| {d.img3.Y, d.img3.YStride}, |
| {d.img3.Cb, d.img3.CStride}, |
| {d.img3.Cr, d.img3.CStride}, |
| {d.blackPix, d.blackStride}, |
| } |
| for t, translation := range translations { |
| subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v |
| for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { |
| sy := y - bounds.Min.Y |
| if subsample { |
| sy /= 2 |
| } |
| for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { |
| sx := x - bounds.Min.X |
| if subsample { |
| sx /= 2 |
| } |
| img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] |
| } |
| } |
| } |
| return img, nil |
| } |
| |
| func (d *decoder) isRGB() bool { |
| if d.jfif { |
| return false |
| } |
| if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { |
| // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe |
| // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. |
| return true |
| } |
| return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' |
| } |
| |
| func (d *decoder) convertToRGB() (image.Image, error) { |
| cScale := d.comp[0].h / d.comp[1].h |
| bounds := d.img3.Bounds() |
| img := image.NewRGBA(bounds) |
| for y := bounds.Min.Y; y < bounds.Max.Y; y++ { |
| po := img.PixOffset(bounds.Min.X, y) |
| yo := d.img3.YOffset(bounds.Min.X, y) |
| co := d.img3.COffset(bounds.Min.X, y) |
| for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { |
| img.Pix[po+4*i+0] = d.img3.Y[yo+i] |
| img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] |
| img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] |
| img.Pix[po+4*i+3] = 255 |
| } |
| } |
| return img, nil |
| } |
| |
| // Decode reads a JPEG image from r and returns it as an image.Image. |
| func Decode(r io.Reader) (image.Image, error) { |
| var d decoder |
| return d.decode(r, false) |
| } |
| |
| // DecodeConfig returns the color model and dimensions of a JPEG image without |
| // decoding the entire image. |
| func DecodeConfig(r io.Reader) (image.Config, error) { |
| var d decoder |
| if _, err := d.decode(r, true); err != nil { |
| return image.Config{}, err |
| } |
| switch d.nComp { |
| case 1: |
| return image.Config{ |
| ColorModel: color.GrayModel, |
| Width: d.width, |
| Height: d.height, |
| }, nil |
| case 3: |
| cm := color.YCbCrModel |
| if d.isRGB() { |
| cm = color.RGBAModel |
| } |
| return image.Config{ |
| ColorModel: cm, |
| Width: d.width, |
| Height: d.height, |
| }, nil |
| case 4: |
| return image.Config{ |
| ColorModel: color.CMYKModel, |
| Width: d.width, |
| Height: d.height, |
| }, nil |
| } |
| return image.Config{}, FormatError("missing SOF marker") |
| } |
| |
| func init() { |
| image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) |
| } |