| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // fuseIntegerComparisons optimizes inequalities such as '1 <= x && x < 5', |
| // which can be optimized to 'unsigned(x-1) < 4'. |
| // |
| // Look for branch structure like: |
| // |
| // p |
| // |\ |
| // | b |
| // |/ \ |
| // s0 s1 |
| // |
| // In our example, p has control '1 <= x', b has control 'x < 5', |
| // and s0 and s1 are the if and else results of the comparison. |
| // |
| // This will be optimized into: |
| // |
| // p |
| // \ |
| // b |
| // / \ |
| // s0 s1 |
| // |
| // where b has the combined control value 'unsigned(x-1) < 4'. |
| // Later passes will then fuse p and b. |
| func fuseIntegerComparisons(b *Block) bool { |
| if len(b.Preds) != 1 { |
| return false |
| } |
| p := b.Preds[0].Block() |
| if b.Kind != BlockIf || p.Kind != BlockIf { |
| return false |
| } |
| |
| // Don't merge control values if b is likely to be bypassed anyway. |
| if p.Likely == BranchLikely && p.Succs[0].Block() != b { |
| return false |
| } |
| if p.Likely == BranchUnlikely && p.Succs[1].Block() != b { |
| return false |
| } |
| |
| // Check if the control values combine to make an integer inequality that |
| // can be further optimized later. |
| bc := b.Controls[0] |
| pc := p.Controls[0] |
| if !areMergeableInequalities(bc, pc) { |
| return false |
| } |
| |
| // If the first (true) successors match then we have a disjunction (||). |
| // If the second (false) successors match then we have a conjunction (&&). |
| for i, op := range [2]Op{OpOrB, OpAndB} { |
| if p.Succs[i].Block() != b.Succs[i].Block() { |
| continue |
| } |
| |
| // TODO(mundaym): should we also check the cost of executing b? |
| // Currently we might speculatively execute b even if b contains |
| // a lot of instructions. We could just check that len(b.Values) |
| // is lower than a fixed amount. Bear in mind however that the |
| // other optimization passes might yet reduce the cost of b |
| // significantly so we shouldn't be overly conservative. |
| if !canSpeculativelyExecute(b) { |
| return false |
| } |
| |
| // Logically combine the control values for p and b. |
| v := b.NewValue0(bc.Pos, op, bc.Type) |
| v.AddArg(pc) |
| v.AddArg(bc) |
| |
| // Set the combined control value as the control value for b. |
| b.SetControl(v) |
| |
| // Modify p so that it jumps directly to b. |
| p.removeEdge(i) |
| p.Kind = BlockPlain |
| p.Likely = BranchUnknown |
| p.ResetControls() |
| |
| return true |
| } |
| |
| // TODO: could negate condition(s) to merge controls. |
| return false |
| } |
| |
| // getConstIntArgIndex returns the index of the first argument that is a |
| // constant integer or -1 if no such argument exists. |
| func getConstIntArgIndex(v *Value) int { |
| for i, a := range v.Args { |
| switch a.Op { |
| case OpConst8, OpConst16, OpConst32, OpConst64: |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // isSignedInequality reports whether op represents the inequality < or ≤ |
| // in the signed domain. |
| func isSignedInequality(v *Value) bool { |
| switch v.Op { |
| case OpLess64, OpLess32, OpLess16, OpLess8, |
| OpLeq64, OpLeq32, OpLeq16, OpLeq8: |
| return true |
| } |
| return false |
| } |
| |
| // isUnsignedInequality reports whether op represents the inequality < or ≤ |
| // in the unsigned domain. |
| func isUnsignedInequality(v *Value) bool { |
| switch v.Op { |
| case OpLess64U, OpLess32U, OpLess16U, OpLess8U, |
| OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U: |
| return true |
| } |
| return false |
| } |
| |
| func areMergeableInequalities(x, y *Value) bool { |
| // We need both inequalities to be either in the signed or unsigned domain. |
| // TODO(mundaym): it would also be good to merge when we have an Eq op that |
| // could be transformed into a Less/Leq. For example in the unsigned |
| // domain 'x == 0 || 3 < x' is equivalent to 'x <= 0 || 3 < x' |
| inequalityChecks := [...]func(*Value) bool{ |
| isSignedInequality, |
| isUnsignedInequality, |
| } |
| for _, f := range inequalityChecks { |
| if !f(x) || !f(y) { |
| continue |
| } |
| |
| // Check that both inequalities are comparisons with constants. |
| xi := getConstIntArgIndex(x) |
| if xi < 0 { |
| return false |
| } |
| yi := getConstIntArgIndex(y) |
| if yi < 0 { |
| return false |
| } |
| |
| // Check that the non-constant arguments to the inequalities |
| // are the same. |
| return x.Args[xi^1] == y.Args[yi^1] |
| } |
| return false |
| } |